16 October 1910

Clément-Bayard No.2 at Issy-les-Moulineaux, 1910 (National Gallery of Canada)
Clément-Bayard No.2 at Issy-les-Moulineaux, 1910 (National Gallery of Canada)

16 October 1910: Maurice Clément-Bayard flew the dirigible, Clément-Bayard No. 2, from the Astra Clément-Bayard airship hangar at La Motte-Breuil, France, to Wormwood Scrubs, England, with six passengers. This was the first crossing of the English Channel by airship. The 244 mile (393 kilometer) distance was covered in less than six hours.

The Chronicle Annual Register reported,

The airship Clément-Bayard No. 2 travelled from near Paris to Wormwood Scrubbs between 6.55 a.m. and 1.25 p.m. Her average altitude was 200–300 metres, her average speed about 60 kil. hourly.

CHRONICLE OF EVENTS IN 1910, Part II, at Page 33

Gustave Adolphe Clément-Bayard
Gustave Adolphe Clément-Bayard

A contemporary newspaper article described the event:

LONDON, October 16.

The airship Clement Bayard II., carrying seven passengers, has made a remarkable journey from Compiegne, 52 miles to the north-east of Paris, to London, alighting at Shepherd’s Bush, five miles to the west of St. Paul’s Cathedral, in 6 hours, 11 minutes. The distance travelled was approximately 150 miles.

Later.

The Clement Bayard left Compiegne at 7.15 a.m. yesterday, the weather conditions being perfect at the time. Boulogne, about 75 miles distant, was reached three hours later, and then the trip across the Channel was made in three quarters of an hour.

French torpedo-boat destroyers were echelonned across the English Channel, and acted as guides to the airship as far as Folkestone, on the coast of Kent, and 71½ miles east south-east of London.

The Clement Bayard, however, outdistanced each torpedo-boat destroyer in turn. Tunbridge, 42 miles beyond Folkestone, was reached at a quarter past 12, and three-quarters of an hour later St. Paul’s Cathedral, 29½ miles from Tunbridge, was passed, the Clement Bayard on this part of the journey going faster than motor-cars following the airship. The remaining distance to Shepherd’s Bush was accomplished shortly afterwards.

M. Clement Bayard was on board his airship, and the passengers also included Mr. William Harvey De Cros, the Unionist member for Hastings, who represented the British Parliamentary Aerial Committee.

The Clement Bayard I. was completed in April last, and was on the eve of making its departure for London, when the French Government exercised its right, and acquired the airship. In August M. Clement Bayard made several successful flights in the Clement Bayard II., the building of which was started immediately after the French Government acquired the Clement Bayard I. In September, 1909, the “Daily Mail” completed, at a cost of £5,000, a garage for an airship on land belonging to the War office. It was constructed to accommodate the Clement Bayard airship, which was to make the journey through the air from Paris to London. The British Government has the option of purchasing the vessel.

The Mercury, Vol. XCIV, No. 12,658., Tuesday, 18 October 1910, Page 5, Column 2

This photograph shows the airship arriving at Wormwood Scrubs, 16 October 1910.
This photograph shows the airship arriving at Wormwood Scrubs, 16 October 1910. (Central News)

Maurice Clément-Bayard was the son of the company’s founder, Gustave Adolphe Clément-Bayard, and would succeed him after his father’s death.

The airship had been built for the Armée de Terre (the French Army), but because of the very high price, ₣200,000, it was not accepted. It was then sold to the British War Office for ₤18,000, more than twice the price the builders had offered to the French government. The British newspaper, The Daily Mail, contributed the cost of building an airship hangar.

After arriving in England, Clément-Bayard No. 2 was deflated for transport to another location. The airship was damaged in transit and was never repaired.

Clément-Bayard No. 2 was  76.5 meters (251 feet) long, with a diameter of 13.2 meters (43 feet). The dirigible had a volume of 6,500 cubic meters (229,545 cubic feet). It was powered by two water-cooled, normally-aspirated, 1,590.75-cubic-inch-dispalcement (26.068 liters) Clément-Bayard four-cylinder overhead cam engines, which produced 120 horsepower, each. These turned two, two-bladed, fixed-pitch laminated wood propellers with a diameter of 6 meters (19 feet, 8 inches) at 350 r.p.m.

According to an article in American Machinist,

. . . This engine is a four-cylinder, vertical, water-cooled motor, of the latest Clement racing type. The cylinders are cast separately and are copper jacketed; have a bore of 7.48 inches and a stroke of  9.05 inches [1,590.75 cubic inches, 26.07 liters], giving a horsepower estimated at over 200. The valves are mechanically operated and placed in the cylinder head. A magneto is used for ignition. The weight is 1100 pounds [499 kilograms].

There will be two of these motors used in the new Clement-Bayard airship being constructed for the British government; each motor having a propeller of its own, although when desired, both motors can run one propeller, or one motor can run two propellers.

American Machinist, Volume 33, Part I, 7 April 1910, at Page 645

Two 120 ch Clément-Bayard 4-cylinder engines installed on dirigible No. 2. (The Old Motor)
Two 120 ch Clément-Bayard 4-cylinder engines installed on dirigible No. 2. (The Old Motor)

The airship was debated in the British Parliament, with a question asked by Mr. Herbert Pike-Pease, M.P. (later, 1st Baron Daryngton): May I ask the right hon. Gentleman if he thinks the action of the War Office in regard to this airship was justified? If the airship was fit for service, why was it not used, and if it was not fit for service, why was it purchased?

John Edward bernard Seely, photographed by Walter Stoneman, 1924. (The National Portrait Gallery, London)
John Edward Bernard Seely, photographed by Walter Stoneman, 1924. (The National Portrait Gallery, London)

Colonel John Edward Bernard Seely, D.S.O., (Later, 1st Baron Mottistone, C.B., C.M.G., D.S.O., T.D., P.C., J.O., D.L.), the Secretary of State for War, replied, I think part of the last two supplementary questions is answered in some of the replies I have just given. Of course, it is the fact that the envelope of this balloon leaked so badly that it would have been very costly to have inflated it. No doubt mistakes were made on both sides, by hon. Gentlemen on both sides of the House, as well as by my Department, but we have not made half as many mistakes in this matter as our neighbours.

Mr. Pike Pease then asked,Was not the leakage known to the War Office before the ship was purchased?

Colonel Seely answered,It was before my time. There was a strong Committee of this House engaged in those transactions, and I understand they thought the airship was serviceable, and I suppose we thought it was when it was taken over. Mistakes must be made in a new matter of this kind. We have not made very many mistakes of a large kind in the matter of airships. We have been signally successful.

Earlier in the debate, Colonel Seely stated that,The engines are still available and are at the aircraft factory.

The Parliamentary Debates, 30 April 1913, at Page 1161.

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

15 October 1955

Lieutenant Gordon L. Gray, Jr., United States Navy, with record-setting Douglas YA4D-1 Skyhawk, Bu. No. 137820, at Edwards Air Force Base, 15 October 1955. (Navy Pilot Overseas)
Lieutenant Gordon L. Gray, Jr., United States Navy, with record-setting Douglas YA4D-1 Skyhawk, Bu. No. 137820, at Edwards Air Force Base, 15 October 1955. (Navy Pilot Overseas)

15 October 1955: At Edwards Air Force Base, California, Lieutenant Gordon L. (“Gordo”) Gray, Jr., United States Navy, set a Fédération Aéronautique Internationale (FAI) World Record For Speed Over a Closed Circuit of 500 Kilometers when he flew a pre-production Douglas Aircraft Company YA4D-1 Skyhawk light attack bomber, Bureau of Aeronautics serial number (Bu. No.) 137820, to an average speed of 1,118.7 kilometers per hour (695.128 miles per hour).¹

Douglas Aircraft Company YA4D-1 Skyhawk, Bu. No. 137820. (Navy Pilot Overseas)
Douglas Aircraft Company YA4D-1 Skyhawk, Bu. No. 137820. (Navy Pilot Overseas)

The Douglas A4D-1 Skyhawk is a single-place, single-engine, delta-winged light attack bomber designed for operation from aircraft carriers. It is 39 feet, 4 inches (11.989 meters) long with a wingspan of 27 feet, 6 inches (8.382 meters) and overall height of 15 feet (4.572 meters). Its empty weight is 8,400 pounds (3,810.2 kilograms). It was powered by a Curtiss-Wright J65-W-2, a licensed-production version of the Armstrong Siddeley Sapphire axial flow turbojet engine, which had a 13-stage compressor and 2-stage turbine. It produced 7,200 pounds of thrust (32.03 kilonewtons).

The A4D was in production from 1956 to 1979. 2,960 one- and two-place aircraft were built. The Skyhawk remained in service with the United States Navy until 2003.

Lieutenant Gordon L. Gray, Jr., U.S. Navy (thrid from left) with the Douglas Aircraft Company A4D team at Edwards AFB, California, 15 October 1955. (Navy Pilot Overseas)
Lieutenant Gordon L. Gray, Jr., U.S. Navy (third from left) with the Douglas Aircraft Company YA4D-1 Skyhawk team at Edwards AFB, California, 15 October 1955. (Navy Pilot Overseas)

¹ FAI Record File Number 8859

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

15 October 1952

William Barton Bridgeman
William Barton Bridgeman. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

15 October 1952: At Edwards Air Force Base, California, Douglas Aircraft Company test pilot William Barton (“Bill”) Bridgeman, while conducting high speed taxi tests, took a short flight in the new Douglas X-3. The experimental airplane flew about one mile (1.6 kilometers) over the dry lake bed before touching down. The official first flight would come five days later on 20 October.

In his biography, The Lonely Sky, Bill Bridgeman discussed his concerns about taking on the new project:

Then one morning Johnny called me to his office. "Bill, we would like you to take a look at the X-3. Maybe you would like to test her. She's in the final stages over in Hangar Three. Go over and take a look at the mock-up. See what you think. . ." On the ground floor in front of a door marked KEEP OUT. SECRET PROJECT MX656. . . . — The Lonely Sky, by William Bridgeman and Jacqueline Hazard, Cassell and Company Limited, London, 1956, Chapter XXIII at Page 276.
Mock-up of the Douglas X-3 (U.S. Air Force)
William B. Bridgeman with the Douglas X-3.
William B. Bridgeman with the Douglas X-3.

“Then one morning Johnny called me to his office. ‘Bill, we would like you to take a look at the X-3. Maybe you would like to test her. She’s in the final stages over in Hangar Three. Go over and take a look at the mock-up. See what you think. . . ‘ On the ground floor in front of a door marked KEEP OUT. SECRET PROJECT MX656. . .

“I climbed aboard. In order to get into the cockpit, the seat was mechanically lowered to the ground. There was a button to raise the elevator. It buzzed ominously as it very slowly lifted me into the nose. Visibility was extremely poor from her windows, they were faired-in exaggerations of the Skyrocket slits. It was impossible to see the ground. The thin, insecure looking wings were so far behind me that they were out of sight. It would take some weighing to decide whether or not I wanted to bet my life on the integrity of this ship. . .

“I was afraid to take on this airplane. I was also afraid someone else would accept the challenge. And I was afraid that I would decide to accept it.”

The Lonely Sky, William Bridgeman with Jacqueline Hazard, Cassell and Company Limited, London, 1956, Chapter XXIII at Page 276–278.

Douglas X-3 Stilleto

The Douglas X-3, serial number 49-2892, was built for the Air Force and the National Advisory Committee for Aeronautics (NACA) to explore flight in the Mach 1 to Mach 2 range. It was radically shaped, with a needle-sharp nose, very long thin fuselage and small straight wings. The X-3 was 66 feet, 9 inches (20.345 meters) long, with a wing span of just 22 feet, 8.25 inches (6.915 meters). The overall height was 12 feet, 6.3 inches (3.818 meters). The X-3 had an empty weight of 16,120 pounds (7,312 kilograms) and maximum takeoff weight of 23,840 pounds (10,814 kilograms).

It was to have been powered by two Westinghouse J46 engines, but when those were unsatisfactory, two Westinghouse XJ34-WE-17 engines were substituted. This was an axial flow turbojet with an 11-stage compressor and 2-stage turbine. It was rated at 3,370 pounds (14.99 kilonewtons) of thrust, and 4,900 pounds (21.80 kilonewtons) with afterburner. The XJ34-WE-17 was 14 feet, 9.0 inches (4.496 meters) long, 2 feet, 1.0 inch (0.635 meters) in diameter and weighed 1,698 pounds (770 kilograms).

The X-3 had a maximum speed of 706 miles per hour (1,136 kilometers per hour) and a service ceiling of 38,000 feet (11,582 meters).

Three-view drawing of the Douglas X-3. (NASA)
Three-view drawing of the Douglas X-3. (NASA)

The X-3 was very underpowered with the J34 engines, and could just reach Mach 1 in a shallow dive. The X-3′s highest speed, Mach 1.208, required a 30° dive. It was therefore never able to be used in flight testing the supersonic speed range for which it was designed.

The X-3 was prone to Inertial Roll Coupling, a newly discovered and very dangerous situation in which an aircraft goes out of control in all three axes. Because of its design characteristics—a very long, thin, fuselage, small wings and tail surfaces, and concentrated mass—the X-3 was very useful in exploring stability and control in the transonic range.

At one point, replacing the X-3’s turbojet engines with two Reaction Motors XLR-11 rocket engines was considered. Predictions were that a rocket-powered X-3 could reach Mach 4.2. However, with Mach 2 Lockheed F-104 becoming operational and North American Aviation’s X-15 hypersonic research rocketplane under construction, the idea was dropped. Technology had passed the X-3 by.

Two X-3 aircraft had been ordered from Douglas, but only one completed. In addition to Bill Bridgeman, the Douglas X-3 was flown by Air Force test pilots Major Chuck Yeager and Lieutenant Colonel Frank Everest, and NACA test pilot Joseph A. Walker.

After the flight test program came to an end in May 1956, the X-3 was turned over to the National Museum of the United States Air Force, Wright-Patterson Air Force Base, Ohio.

The Douglas X-3 in flight, just a few feet above the dry lake bed at Edwards AFB, California. (Cropped from a LIFE Magazine image at Jet Pilot Overseas)
The Douglas X-3 in flight, just a few feet above the dry lake bed at Edwards AFB, California. (Cropped detail from a LIFE Magazine image at Jet Pilot Overseas)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

15 October 1937

The Boeing XB-15 takes off on its first flight, Boeing Field, 15 October 1937. (U.S. Air Force)

15 October 1937: Test pilot Edmund Turney (“Eddie”) Allen, a consulting engineer to Boeing, and Major John D. Korkille, Air Corps, United  States Army, made the first flight of the prototype Boeing XB-15, 35-277, at Boeing Field, Seattle, Washington. Major Corkille reported that the airplane “handled easily and maneuvered readily.”

The flight deck of the Boeing XB-15. The radio operator’s station is on the left, and the navigator’s on the right. (The Boeing Company)

The Boeing Model 294, designated XB-15 by the Air Corps, was an experimental airplane designed to determine if a bomber with a 5,000 mile (8,047 kilometers) range was possible. It was designed at the same time as the Model 299 (XB-17), which had the advantage of lessons learned by the XB-15 design team. The XB-15 was larger and more complex than the XB-17 and took longer to complete. It first flew more than two years after the prototype B-17.

The Boeing Model 294 (XB-15) at Boeing Field, Seattle, Washington. The prototype bomber was rolled out for engine tests, 27 September 1937. (The Boeing Company)

Designers had planned to use an experimental 3,421.19-cubic-inch-displacement (56.063 liter) liquid-cooled, supercharged and turbosupercharged Allison V-3420 twenty-four cylinder, four-bank “double V” engine which produced a maximum of  2,885 horsepower at 3,000 r.p.m. The engine was not available in time, however, and four air-cooled Pratt & Whitney R-1830 (Twin Wasp) engines were used instead. With one-third the horsepower, this substitution left the experimental bomber hopelessly underpowered as a combat aircraft.

Boeing XB-15 35-277. (U.S. Air Force)
Boeing XB-15 35-277. (U.S. Air Force)
Boeing XB-15 35-277. (U.S. Air Force)

The XB-15 was a very large four-engine mid-wing monoplane with retractable landing gear. It was of aluminum monocoque construction with fabric-covered flight control surfaces. The XB-15 had a ten-man crew which worked in shifts on long duration flights.

Boeing XB-15 35-277

The prototype bomber was 87 feet, 7 inches (26.695 meters) long with a wingspan of 149 feet (45.415 meters) and overall height of 18 feet, 1 inch (5.512 meters). The airplane had an empty weight of 37,709 pounds (17,105 kilograms) and maximum takeoff weight of 70,706 pounds (32,072 kilograms)—later increased to 92,000 pounds (41,730 kilograms).

As built, the XB-15 was powered by four air-cooled, supercharged, 1,829.39-cubic-inch-displacement (29.978 liter) Pratt & Whitney Twin Wasp S1B3-G (R-1830-11) two-row 14-cylinder radial engines, rated at 850 horsepower at 2,450 r.p.m. at 5,000 feet (1,524 meters), and 1,000 horsepower at 2,600 r.p.m. for take off. The engines turned three-bladed controllable-pitch propellers through a 3:2 gear reduction. The R-1830-11 was 4 feet, 8.66 inches (1.439 meters) long with a diameter of 4 feet, 0.00 inches (1.219 meters), and weighed 1,320 pounds (599 kilograms).

These gave the experimental airplane a maximum speed of 197 miles per hour (317 kilometers per hour) at 5,000 feet (1,524 meters) and a cruise speed of 152 miles per hour (245 kilometers per hour) at 6,000 feet (1,829 meters). The service ceiling was 18,900 feet (5,761 meters) and maximum range was 5,130 miles (8,256 kilometers).

The Boeing XB-15 experimental long-range heavy bomber flies in formation with a Boeing YP-29 pursuit. (U.S. Air Force)

The bomber could carry a maximum of 12,000 pounds (5,443 kilograms) of bombs in its internal bomb bay, and was armed with three .30-caliber and three .50-caliber machine guns for defense.

Only one XB-15 was built. During World War II it was converted to a transport and redesignated XC-105. In 1945 it was stripped and abandoned at Albrook Field, Territory of the Canal Zone, Panama.

The XB-15 set several Fédération Aéronautique Internationale (FAI) world records:  On 30 July 1939, the XB-15 carried 14,135 kilograms (31,162 pounds) to an altitude of 2,000 meters (6,562 feet) over Fairfield, Ohio.¹ The same flight set a second record by carrying 10,000 kilograms (22,046 pounds) to an altitude of 8,228 feet (2,508 meters).² On 2 August 1939, the XB-15 set a World Record for Speed Over a Closed Circuit of 5000 Kilometers With 2000 Kilogram Payload, at an average speed of 267.67 kilometers per hour (166.32 miles per hour).³

Boeing XB-15 35-277. (LIFE Magazine)

¹ FAI Record File Number 8739

² FAI Record File Number 8740

³ FAI Record File Number 10865

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

14–15 October 1927

Costes and Le Brix flew this Breguet XIX GR, No. 1685, named Nungesser-Coli, across the South Atlantic Ocean 14–15 October 1927.
Dieudonné Costes

14–15 October 1927: Dieudonné Costes and Joseph Le Brix flew a Breguet XIX GR, serial number 1685, across the South Atlantic Ocean from Saint-Louis, Senegal, to Port Natal, Brazil.

This was the first non-stop South Atlantic crossing by an airplane. The 2,100-mile (3,380 kilometer) flight took just over 18 hours.

The two aviators were on an around-the-world flight that began 10 October 1927 at Paris, France, and would be completed 14 April 1928, after traveling 34,418 miles (57,000 kilometers).

Costes had been a test pilot for Breguet since 1925. He served as a fighter pilot during World War I and was credited with six aerial victories. He had been appointed Commandeur Ordre national de la Légion d’honneur and awarded the Croix de Guerre with seven palms, and the Médaille militaire.

Following the around-the-world flight, the Congress of the United States, by special act, awarded him the Distinguished Flying Cross.

In 1929, the Fédération Aéronautique Internationale awarded him its Gold Air Medal, and the International League of Aviators awarded him the Harmon Trophy “for the most outstanding international achievement in the arts and/or science of aeronautics for the preceding year, with the art of flying receiving first consideration.”

Joseph Le Brix (1899–1931)
Joseph Le Brix

Capitain de Corvette Joseph Le Brix was a French naval officer. He had trained as a navigator, aerial observer and pilot. For his service in the Second Moroccan War, he was appointed to the Ordre national de la Légion d’honneur and awarded the Croix de Guerre. Like Costes, Le Brix was also awarded the Distinguished Flying Cross by the U.S. Congress.

The Breguet XIX GR (“GR” stands for Grand Raid) had been named Nungesser-Coli in honor of the two pilots who disappeared while attempting a crossing the Atlantic Ocean in the White Bird, 8 May 1927. It was developed from the Type XIX light bomber and reconnaissance airplane, which entered production in 1924. A single-engine, two-place biplane with tandem controls, it was primarily constructed of aluminum tubing, covered with sheet aluminum and fabric. The biplane was a “sesquiplane,” meaning that the lower of the two wings was significantly smaller than the upper. Approximately 2,400 Breguet XIXs were built.

Dieudonné Costes and Joseph Le Brix in their Breguet XIX, photographed in Panama, 1 january 1928, by Lt. C. Tuma, U.S. Army Air Corps. (National Air and Space Museum, Smithsonian Institution)
Dieudonné Costes and Joseph Le Brix in their Breguet XIX, photographed in Panama, 1 January 1928, by Lt. C. Tuma, U.S. Army Air Corps. (National Air and Space Museum, Smithsonian Institution)

No. 1685 was a special long-distance variant, with a 2,900–3,000 liter fuel capacity (766–792 gallons). It was further modified to add 1 meter to the standard 14.83 meter (48 feet, 7.9 inches) wingspan, and the maximum fuel load was increased to 3,500 liters (925 gallons).

The original 590 horsepower Hispano-Suiza 12Hb engine was replaced with a more powerful Hispano-Suiza 12Lb. This was a water-cooled, normally-aspirated, 31.403-liter (1,916.33-cubic-inch-displacement) overhead valve 60° V-12 engine, with 2 valves per cylinder and a compression ratio of 6.2:1. The 12Lb produced 630 horsepower at 2,000 r.p.m., burning 85 octane gasoline. The engine was 1.850 meters (6 feet, 0.8 inches) long, 0.750 meters (2 feet, 5.5 inches) wide and 1.020 meters (3 feet, 4.2 inches) high. It weighed 440 kilograms (970 pounds).

The Breguet XIX had a speed of 214 kilometers per hour (133 miles per hour). Its service ceiling was 7,200 meters (23,620 feet).

The Breguet XIX GR No. 1685, Nungesser-Coli, at le musée de l'air et de l'espace (MAE) du Bourget.
The Breguet XIX GR No. 1685, Nungesser-Coli, at le musée de l’air et de l’espace (MAE) du Bourget.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather