Tag Archives: Rocketplane

25 January 1946

Jack Valentine Woolams, Chief Experimental Test Pilot, Bell Aircraft Corporation. (John Trudell/Ancestry)

25 January 1946:¹ Near Pinecastle Army Airfield in central Florida, Bell Aircraft Corporation Senior Experimental Test Pilot Jack Woolams made the first unpowered glide flight of the XS-1 supersonic research rocketplane, 46-062.

46-062 was the first of three XS-1 rocketplanes built by Bell for the U.S. Army Air Corps and the National Advisory Committee for Aeronautics (NACA) to explore flight at speeds at and beyond Mach 1, the speed of sound. The airplane had been rolled out of Bell’s plant at Buffalo, New York, on 27 December 1945. The rocket engine, which was being developed by Reaction Motors, Inc., at Franklin Lakes, New Jersey, was not ready, so the experimental aircraft was carrying ballast in its place for the initial flight tests.

Jack Woolams with the second Bell XS-1, 46-063. (Niagara Aerospace Museum)

The XS-1 was to be air-dropped from altitude by a modified heavy bomber so that its fuel could be used for acceleration to high speeds at altitude, rather than expended climbing from the surface. Bell manufactured B-29B Superfortresses at its Atlanta, Georgia, plant and was therefore very familiar with its capabilities. A B-29, 45-21800, was selected as the drop ship and modified to carry the rocketplane in its bomb bay.

Boeing B-29-96-BW Superfortress 45-21800 carries a Bell XS-1 rocketplane. (Bell Aircraft Museum)

Pinecastle Army Airfield was chosen as the site of the first flight tests because it had a 10,000 foot (3,048 meter) runway and was fairly remote. There was an adjacent bombing range and the base was a proving ground for such aircraft as the Consolidated B-32 Dominator. (Today, Pinecastle A.A.F. is known as Orlando International Airport, MCO.)

Bell XS-1 46-062 was placed in a pit at Pinecastle A.A.F. so that the B-29 drop ship in the background could be positioned over it. (NASA)
Bell XS-1 46-062 was placed in a pit at Pinecastle A.A.F. so that the B-29 drop ship in the background could be positioned over it. (NASA)

The B-29 carrying the XS-1 took off from Pinecastle at 11:15 a.m., and began its climb to altitude. Woolams was in the forward crew compartment. As the bomber reached approximately 10,000 feet (3,048 meters), he entered the bomb bay and climbed down into the cockpit of the research aircraft. At the drop altitude, the B-29 was flying at 180 miles per hour (290 kilometers per hour) with the inboard propellers feathered and flaps lowered to 20°.

The XS-1 dropped away smoothly. Woolams flew the rocketplane to a maximum 275 miles per hour (443 kilometers per hour), indicated air speed, during this first glide test. He described the rocketplane as, “solid as a rock, experiencing absolutely no vibration or noise. At the same time, it felt as light as a feather during maneuvers due to the lightness, effectiveness and nice balance between the controls.” Woolams described the visibility from the cockpit as “not good, but adequate.”

The duration of the first glide flight was about ten minutes. Woolams misjudged his approach to Pinecastle and landed slightly short of the runway, on the grass shoulder, but the XS-1 was not damaged.

The conclusion of Woolams’ flight report is highly complementary of the experimental airplane:

11.  Of all the airplanes the writer has flown, only the XP-77 and the Heinkel 162 compare with the XS-1 for maneuverability, control relationship, response to control movements, and lightness of control forces. Although these impressions were rather hastily gained during a flight which lasted only 10 minutes, it is the writer’s opinion that due to these factors and adding to them the security which the pilot feels due to the ruggedness, noiselessness, and smoothness of response of this airplane, it is the most delightful to fly of them all.

—PILOT’S REPORT, Flight 1, by Jack Woolams

Jack Woolams made ten glide flights with 46-062, evaluating its handling characteristics and stability. The aircraft was returned to Bell to have the rocket engine installed, and it was then sent to Muroc Army Airfield in the high desert of southern California for powered flight tests. (Muroc A.A.F. was renamed Edwards Air Force Base in 1949.)

Bell XS-1 46-062 was later named Glamorous Glennis by its military test pilot, Captain Charles E. Yeager, U.S. Army Air Corps. On 14 October 1947, Chuck Yeager flew it to Mach 1.06 at 13,115 meters (43,030 feet). Today the experimental aircraft is on display at the Smithsonian Institution National Air and Space Museum.

The Bell XS-1, later re-designated X-1, was the first of a series of rocket-powered research airplanes which included the Douglas D-558-II Skyrocket, the Bell X-2, and the North American Aviation X-15, which were flown by the U.S. Air Force, U.S. Navy, NACA and its successor, NASA, at Edwards Air Force Base to explore supersonic and hypersonic flight and at altitudes to and beyond the limits of Earth’s atmosphere.

An X-1 under construction at teh Bell Aircraft Corporation plant, Buffalo, New York. (Bell Aircraft Corporation)
An X-1 under construction at the Bell Aircraft Corporation plant, Buffalo, New York. (Bell Aircraft Corporation)

The X-1 has an ogive nose, similar to the shape of a .50-caliber machine gun bullet, and has straight wings and tail surfaces. It is 30 feet, 10.98 inches (9.423 meters) long with a wing span of 28.00 feet (8.534 meters) and overall height of 10 feet, 10.20 inches (3.307 meters).

46-062 was built with a thin 8% aspect ratio wing, while 46-063 had a 10% thick wing. The wings were tapered, having a root chord of 6 feet, 2.2 inches (1.885 meters) and tip chord of 3 feet, 1.1 inches (0.942 meters), resulting in a total area of 130 square feet (12.1 square meters). The wings have an angle of incidence of 2.5° with -1.0° twist and 0° dihedral. The leading edges are swept aft 5.05°.

The horizontal stabilizer has a span of 11.4 feet (3.475 meters) and an area of 26.0 square feet (2.42 square meters). 062’s stabilizer has an aspect ratio of 6%, and 063’s, 5%.

The fuselage cross section is circular. At its widest point, the diameter of the X-1 fuselage is 4 feet, 7 inches (1.397 meters).

46-062 had an empty weight is 6,784.9 pounds (3,077.6 kilograms), but loaded with propellant, oxidizer and its pilot with his equipment, the weight increased to 13,034 pounds (5,912 kilograms).

The X-1 was designed to withstand an ultimate structural load of 18g.

Front view of a Bell XS-1 supersonic research rocketplane at the Bell Aircraft plant, Buffalo, New York. (Bell Aircraft Museum)

The X-1 was powered by a four-chamber Reaction Motors, Inc., 6000C4 (XLR11-RM-3 ) rocket engine which produced 6,000 pounds of thrust (26,689 Newtons). This engine burned a 75/25 mixture of ethyl alcohol and water with liquid oxygen. Fuel capacity is 293 gallons (1,109 liters) of water/alcohol and 311 gallons (1,177 liters) of liquid oxygen. The fuel system was pressurized by nitrogen at 1,500 pounds per square inch (103.4 Bar).

The X-1 was usually dropped from the B-29 flying at 30,000 feet (9,144 meters) and 345 miles per hour (555 kilometers per hour). It fell as much as 1,000 feet (305 meters) before beginning to climb under its own power.

The X-1’s performance was limited by its fuel capacity. Flying at 50,000 feet (15,240 meters), it could reach 916 miles per hour (1,474 kilometers per hour), but at 70,000 feet (21,336 meters) the maximum speed that could be reached was 898 miles per hour (1,445 kilometers per hour). During a maximum climb, fuel would be exhausted as the X-1 reached 74,800 feet (2,799 meters). The absolute ceiling is 87,750 feet (26,746 meters).

Bell X-1 46-062 on the dry lake bed at Muroc Army Airfield, circa 1947. (NASM)

The X-1 had a minimum landing speed of 135 miles per hour (217 kilometers per hour) using 60% flaps.

There were 157 flights with the three X-1 rocket planes. The number one ship, 46-062, Glamorous Glennis, made 78 flights. On 26 March 1948, with Chuck Yeager again in the cockpit, it reached reached Mach 1.45 (957 miles per hour/1,540 kilometers per hour) at 71,900 feet (21,915 meters).

The third X-1, 46-064, made just one glide flight before it was destroyed 9 November 1951 in an accidental explosion.

The second X-1, 46-063, was later modified to the X-1E. It is on display at the NASA Dryden Research Center at Edwards Air Force Base. Glamorous Glennis is on display at the Smithsonian Institution National Air and Space Museum, next to Charles A. Lindbergh’s Spirit of St. Louis.

Bell X-1, 46-062, Glamorous Glennis, on display at the National Air and Space Museum, Washington, D.C. (NASM)
Bell X-1 46-062, Glamorous Glennis, on display at the National Air and Space Museum, Washington, D.C. (NASM)

Jack Valentine Woolams was born on Valentine’s Day, 14 February 1917, at San Francisco, California. He was the second of three children of Leonard Alfred Woolams, a corporate comptroller, and Elsa Mathilda Cellarius Woolams. He grew up in San Rafael, California, and graduated from Tamalpais School in 1935.

Jack Woolams, 1941

After two years of study at The University of Chicago, in 1937 Woolams entered the Air Corps, U.S. Army, as an aviation cadet. He trained as a pilot at Kelly Field, San Antonio, Texas. On graduation, 16 June 1938, he was discharged as an aviation cadet and commissioned as a second lieutenant, Air Reserve. He was assigned to Barksdale Army Air Field, Louisiana, where he flew the Boeing P-26 and Curtiss P-36 Hawk.

On 10 February 1939, Lieutenant Woolams was one of three Air Corps officers thrown into the waters of Cross Lake, near Shreveport, Louisiana, when the boat, owned by Woolams, capsized in 4 foot (1.2 meters) waves. Woolams and Lieutenant J.E. Bowen were rescued after 4 hours in the water, but the third man, Lieutenant Wilbur D. Camp, died of exposure.

Lieutenant Woolams transferred from active duty to inactive reserve status in September 1939 in order to pursue his college education at The University of Chicago, where he was a member of the Alpha Delta Phi (ΑΔΦ) fraternity. While at U. of C., he played on the university’s football and baseball teams, and was a member of the dramatic society. Woolams graduated 18 July 1941 with a Bachelor of Arts (A.B.) degree in Economics.

Mr. and Mrs. Jack V. Woolams, 16 June1941. (Unattributed)

Jack Woolams married Miss Mary Margaret Mayer at the bride’s home in Riverside, Illinois, 16 June 1941. They would have three children. Miss Mayer was also a 1941 graduate from the University of Chicago. She had been Woolams’ student in the Civilian Pilot Training Program.

Woolams became a production test pilot for the Bell Aircraft Corporation at Buffalo, New York. He tested newly-built Bell P-39 Airacobra fighters. As he became more experienced, he transitioned to experimental testing with the P-39, P-63 King Cobra, and the jet-powered P-59 Airacomet.

Jack Valentine Woolams, Chief Experimental Test Pilot, Bell Aircraft Corporation, circa 1946. (Niagara Aerospace Museum)

On 28 September 1942, Jack Woolams flew a highly-modified Bell P-39D-1-BE Airacobra, 41-38287, from March Field, near Riverside, California, to Bolling Field, Washington, D.C., non-stop. The duration of the flight was approximately 11 hours. The modifications were intended to allow P-39s to be flown across the Pacific Ocean to Hawaii and on to the Soviet Union for delivery under Lend Lease.

During the summer of 1943, Woolams flew the first Bell YP-59A Airacomet, 42-108771, to an altitude of 47,600 feet (14,508 meters) near Muroc Army Air Field in California.

On 5 January 1945, Woolams was forced to bail out of a Bell P-59A-1-BE, 44-22616. He suffered a deep laceration to his head as he left the airplane. He lost his flight boots when the parachute opened, and on landing, had to walk barefoot through knee-deep snow for several miles to reach a farm house. The deep snow prevented the company’s ambulance from getting to Woolams. Bell Aircraft president Lawrence D. Bell sent the company’s second prototype Bell Model 30 helicopter, NX41868, flown by test pilot Floyd Carlson, to transport a doctor, J.A. Marriott, M.D., to the location. Another Bell test pilot, Joe Mashman, circled overhead in a P-63 King Cobra to provide a communications link. Later in the day, an ambulance was able to get through the snow to take Woolams to a hospital.

Wreckage of Bell P-59A-1-BE Airacomet 44-22616. Jack Woolams bailed out of this airplane 5 January 1945. (Niagara Aerospace Museum)

Woolams was scheduled to make the first powered flight of the XS-1 during October 1946.

Jack Woolams was killed Friday, 30 August 1946, when his red Thompson Trophy racer, Cobra I, a modified 2,000-horsepower Bell P-39Q Airacobra, crashed into Lake Ontario at over 400 miles per hour. His body was recovered by the U.S. Coast Guard four days later.

Bell Aircraft Corporation experimental test pilots Jack Woolams and Tex Johnston with their modified Bell P-39Q Airacobras, Cobra I and Cobra II. (Niagara Aerospace Museum)

¹ This article was originally dated 19 January 1946. There were known discrepancies as to the date of the first flight from various reliable sources. Recently discovered test flight reports, provided to TDiA by Mr. Roy T. Lindberg, Historian of the Niagara Aerospace Museum, Niagara Falls, New York, have confirmed that the date of the first flight was actually 25 January 1946. The article has been been revised accordingly, as well as to incorporate new information from these reports.

TDiA is indebted to Mr. Lindberg for providing this and other documentation.

© 2019, Bryan R. Swopes

12 December 1953

Bell X-1A 48-1384 in flight. The frost band on the fuselage shows the location of the cryogenic propellant tank. (U.S. Air Force)

12 December 1953: On its tenth flight, U.S. Air Force test pilot Major Chuck Yeager flew the Bell X-1A rocket plane to Mach 2.435 (1,618 miles per hour/2,604 kilometers per hour) at 74,700 feet (22,769 meters), faster than anyone had flown before.

After the rocket engine was shut down, the X-1A tumbled out of control—”divergent in three axes” in test pilot speak—and fell out of the sky. It dropped nearly 50,000 feet (15,240 meters) in 70 seconds. Yeager was exposed to accelerations of +8 to -1.5 g’s. The motion was so violent that Yeager cracked the rocketplane’s canopy with his flight helmet.

Yeager was finally able to recover by 30,000 feet (9,144 meters) and landed safely at Edwards Air Force Base.

Yeager later remarked that if the X-1A had an ejection seat he would have used it.

Bell Aircraft Corporation engineers had warned Yeager not to exceed Mach 2.3.

Major Charles E. Yeager, U.S. Air Force, seated in the cockpit of the Bell X-1A, 48-1384, circa 1953. (U.S. Air Force)

The following is from Major Charles E. Yeager’s official post-flight report:

After a normal drop at 31,000 feet, chambers , , and were ignited and [the] airplane was accelerated up to .8 Mach number. A flight path was formed holding .8 Mach number up to 43,000 feet where chamber was ignited and the airplane accelerated in level flight to 1.1 Mach number. A climb was again started passing through 50,000 feet at 1.1 Mach number, 60,000 feet at 1.2 Mach number and a push-over was started at 62,000 feet. The top of the round-out occurred at 76,000 feet and 1.9 Mach number. The airplane was accelerated in level flight up to 2.4 [2.535 indicated] Mach number where all of the rocket chambers were cut. The flight path was very normal and nothing uneventful [sic] happened up to this point. After the engine was cut, the airplane went into a Dutch roll for approximately 2 oscillations and then started rolling to the right at a very rapid rate of roll. Full aileron and opposite rudder were applied with no effect on the rate of roll of the airplane. After approximately 8 to 10 complete rolls, the airplane stopped rolling in the inverted position and after approximately one-half of one second started rolling to the left at a rate in excess of 360 degrees per second, estimated by the pilot. At this point the pilot was completely disoriented and was not sure what maneuvers the airplane went through following the high rates of roll. Several very high ‘g’ loads both positive and negative and side loads were felt by the pilot. At one point during a negative ‘g’ load, the pilot felt the inner liner of the canopy break as the top of his pressure suit helmet came in contact with it. The first maneuver recognized by the pilot was an inverted spin at approximately 33,000 feet. The airplane then fell off into the normal spin from which the pilot recovered at 25,000 feet.

Flight test data from Yeager's 12 December 1953 flight superimposed over a photograph of the bell X-1A. (NASA)
Flight test data from Yeager’s 12 December 1953 flight superimposed over a photograph of the Bell X-1A. (NASA)

The following is a transcript of radio transmissions during the flight:

Yeager: Illegible [inaudible]—gasping—I’m down to 25,000 over Tehachapi. Don’t know
whether I can get back to the base or not.
Chase (Ridley): At 25,000 feet, Chuck?
Yeager: Can’t say much more, I got to (blurry—save myself).
Yeager: I’m—(illegible)—(Christ!)
Chase (Ridley): What say, Chuck?
Yeager: I say I don’t know if I tore anything up or not but Christ!
Chase (Murray): Tell us where you are if you can.
Yeager: I think I can get back to the base okay, Jack. Boy, I’m not going to do that any more.
Chase (Murray): Try to tell us where you are, Chuck.
Yeager: I’m (gasping)…I’ll tell you in a minute. I got 1800 lbs [nitrogen] source pressure.
Yeager: I don’t think you’ll have to run a structure demonstration on this damned thing!
Chase (Murray): Chuck from Murray, if you can give me altitude and heading, I’ll try to check you from outside.
Yeager: Be down at 18,000 feet. I’m about—I’ll be over the base at about 15,000 feet in a minute.
Chase (Murray): Yes, sir.
Yeager: Those guys were so right!
Yeager: Source pressure is still 15 seconds, I’m getting OK now.
Yeager: I got all the oscillograph data switches off. 4 fps camera off, it’s okay.
Bell Truck: Jettison and vent your tanks.
Yeager: I have already jettisoned. Now I’m venting both lox and fuel. Leaving hydrogen peroxide alone.
Bell Truck: Roger.
Yeager: I cut it, I got—in real bad trouble up there.
Yeager: Over the base right now, Kit, at 14,500 feet.
Chase (Murray): I have you.

A North American F-86E-10-NA Sabre chase plane, 51-2848, follows the Bell X-1A as it glides toward Rogers Dry Lake. (NASA)
A North American F-86E-10-NA Sabre chase plane, 51-2848, follows the Bell X-1A as it glides toward Rogers Dry Lake. (NASA)

In his autobiography, Always Another Dawn, NACA test pilot Albert Scott Crossfield wrote:

Probably no other pilot could have come through that experience alive. Much later I asked Yeager, as a matter of professional interest, exactly how he regained control of the ship. He was vague in his reply, but he said he thought that after he reached the thick atmosphere, he had deliberately put the ship into a spin.

“A spin is something I know how to get out of,” he said. “That other business— the tumble—there is no way to figure that out.”

. . . Yeager received many accolades. I didn’t begrudge him one of them. If ever a pilot deserved praise for a job well done, it was Yeager. After that X-1A episode, he never flew a rocketplane again.

Always Another Dawn: The Story of a Rocket Test Pilot, by A. Scott Crossfield with Clay Blair, Jr., The World Publishing Company, Cleveland and New York, Chapter 19 at Pages 183–184.  

Bell X-1A 48-1384 (U.S. Air Force)

The Bell X-1A, 48-1384, was an experimental rocket-powered high-speed, high-altitude research aircraft. It was one of four second-generation X-1s (including the X-1B, X-1D and X-1E), specifically designed to investigate dynamic stability at speeds in excess of Mach 2 and altitudes greater than 90,000 feet. It was a mid-wing monoplane with retractable tricycle landing gear. The airplane was 35 feet, 6.58 inches (10.835 meters) long with a wingspan of 30 feet, 6 inches (9.296 meters) and overall height of 10 feet, 2.37 inches (3.261 meters). The wheelbase, measured from the nose wheel axle to the main wheel axle, was  13 feet, 5.13 inches. (4.093 meters). The main wheel tread was 4 feet, 3 inches (1.295 meters). The X-1A design gross weight was 10,668 pounds (4,839 kilograms).

The X-1A was powered by a single Reaction Motors XLR11-RM-5 rocket engine with four independent combustion chambers. The XLR11 was fueled with ethyl alcohol and liquid oxygen. It produced 6,000 pounds of thrust (26.689 kilonewtons).

The Bell X-1A made its first flight 14 February 1953 with Bell test pilot Jean Ziegler in the cockpit. It reached its highest speed, Mach 2.44 on Flight 10. Its highest altitude was 90,440 feet (27,566 meters) on its 24th flight. On 8 August 1955, while still on board its B-50 drop ship, the X-1A suffered an external explosion. The rocketplane was jettisoned and destroyed when it hit the desert floor.

© 2016, Bryan R. Swopes

20 November 1953

NACA test pilot Scott Crossfield in the cockpit of the Douglas D-558-II Skyrocket after his record-setting flight, 20 November 1953. (NASA) 20 November 1953: At Edwards Air Force Base, California, NACA’s High Speed Flight Station research test pilot Albert Scott Crossfield, Jr., rode behind the flight crew of the Boeing P2B-1S Superfortress as it carried the Douglas Aircraft Company D-558-II Skyrocket supersonic research rocketplane to its launch altitude. As the four-engine bomber climbed through 18,000 feet (5,486 meters), Crossfield headed back to the bomb bay to enter the Skyrocket’s cockpit and prepare for his flight.

Douglas D-558-II Skyrocket Bu. No. 37974, NACA 144, on Rogers Dry Lake. (NASA)

The Douglas D-558-II was Phase II of a United States Navy/Douglas Aircraft Company/National Advisory Committee on Aeronautics joint research project exploring supersonic flight. It was a swept-wing airplane powered by a single Reaction Motors LR8-RM-6 four-chamber rocket engine. The Skyrocket was fueled with alcohol and liquid oxygen. The engine was rated at 6,000 pounds of thrust (26.69 kilonewtons) at Sea Level.

There were three Phase II aircraft. Originally, they were also equipped with a Westinghouse J34-W-40 turbojet engine which produced 3,000 pounds of thrust (13.35 kilonewtons). The Skyrockets took off from the surface of Rogers Dry Lake. Once the D-558-II reached altitude, the rocket engine was fired for the speed runs.

As higher speeds were required, the program shifted to an air launch from a B-29 (P2B-1S) drop ship. Without the need to climb to the test altitude, the Skyrocket’s fuel load was available for the high speed runs.

NACA 144. a Douglas D-558-II Skyrocket, Bu. No. 37974, on Rogers Dry Lake. (NASA)

The D-558-II was 42.0 feet (12.80 meters) long, with a wingspan of 25.0 feet (7.62 meters). The leading edge of the wing was swept at a 35° angle and the tail surfaces were swept to 40°. The aircraft weighed 9,421 pounds (4,273 kilograms) empty and had a maximum takeoff weight of 15,787 pounds (7,161 kilograms). It carried 378 gallons (1,431 liters) of water/ethyl alcohol and 345 gallons (1,306 liters) of liquid oxygen.

The mothership, NACA 137, was a Boeing Wichita B-29-95-BW Superfortress, U.S. Air Force serial number 45-21787. It was transferred to the U.S. Navy, redesignated P2B-1S and assigned Bureau of Aeronautics number 84029. Douglas Aircraft modified the bomber for its drop ship role at the El Segundo plant.

Douglas D-558-II Skyrocket, Bu. No., 37974, NACA 144, is dropped from the Boeing P2B-1S Superfortress, Bu. No. 84029, NACA 137. (NASA)
Douglas D-558-II Skyrocket, Bu. No. 37974, NACA 144, is dropped from the Boeing P2B-1S Superfortress, Bu. No. 84029, NACA 137. (NASA)

Going above the planned launch altitude, the Superfortress was placed in a slight dive to build to its maximum speed. At the bomber’s critical Mach number (Mcr), the Skyrocket was just above its stall speed. At 32,000 feet (9,754 meters), Crossfield and the Skyrocket were released. The rocketplane fell for about 400 feet (122 meters) before the rocket engine ignited and then it began to accelerate.

A Douglas D-558-II drops away from the Boeing Superfortress mother ship. (Der Spiegel/Schenectady Museum; Hall of Electrical History Foundation/CORBIS)

Crossfield climbed at a steep angle until he reached 72,000 feet (21,946 meters), and then leveled off. Now in level flight, the D-558-II continued to accelerate, quickly passing Mach 1, then Mach 1.5. Crossfield pushed the nose down and began a shallow dive. The Skyrocket, still under full power, built up speed. As it passed through 62,000 feet (18,998 meters) the Skyrocket reached its maximum speed, Mach 2.005, or 1,291 miles per hour (2,078 kilometers per hour).

Scott Crossfield and the Douglas D-558-II Skyrocket, with their support team: two North American F-86 Sabre chase planes and the Boeing P2B-1S Superfortress mothership, at the NACA High Speed Flight Station, Edwards Air Force Base, California, 1 January 1954. (NASA)
Scott Crossfield and the Douglas D-558-II Skyrocket, with their support team: two North American F-86 Sabre chase planes and the Boeing P2B-1S Superfortress mothership, at the NACA High Speed Flight Station, Edwards Air Force Base, California, 1 January 1954. (NASA)

Scott Crossfield was the first pilot to fly an aircraft beyond Mach 2, twice the speed of sound. During his career as a test pilot, he flew the Douglas D-558-II, the Bell X-1, Bell X-2 and North American X-15. He made 112 flights in rocket-powered aircraft, more than any other pilot.

NACA Test Pilot Albert Scott Crossfield on Rogers Dry Lake. (NASA)
Albert Scott Crossfield, Jr., Aeronautical Engineer and Test Pilot, 1921–2006. (Jet Pilot Overseas)

© 2018, Bryan R. Swopes

15 November 1967

Major Michael J. Adams, United States Air Force, with an X-15 hypersonic research rocketplane on Rogers Dry Lake. (NASA)
Major Michael J. Adams, United States Air Force, with a North American Aviation X-15 hypersonic research rocketplane, 56-6670, on Rogers Dry Lake, after his third flight in the program, 22 March 1967. (NASA)

15 November 1967: Major Michael James Adams, United States Air Force, was killed in the crash of the number three North American Aviation X-15 hypersonic research rocketplane, 56-6672.

Flight 191 of the X-15 program was Mike Adams’ seventh flight in the rocketplane. It was the 56-6672’s 65th flight. The flight plan called for 79 seconds of engine burn, accelerating the X-15 to Mach 5.10 while climbing to 250,000 feet (76,200 meters). Adams’ wife, Freida, and his mother, Georgia Adams, were visiting in the NASA control room at Edwards Air Force Base.

Balls 8, the Boeing NB-52B Stratofortress, 52-008, flown by Colonel Joe Cotton, took off from Edwards at 9:12 a.m., carrying -672 on a pylon under its right wing, and headed north toward the drop point over Delamar Dry Lake in Nevada. The drop ship climbed to the launch altitude of 45,000 feet (13,716 meters).

The X-15 launch was delayed while waiting for the Lockheed C-130 Hercules rescue aircraft to arrive on station. This required Adams to reset the Honeywell MH-96 Automatic Flight Control System to compensate for the changing position of the sun in the sky.

X-15A-3
North American Aviation X-15A-3 56-6672 immediately after launch over Delamar Lake, Nevada. Date unknown. (U.S. Air Force)

56-6672 was launched by Balls 8 at 10:30:07.4 a.m., Pacific Standard Time. As it dropped clear of the bomber, the rocketplane rolled 20° to the right, a normal reaction. Within one second, Mike Adams had started the XLR99-RM-1 rocket engine while bringing the wings level. The engine ignited within one-half second and was up to its full 57,000 pounds of thrust (253.549 kilonewtons) one second later. The engine ran for 82.3 seconds, 3.3 seconds longer than planned, causing the X-15 to reach Mach 5.20 (3,617 miles per hour/5,821 kilometers per hour) and to overshoot the planned altitude to peak at 266,000 feet (81,077 meters).

A North American Aviation X-15 hypersonic research rocketplane leaves a contrail as it climbs toward the edge of space. (NASA)
A North American Aviation X-15 hypersonic research rocketplane leaves a contrail as it climbs toward the edge of space. (NASA)

With the X-15 climbing through 140,000 feet (42,672 meters), the Inertial Flight Data System computer malfunctioned. Adams radioed ground controllers that the system’s malfunction lights had come on.

The flight plan called for a wing-rocking maneuver at peak altitude so that a camera on board could scan from horizon to horizon. During this maneuver, the Reaction Control System thrusters did not respond properly to Adams’ control inputs. The X-15 began to yaw to the right.

As it reached its peak altitude, 56-6672 yawed 15° to the left. Going over the top, the nose yawed right, then went to the left again. By the time the aircraft had descended to 230,000 feet (70,104 meters), it had pitched 40° nose up and yawed 90° to the right its flight path. The X-15 was also rolling at 20° per second. The rocketplane went into a spin at Mach 5.

10:33:37 Chase 1: “Dampers still on, Mike?”

10:33:39 Adams: “Yeah, and it seems squirrelly.”

10:34:02 Adams: “I’m in a spin, Pete.” [Major William J. “Pete” Knight, another X-15 pilot, was the flight controller, NASA 1]

10:34:05 NASA 1: “Let’s get your experiment in and the cameras on.”

10:34:13 NASA 1: “Let’s watch your theta, Mike.”

10:34:16 Adams: “I’m in a spin.”

10:34:18 NASA 1: “Say again.”

10:34:19 Adams: “I’m in a spin.”

Adams fought to recover, and at 118,000 feet (35,967 meters) came out of the spin, but he was in an inverted 45° dive at Mach 4.7. The X-15’s MH-96 Automatic Flight Control System entered a series of diverging oscillations in the pitch and roll axes, with accelerations up to 15 gs. Dynamic pressures on the airframe rapidly increased from 200 pounds per square foot (9.576 kilopascals) to 1,300 pounds per square foot (62.244 kilopascals).

At 62,000 feet (18,898 meters), still at Mach 3.93, the aircraft structure failed and it broke apart.

10:34:59 X-15 telemetry failed. Last data indicated it was oscillating +/- 13 g. Radar altitude was 62,000 feet (18,898 meters). The aircraft was descending at 2,500 feet per second (762 meters per second) and broke into many pieces at this time.

10:35:42 NASA 1: “Chase 4, do you have anything on him?”

10:35:44 Chase 4: “Chase 4, negative.”

10:35:47 NASA 1: “OK, Mike, do you read?”

10:35:52 Chase 4: “Pete, I got dust on the lake down there.”

North American Aviation X-15A-3 56-6672 crashed in a remote area, approximately 5½ miles (9 kilometers) north-northeast of Randsburg, California, a small village along U.S. Highway 395.

Major Michael James Adams was killed. This was the only pilot fatality of the entire 199-flight X-15 program.

North American Aviation X-15A 56-6672 on Rogers Dry Lake after a flight. (NASA)
North American Aviation X-15A-3 56-6672 on Rogers Dry Lake. (NASA)

An investigation by NASA’s Engineering and Safety Center determined that,

“. . . the root cause of the accident was an electrical disturbance originating from an experiment package using a commercial-off-the-shelf (COTS) component that had not been properly qualified for the X-15 environment. . .” and that there is “. . . no conclusive evidence to support the hypothesis that SD [spatial disorientation] was a causal factor. On the contrary, the evidence suggests that poor design of the pilot-aircraft interface and ineffective operational procedures prevented the pilot and ground control from recognizing and isolating the numerous failures before the aircraft’s departure from controlled flight was inevitable.”

A Comprehensive Analysis of the X-15 Flight 3-65 Accident, NASA/TM—2014-218538 (Corrected Copy)

Crushed forward fuseleage of X-15 56-6672. (NASA)
Crushed forward fuselage of North American Aviation X-15A-3 56-6672. (NASA)

Michael James Adams was born at Sacramento, California, 5 May 1930. He was the first of two sons of Michael Louis Adams, a telephone company technician, and Georgia E. Domingos Adams.

Michael Adams throws a javelin at Sacramento J.C. (1949 Pioneer)

After high school, Mike Adams attended Sacramento Junior College, graduating in 1949. He was an outfielder for the college baseball team, and threw the javelin in track & field.

Adams enlisted in the United States Air Force in 1950. He completed basic training at Lackland Air Force Base, San Antonio, Texas. In  October 1951, he was selected as an aviation cadet and sent to Spence Air Force Base, near Moultrie, Georgia, for primary flight training. Cadet Adams completed flight training at Webb Air Force Base, Big Spring, Texas. He graduated 25 October 1952. Adams was one of two distinguished graduates in his class and received a commission as an officer in the regular Air Force.

Second Lieutenant Adams was assigned to advanced flight training at Nellis Air Force Base, where he flew the Lockheed F-80 Shooting Star and North American Aviation F-86 Sabre.

In April 1953, Lieutenant Adams joined the 80th Fighter-Bomber Squadron at K-13, Suwon, Republic of Korea. He flew 49 combat missions.

Mr. and Mrs. Michael J. Adams, 15 January 1955. (Freida Adams Collection)

Following the Korean War, Lieutenant Adams was assigned to the 613th Fighter Bomber Squadron, 401st Fighter-Bomber Group, at England Air Force Base, Alexandria, Louisiana. The Squadron initially flew the F-86F Sabre and then transitioned to the Republic F-84F Thunderstreak. Adams deployed to Chaumont Air Base, France, for a six-month temporary assignment.

While stationed at England AFB, Lieutenant Adams met Miss Freida Beard. They were married in a ceremony at the Homewood Baptist Church in Alexandria, 15 January 1955. They would have three children, Michael James, Jr., Brent, and Liese Faye Adams.

Michael J. Adams, 1958

In 1958, Adams graduated from the University of Oklahoma at Norman, with a bachelor’s degree in aeronautical engineering. He was a member of the university’s Institute of Aeronautical Sciences. Adams was next assigned to the Massachusetts Institute of Technology, Cambridge, Massachusetts, where he studied astronautics.

Adams’ next military assignment was as a maintenance officer course instructor at Chanute Air Force Base, Rantoul, Illinois.

In 1962, Captain Adams entered an eight-month training program at the Air Force Test Pilot School, Class 62C, at Edwards Air Force Base in the high desert of southern California. He was awarded the A.B. Honts Trophy as the class’s outstanding graduate.

Captain Michael J. Adams with a Northrop F-5A. (NASA)

On 17 June 1963, Captain Adams entered the Aerospace Research Pilots School, which was also at Edwards. This was a seven-month course that taught flying skills in advanced vehicles, with an aim to prepare the graduates for space flight, and to create a pool of qualified military test pilots to be selected as astronauts. The Air Force estimated a need for 20 pilots a year for the upcoming X-20 Dyna-Soar and Manned Orbiting Laboratory (M.O.L.) programs. Adams graduated with the second of the four ARPS classes.

Adams then became an operational test pilot, conducting stability and control tests for the Northrop F-5A Freedom Fighter. That was followed by an assignment as a project pilot for the Cornell Aeronautical Laboratory.

On 13 November 1963, it was announced that Michael Adams was on of the selectees for the M.O.L. program. As a designated Air Force astronaut, Adams was involved in lunar landing simulations during the development of the Apollo Program lunar lander.

Artists conception of the U.S. Air Force Manned Orbiting Laboratory (M.O.L.)

Major Adams was selected as a pilot of the NASA/Air Force X-15 Hypersonic Research Flight Program. (He was the twelfth and final pilot to be accepted into the project.) He made his first X-15 flight on 6 October 1966. He flew the first X-15, 56-6770. A ruptured fuel tank forced him to make an emergency landing at Cuddeback Dry Lake, one of several pre-selected emergency landing sites, about 40 miles (64 kilometers) northeast of Edwards. The duration of the flight was 8 minutes, 26.4 seconds. The X-15 had only reached an altitude of 75,400 feet (22,982 meters) and Mach 3.00.

A North American Aviation X-15 at Cuddeback Lake after an emergency landing. A Piasceki HH-21C is standing by. (U.S. Air Force)

His second flight took place on 29 November 1966. On this flight, he took the # 3 ship, 56-6672, to 92,100 feet (28,072 meters) and Mach 4.65. The flight lasted 7 minutes, 55.9 seconds.

For his third flight, Mike Adams was back in 56-6670, which had been repaired. He flew to an altitude of 133,100 feet (40,569 meters) and reached Mach 5.59 (3,822 miles per hour/6,151 kilometers per hour). This was Adams fastest flight. He landed at Edwards after 9 minutes, 27.9 seconds.

Flight number four for Adams took place on 28 April 1967. Again he flew the # 1 X-15. On this flight, he reached 167,200 feet (50,963 meters) and Mach 5.44. Elapsed time was 9 minutes, 16.0 seconds.

On 15 June 1967, Adams flew # 1 to 229,300 feet (69,891 meters) and Mach 5.14. Duration 9 minutes, 11.0 seconds.

On 25 August 1967, Adams made his sixth flight, his second in the third X-15, 56-6672. The rocket engine shut down after sixteen seconds and had to be restarted. The maximum altitude was 84,400 feet (25,725 meters) and Mach 4.63. The duration of this flight was 7 minutes. 37.0 seconds.

Mike Adams’ seventh flight in an X-15 took place 15 November 1967. This was the 191st X-15 flight, and the 65th for X-15 56-6672. Tests to be conducted were an ultraviolet study of the rocketplane’s exhaust plume; solar spectrum measurements; micrometeorite collection, and a test of ablative material for the Saturn rocket.

Adams reached 266,000 feet (81,077 meters) and Mach 5.20.

Having met the U.S. Air Force qualification for flight in excess of 50 miles (80.47 kilometers), Michael Adams was posthumously awarded the wings of an astronaut.

Major Michael James Adams, United States Air Force, was buried at Mulhearn Memorial Park, in Monroe, Louisiana.

© 2018, Bryan R. Swopes

6 November 1958

Bell X-1E 46-063 on Rogers Dry Lake. (NASA)
Bell X-1E 46-063 on Rogers Dry Lake, 1955. (NASA)

6 November 1958: NASA Research Test Pilot John B. (Jack) McKay made the final flight of the X-1 rocketplane program, which had begun twelve years earlier.

Bell X-1E 46-063 made its 26th and final flight after being dropped from a Boeing B-29 Superfortress over Edwards Air Force Base on a flight to test a new rocket fuel.

John B. McKay, NACA/NASA Research Test Pilot. (NASA)
John B. McKay, NACA/NASA Research Test Pilot. (NASA)

When the aircraft was inspected after the flight, a crack was found in a structural bulkhead. A decision was made to retire the X-1E and the flight test program was ended.

The X-1E had been modified from the third XS-1, 46-063. It used a thinner wing and had an improved fuel system. The most obvious visible difference is the cockpit, which was changed to provide for an ejection seat. Hundreds of sensors were built into the aircraft’s surfaces to measure air pressure and temperature.

The Bell X-1E was 31 feet (9.449 meters) long, with a wingspan of 22 feet, 10 inches (6.960 meters). The rocketplane’s empty weight was 6,850 pounds (3,107 kilograms) and fully loaded, it weighed 14,750 pounds (6,690 kilograms). The rocketplane was powered by a Reaction Motors XLR11-RM-5 rocket engine which produced 6,000 pounds of thrust (26.689 kilonewtons). The engine burned ethyl alcohol and liquid oxygen. The X-1E carried enough propellants for 4 minutes, 45 seconds burn.

The Bell X-1E rocketplane being loaded into a Boeing B-29 Superfortress mothership for another test flight. (NASA)
The Bell X-1E rocketplane being loaded into NACA 800, a Boeing B-29-96-BW Superfortress mothership, 45-21800, for another test flight. (NASA)

The early aircraft, the XS-1 (later redesignated X-1), which U.S. Air Force test pilot Charles E. (“Chuck”) Yeager flew faster than sound on 14 October 1947, were intended to explore flight in the high subsonic and low supersonic range. There were three X-1 rocketplanes. Yeager’s Glamorous Glennis was 46-062. The X-1D (which was destroyed in an accidental explosion after a single glide flight) and the X-1E were built to investigate the effects of frictional aerodynamic heating in the higher supersonic ranges from Mach 1 to Mach 2.

Bell X-1E loaded aboard Boeing B-29 Superfortress, circa 1955. (NASA)
Bell X-1E 46-063 loaded aboard NACA 800, a Boeing B-29-96-BW Superfortress, 45-21800, circa 1955. (NASA)

The X-1E reached its fastest speed with NASA test pilot Joseph Albert Walker, at Mach 2.24 (1,450 miles per hour/2,334 kilometers per hour), 8 October 1957. Walker also flew it to its peak altitude, 70,046 feet (21,350 meters) on 14 May 1958.

NACA test pilot Joseph Albert Walker made 21 of the X-1E's 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)
NACA test pilot Joseph Albert Walker made 21 of the X-1E’s 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)

There were a total of 236 flights made by the X-1, X-1A, X-1B, X-1D and X-1E. The X-1 program was sponsored by the National Advisory Committee on Aeronautics, NACA, which became the National Aeronautics and Space Administration, NASA, on 29 June 1958.

The X-1E is on display in front of the NASA administration building at the Dryden Flight Research Center, Edwards Air Force Base, California.Bell X-1E 46-063 on display at Dryden Flight Research Center© 2016, Bryan R. Swopes