28 November 1979, 00:49:50 GMT

Air New Zealand McDonnell Douglas DC-10-30 ZK-NZP at London Heathrow Airport, July 1977. (Eduard Marmet via Wikipedia)
Air New Zealand McDonnell Douglas DC-10-30 ZK-NZP at London Heathrow Airport, July 1977. (Eduard Marmet via Wikipedia)

28 November 1979: An Air New Zealand sightseeing flight to Antarctica, Flight TE 901, departed Auckland Airport (AKL) on the North Island of New Zealand, at 1917 GMT, 27 November (8:17 a.m., 28 November, local time). The flight was planned to proceed to the vicinity of McMurdo Station at the south end of Ross Island, off the continent of Antarctica, and then return to Christchurch International Airport (CHC) on New Zealand’s South Island. The duration of the flight was estimated to be 11 hours and would travel a total of 5,360 miles (8,626 kilometers), all during daylight hours.

Air New Zealand had previously flown thirteen Antarctic excursions. On this date, the airliner operated as Flight TE 901 was a five year old McDonnell Douglas DC-10-30, registration ZK-NZP. On board the airliner were a flight crew of five, cabin crew of fifteen and 237 passengers.

MakeThumbnail
Collins

The pilot in command (PIC) was Captain Thomas James Collins. Captain Collins held an airline transport pilot license with a DC-10 type rating. He had flown a total of 11,151 flight hours, of which 2,872 had been aboard DC-10s. Because of the flight’s planned duration, the crew included two more pilots, First Officer Gregory Mark Cassin and First Officer Graham Neville Lucas. There were also two flight engineers, Flight Engineer Gordon Barrett Brooks and Flight Engineer Nicholas John Maloney. All were very experienced pilots, type-rated in the DC-10. None, however, had previously flown the Antarctic route.

19 days before the flight, Captain Collins and First Officer Cassin had received an audio-visual briefing of the planned flight. They also flew the route in a cockpit simulator. The route of previous flights had taken the airliners from the Ross Sea into McMurdo Sound, well west of Ross Island and its 12,448 foot (3,794 meters) active volcano, Mount Erebus. At a pre-determined waypoint, the airliner turned left toward McMurdo Station. The airline’s minimum altitude through this area was 16,000 feet (4,877 meters) until south of McMurdo Station, and then only if certain weather conditions were present.

Air New Zealand flight planners had discovered that data which had been entered into the aircraft’s Area Inertial Navigation System (AINS) computer was incorrect. The coordinates of the for the destination waypoint were  actually 2˚10′ west of the intended destination waypoint. The intended route was to take TE 901 directly over Mount Erebus to the emergency whiteout landing area near Williams Field (ICAO: NZWD) about 10 miles (16 kilometers) from McMurdo Station on the Ross Ice Shelf. Because of the data error, however, all previous flights had approached from well west of Ross Island before turning toward McMurdo Station at West Dailey Island. The navigation data was corrected, but the flight crew had not been informed of the change or the reason for it.

DC-10 navigation console. (Unattributed)
DC-10 navigation console. (Unattributed)

The flight toward Antarctica proceeded normally. Exactly five hours after takeoff, Captain Collins began a descent from TE 901’s cruising altitude. At this point the airliner was approximately 140 miles (225 kilometers) north of McMurdo Station. First Officer Cassin advised air traffic control, Mac Center, of their descent. The controller acknowledged and gave the current weather at McMurdo as “. . . low overcast in the area at about 2,000 feet [607 meters] and . . . some snow but our visibility is still about 40 miles [64 kilometers]. . . .” In the cockpit, Captain Collins commented that the clouds were lower than previously reported, and that, it would be, “Very hard to tell the difference between the cloud and the ice.”

First Officer Cassin requested descent to 16,000 feet (4,877 meters) but Mac Center directed the flight to “descend and maintain Flight Level 180.” (18,000 feet/5,486 meters)

Over the next six minutes, TE 901 traveled 50 miles as it descended to FL 180. Radio transmissions during the let down were unclear, with Mac Center, Flight 901 and Ice Tower all trying to make contact. It is possible that the high terrain between the airliner and McMurdo Station was blocking the signals. The pilots discussed using other frequencies. Captain Collins and Flight Engineer Brooks discussed the airliner’s present weight and the minimum speed required, which was calculated to be 252 knots.

Satellite image of Ross Island. McMurdo Station is at the tip of the narrow peninsula in the lower left quadrant. (NASA)
Satellite image of Ross Island. McMurdo Station is at the tip of the narrow peninsula in the lower left quadrant. (NASA)
rossislandmap
Topographic map of Ross Island, Antarctica (1:250,000 scale) (USGS)

At 00:24:44, the DC-10’s Altitude Alert sounded, indicating that the airplane had reached the assigned altitude of Flight Level 180.

At 00:31:01, Captain Collins told the crew, “I’ll have to do an orbit here I think.” Seven seconds later, he said, “Well actually it’s clear out here if we get down. . .and—” Someone in the cockpit replied, “It’s not clear on the right hand side here.” First Officer Cassin said, “No.”

Captain Collins had observed an opening in the clouds to the left of the airplane, and decided to descend further under visual conditions. He first began a descending 360˚ turn to the right, followed by  a descending 180˚to the left. This put the DC-10 on a course away from McMurdo Station at 10,000 feet (3,048 meters). Captain Collins and the two flight engineers discussed the desired airspeed. With the flight still continuing outbound, at 00:42:49, Collins said, “We’re VMC [Visual Meteorological Conditions] around this way so I’m going to do another turn in.” The flight’s expert commentator, Peter Mulgrew, had entered the flight deck. Captain Collins said, “Sorry haven’t got time to talk but—” Mulgrew replied, “Ah well you can’t talk if you can’t see anything.” However, Mulgrew remained in the cockpit.

At 00:45:00, First Officer Cassin called McMurdo Center and reported, “. . . we are now at six thousand descending to two thousand and we’re VMC.”

Mount Erebus, the world's southernmost active volcano, with a height of 2,448 foot (3,794 meters). (Tattered Passport)
The world’s most southern active volcano, Mount Erebus on Ross Island, Antarctica, has a height of 12,448 feet (3,794 meters). (Tattered Passport)

Passing through 3,000 feet (914 meters), Flight Engineer Brooks asked, “Where’s Erebus in relation to us at the moment?” Someone answered, “Left about twenty or twenty-five miles.” Someone else asked, “Left do you reckon?” A voice said, “Well I don’t know—I think.” An unknown voice said, “I’ve been looking for it.” Cassin replied, “Yep, yep.” Brooks then said, “I’m just thinking of any high ground in the area, that’s all.”

Mulgrew replied, “I think it’ll be left, yes.” The second flight engineer, Nick Maloney, then said, “Yes, I reckon about here.”  Mulgrew answered, “Yes—no, no, I don’t really know.” Then at 00:47:02, he said, “That’s the edge,” probably indicating that he could see the edge of the ice sheet ahead.

At 00:47:06, a crewmember announced, “Down to two thousand.” Both Collins and Cassin acknowledged this, “Yes.” — “Yes.” The crew then set the flight director to hold airspeed and altitude.

At 00:47:43, Captain Collins said, “We might have to pop down to fifteen hundred here I think.” Cassin replied, “Yes, OK. . . Probably see further in anyway. . . It’s not too bad. . . I see vert speed for fifteen hundred feet.”

Flight Engineer Maloney said, “—It’s not right.” An unknown voice then said, “Bit thick here eh Bert?” Maloney replied, “Yeah my. . . . oath. . . (pause) You’re really a long while on . . . instruments this time are you?” Mulgrew then said, “I reckon Bird’s through here and—Ross Island there.” Maloney answered, “Yes,” and Mulgrew continued, “Erebus should be there.” Captain Collins says, “Right.” For the next forty seconds the crew discussed radio and navigation frequencies.

At 00:49:08, Mulgrew said, “That looks like the edge of Ross Island there.” Cassin attempted to contact McMurdo Tower. At 00:49:24, Maloney said, “I don’t like this.”

At 00:49:30, Captain Collins said, “We’re twenty-six miles north we’ll have to climb out of this.” Someone answered, “OK.” Cassin told Collins, “It’s clear on the right and (well) ahead.” Collins asked, “Is it?” Mulgrew said, “Yes.” Cassin, said, “No negative.” Cassin said, “No high ground if you do a one eighty.”

At 00:49:44 the airliner’s Ground Proximity Warning System is heard: WHOOP WHOOP—PULL UP—WHOOP WHOOP

00:49:48 Flight Engineer Brooks reports, “Five hundred feet.”

PULL UP

Brooks: “Four hundred feet.”

WHOOP WHOOP—PULL UP—WHOOP WHOOP

Captain Collins calls, “Go round power please.”

WHOOP WHOOP—PULL

At 00:49:50 GMT, ZK-NZP struck gradually rising terrain at an elevation of 1,467 feet (447 meters) above Sea Level, while flying at 260 knots (299 miles per hour/482 kilometers per hour). The DC-10 was totally destroyed and all 257 persons on board were instantly killed by the impact. The site of the crash was on the north slope of Mount Erebus, approximately 31 miles (50 kilometers) north of McMurdo Station, at Latitude 77˚25’30” South, Longitude 167˚27’30″East.

The navigation computer showed teh position of Flight 901, farther south and slightly left of its actual track—closer to Mount Erebus.
The navigation computer showed the position of Flight 901 a few miles farther to the south and slightly left of its actual track—closer to Mount Erebus. (Transport Accident Investigation Commission)
This detailed graphic shows the flight path an descent of Flight 901 and correlates the FDR data to give an idea of where the airplane actually was and where the crew thought it was..
This detailed graphic shows the flight path and descent profile of Flight TE 901 and correlates CVR and FDR data to give an idea of where the airplane actually was and where the crew thought it was. (Transport Accident Investigation Commission)
Crash site of Air new Zealand Flight 910 on teh slopes of Mount Erebus, Antarctica. (Bereau d'Archives des Accidents d'Avions)
Looking west at the crash site of Air New Zealand Flight TE 910 at an elevation of 1,467 feet (447 meters) above Sea Level, on the north slope of Ross Island, Antarctica. Mount Erebus is at the upper left of the photograph. The terrain has a gradual upward slope of 13˚, and cross slope, right to left, of -5˚. The debris field is aligned on a heading of 190˚ True and is approximately 570 meters long. (Bureau d’Archives des Accidents d’Avions)

The intensive investigation of the accident showed that, based on the route briefing, the flight crew expected to be about 26 miles to the west. In fact, TE 901 had proceeded almost precisely along the planned track. Analysis of the navigation computer showed that its INS position was in error by just 3.1 nautical miles (3.6 miles/ 5.7 kilometers), well within its known tolerance. It was indicating almost the exact location of the flight, if anything, closer to Mount Erebus than it really was.

Much controversy ensued over who was at fault for the position error. Regardless of whether the flight was on the intended track, or on the erroneous track 25 miles west, the crew was fully aware that they were well north of McMurdo Station. Air New Zealand had established a minimum safe altitude of 16,000 feet (4,877 meters) until the flight was south of McMurdo.

3.37     Probable cause: The probable cause of this accident was the decision of the captain to continue the flight at low level toward an area of poor surface and horizon definition when the crew was not certain of their position and the subsequent inability to detect the rising terrain which intercepted the aircraft’s flight path.

AIRCRAFT ACCIDENT REPORT No. 79-139, Transport Accident Investigation Commission (TAIC), New Zealand, Section 3.37 at Page 34.

ZK-NZP was a McDonnell Douglas DC-10-30, s/n 46910, built at the Douglas Aircraft Company’s Long Beach, California, plant during November 1974. It arrived in New Zealand 14 December 1974 for service with Air New Zealand Limited. The –30 was a long range variant of the DC-10 series. It is designed to be operated by a flight crew of three. It is 182 feet, 1 inch (55.499 meters) long with a wingspan of 165 feet, 5 inches (50.419 meters) and overall height of 58 feet, 1 inch (17.704 meters.) One of the original “wide body” jets, the cylindrical fuselage of the DC-10 has a diameter of 19 feet, 9 inches (6.020 meters).

The DC-10-30 was powered by three General Electric CF6-50C turbofan engines, rated at 51,000 pounds of thrust (226.86 kilonewtons) at Sea Level. The CF6-50 is a two-spool, high-bypass-ratio axial-flow turbofan engine. It has a single-stage fan section, with a 17-stage compressor (3 low- and 14 high-pressure stages, and a 6-stage turbine (2 high- and 4 low-pressure stages). The CF6-50C has a maximum diameter of 8 feet, 9.0 inches (2.667 meters), fan diameter of 7 feet, 2.4 inches (2.195 meters) and length of 15 feet, 8.0 inches (4.775 meters). It weighs 7,896 pounds (3,582 kilograms).

The DC-10-30 has an empty weight of 266,191 pounds (120,742 kilograms) and maximum takeoff weight of 572,000 pounds (259,455 kilograms). ZK-NZP, operating as Flight TE 901, had an “all-up weight” of 199,150 kilograms (439,051 pounds), and for the conditions of this flight, the MTOW was calculated to be 253,105 kilograms (558,001 pounds). It’s actual takeoff weight was 246,507 kilograms (543,455 pounds).

The typical cruise speed of the DC-10 is 0.82 Mach (556 miles per hour, or 895 kilometers per hour, at 30,000 feet/9,144 meters) and its service ceiling is 42,000 feet (12,802 meters). The DC-10-30 variant has a maximum range of 6,600 miles (10,622 kilometers).

At the time of the accident, ZK-NZP had flown 20,763 hours since new (TTSN).

The largest remaining fragment of McDonnell Douglas DC-10-30 ZK-NZP was this portion of the fuselage and wings.
The largest remaining fragment of McDonnell Douglas DC-10-30 ZK-NZP was this portion of the fuselage and wings. (AP Images)

© 2016, Bryan R. Swopes

Share this article:

13 thoughts on “28 November 1979, 00:49:50 GMT

  1. Something i vividly remember from that period was learning the pilots could not raise McMurdo by VHF, but were able to by HF. Surely a light bulb should have gone on for any pilot or flight engineer that VHF is line-of-sight. Ipso facto somebody should have realized there was something blocking the VHF signal.

    Terrible shame this needless crash. It has been said that the aircraft was driven up the slope by the no.2 engine mounted high on the tail and literally shook itself to pieces. A rumor circulated NZ Police where I worked after the tragedy that some of the bodies recovered were black from frostbite indicating an awful prospect that some perhaps survived the impact.

    1. Unfortunately, they expected to be somewhere else. The flight engineer did recognize that something wasn’t right. Is it possible that there could have been survivors? Oh, no. . . Thank you, Simon. I appreciate your comments.

    2. Speaking from experience. When your doing everything you can to determine where your at in relation to terrain and weather, line of sight of VHF is very low on the list of reasons unable to contact.

  2. Six seconds after the first “whoop – whoop” the DC 10 impacts the ground on a 13 degree rising slope. That is an eternity to get out of the situation, IMO. Yet the Captain says “Go round power please.” I don’t know where his hands were, but mine would have been on the throttle levers in that situation, and they would have been fire walled at the first “whoop”.

    I am a retired airline captain.

    1. I completely agree with Willy. However, in 1979 GPWS was a fairly new safety addition to airliners. Its warnings probably didn’t get the respect and responses it gets today. Such a shame.

      1. I strongly disagree with both of you, James and Willy. Six seconds is nothing, it is over in a blink. At 300mph they were travelling with 5 miles per minute, but 5 miles ahead was Terrain as high as 2000m, or more than 6000ft, and that exceeds by far the initial climb rate of a DC-10. And this is even without including inertia or time to spool up the engines. That alone would take at least 8 seconds from almost idle to TOGA with the CF-6-50. They weren´t doomed because of “late” reaction, they sadly were doomed long before.
        Any _real_ airline captain, retired or not, would know that.

  3. IIRC, navigational system data entry errors have contributed to other fatal accidents. Do you or any readers know what changes have been implemented to prevent this from happening?

    Thanks and keep up the good work!

    1. It the captain had followed the company’s mandatory procedures for the flight, there would not have been a crash, even though the airliner was not where he thought it was. Pilot error. Data entry was an associated factor, not the cause.

  4. Hm, that part with “probable cause” comes from the official report by chief inspector of air accidents, Ron Chippindale (I looked it up on the internet again). He solely/primarily blamed the pilot, which caused substantial outcry back then.
    Then a comission was installed, led by hon judge Peter Mahon, and the pilots were cleared of blame. The cause of the accident was rather a chain of faults and errors in the planning of the flight, leaving all these poor souls on a direct crash course with Mount Erebus.
    Also hon Judge Mahon revealed all the cover-up, that led to Mr. Chippindales wrong results.
    Judge Mahons one-liner “…an orchestrated litany of lies” is still a common phrase, not only in NZ.
    Only a few years ago, on the 40th “anniversary”, prime minister Ardern offered a formal apology to the family of the victims.
    There is a lot of stuff on the internet about this disaster, all worth reading it (also note the huge Article on the japanese Wiki, since a lot of the victims were japanese).

    1. It the captain had followed the company’s mandatory procedures for the flight, there would not have been a crash, even though the airliner was not where he thought it was. Pilot error. Data entry was an associated factor, not the cause.

  5. Ah, i forgot to mention one detail: A optical phenomenon/illusion called “sector white-out” contributed to the disastrer – the pilots simply weren´t able to see what they were about to hit.
    I see the phrase mentioned in this posts header, but not in the main article; IMHO it is worth being included, together with hon Judge´s Mahon findings.

      1. IMHO this disaster is at least a notable example for the swiss cheese model. I doubt Captain Collins would´ve steered his plane into Mount Erebus if he had a chance to see it ( -> sector white out).
        Other than that i´m not criticsing your opinion, i just disagree partially.
        Keep up the good work, i always enjoy to drop by, read and learn!

Comments are closed.