23 March 1948

John Cunningham with the record-setting de Havilland DH.110 Vampire (BNPS).
John Cunningham with the record-setting de Havilland DH.100 Vampire F.1, TG/278. Note the metal canopy with porthole. (BNPS).

23 March 1948: During a 45-minute flight over Hatfield, Hertfordshire, England, the de Havilland Aircraft Company chief test pilot, Group Captain John Cunningham, D.S.O., flew a modified DH.100 Vampire F.1 fighter to a Fédération Aéronautique Internationale (FAI) World Record for Altitude of 18,119 meters (59,446 feet).¹ Cunningham broke the record set nearly ten years earlier by Colonel Mario Pezzi in a Caproni Ca.161 biplane.² (See This Day in Aviation, 22 October 1938)

DH.100 Vampire F.1 TG/278 prior to high-altitude modifications. (de Havilland)
DH.100 Vampire F.1 TG/278 prior to high-altitude modifications. (de Havilland)

The de Havilland DH.100 Vampire F.1 flown by Cunningham was the fifth production aircraft, TG/278. It was built by the English Electric Company at Preston, Lancashire, with final assembly at Samlesbury Aerodrome, and made its first flight in August 1945. It was intended as a prototype photo reconnaissance airplane. The cockpit was heated and pressurized for high altitude, and a metal canopy installed.

The photo reconnaissance project was dropped and TG/278 became a test bed for the de Havilland Engine Company Ghost 2 turbojet (Halford H.2), which produced 4,400 pounds of thrust (19.57 kilonewtons) at 10,000 r.p.m. The Vampire could take the Ghost engine to altitudes beyond the reach of the Avro Lancaster/Ghost test bed already in use. The airplane’s wing tips were each extended 4 feet (1.219 meters) to increase lift.

De Havilland DH.100 Vampire F.1 TG/278 before the record flight. (De Havilland)
De Havilland DH.100 Vampire F.1 TG/278 after modifications. (De Havilland)

The aircraft was stripped of paint to reduce weight. Smaller batteries were used and placed in normal ballast locations. Special instrumentation and recording cine cameras were installed in the gun compartment, and ten cylinders of compressed air for breathing replaced the Vampire’s radio equipment. At takeoff, the Vampire carried 202 gallons (765 liters) of fuel, 40 gallons less than maximum, sufficient for only one hour of flight. The takeoff weight of TG/278 was 8,400 pounds (3,810 kilograms).

John Cunningham had previously flown TG/278 to a world record 496.876 miles per hour (799.644 kilometers per hour) over a 100 kilometer course at Lympne Airport, 31 August 1947.³

TG/278 continued as a test aircraft until it was damaged by an engine fire in October 1950. It was used as an instructional airframe at RAF Halton.

De Havilland DH.100 F Mk 1 Vampire TG/278 after high-altitude modifications (Vic Flintham)
De Havilland DH.100 Vampire F.1 TG/278 with high altitude modifications (De Havilland)

A standard Vampire F.1 was 9.370 meters (30 feet, 8.9 inches) long with a wingspan of 12.192 meters (40 feet, 0 inches) and overall height of 2.700 meters (8 feet, 10.3 inches). The fighter had an empty weight of 6,380 pounds (2,894 kilograms) and gross weight of 8,587 pounds (3,895 kilograms).

The basic Vampire F.1 was powered by a de Havilland-built Halford H.1B Goblin turbojet engine. This engine used a single-stage centrifugal-flow compressor and single-stage axial-flow turbine. It had a straight-through configuration rather than the reverse-flow of the Whittle turbojet from which it was derived. It produced 2,460 pounds of thrust (10.94 kilonewtons) at 9,500 r.p.m., and 3,000 pounds (13.34 kilonewtons) at 10,500 r.p.m. The Goblin weighed approximately 1,300 pounds (590 kilograms).

It had a maximum speed of 540 miles per hour (869 kilometers per hour), a service ceiling of 41,000 feet (12,497 meters) and range of 730 miles (1,175 kilometers).

The Vampire F.1 was armed with four 20 mm Hispano autocannon in the nose, with 150 rounds of ammunition per gun.

Group Captain John Cunningham, Royal Air Force. (Daily Mail)
Group Captain John Cunningham, Royal Air Force. (BNPS)

Group Captain John Cunningham C.B.E., D.S.O. and Two Bars, D.F.C. and Bar, A.E., D.L., F.R.Ae.S, was born 1917 and educated at Croydon. In 1935 he became an apprentice at De Havilland’s and also joined the Auxiliary Air Force, where he trained as a pilot. He was commissioned as a Pilot Officer, 7 May 1936, and was promoted to Flying Officer, 5 December 1937. Cunningham was called to active duty in August 1939, just before World War II began, and promoted to Flight Lieutenant, 12 March 1940.

While flying with No. 604 Squadron, Cunningham was awarded the Distinguished Flying Cross, 28 January 1941. He was appointed Acting Squadron Leader, Auxiliary Air Force, and was decorated with the Distinguished Service Order, 29 April 1941. The Gazette reported,

“This officer has continued to display the highest devotion to duty in night fighting operations. One night in April, 1941, he destroyed two enemy bombers during a single patrol and a week later destroyed  three enemy raiders during three different patrols. Squadron Leader Cunningham has now destroyed at least ten enemy aircraft and damaged a number of others. His courage and skill are an inspiration to all.”The London Gazette, 29 April 1941, Page 2445 at Column 1.

His Majesty George VI, King of the United Kingdom, greets Squadron Leader John Cunningham, D.S.O., D.F.C., 1941. (BNPS)

Acting Squadron Leader Cunningham’s promotion to Squadron Leader (Temporary) became official 10 June 1941. The King approved the award of a Bar to his Distinguished Flying Cross, 19 September 1941. Squadron Leader Cunningham took command of No. 604 Squadron 1 August 1946.

On 3 March 1944 Wing Commander Cunningham received a second Bar to his Distinguished Service Order. According to The Gazette,

“Within a recent period Wing Commander Cunningham has destroyed three more hostile aircraft and his last success on the night of 2nd January, 1944, brings his total victories to 20, all with the exception of one being obtained at night. He is a magnificent leader, whose exceptional ability and wide knowledge of every aspect of night flying has contributed in large measure to the high standard of operational efficiency of his squadron which has destroyed a very large number of enemy aircraft. His iron determination and unswerving devotion to duty have set an example beyond praise.The London Gazette, 3 March 1944, Page 1059 at Column 1.

Promoted to Group Captain 3 July 1944, Cunningham was the highest scoring Royal Air Force night fighter pilot of World War II, credited with shooting down 20 enemy airplanes. He was responsible for the myth that eating carrots would improve night vision.

In addition to the medals awarded by the United Kingdom, he also held the United States Silver Star, and the Union of Soviet Socialist Republics Order of the patriotic War (1st Class).

Following the War, John Cunningham returned to de Havilland as a test pilot. After the death of Geoffrey Raoul de Havilland, Jr., in 1946, Cunningham became the de Havilland’s chief test pilot. He remained with the firm through a series of mergers, finally retiring in 1980.

Cunningham was appointed an Officer of the Most Excellent Order of the British Empire (O.B.E.) in 1951, and promoted to Commander of the Most Excellent Order of the British Empire (C.B.E.) in 1963. He relinquished his  Auxiliary Air Force commission 1 August 1967.

Group Captain John Cunningham C.B.E., D.S.O. and Two Bars, D.F.C. and Bar, A.E., D.L.,  died 21 July 2002 at the age of 84 years.

Wing Commander John Cunningham, D.S.O. and two bars, D.F.C. and Bar, A.E., Auxiliary Air Force. (Test and Research Pilots, Flight Test Engineers)

¹ FAI Record File Number 9844

² FAI Record File Number 11713: 17,083 meters (56,047 feet)

³ FAI Record File Number 8884

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

Wernher von Braun: 23 March 1912–16 June 1977

Wernher von Braun, Director, Marshall Space Flight Center (NASA)
Dr. Wernher von Braun, Director, Marshall Space Flight Center, 1 May 1964. (NASA)

23 March 1912: Wernher Magnus Maximilian Freiherr von Braun, rocket engineer, was born at Wyrzysk, Province of Posen, in the German Empire, in what is now Poland. He was the second of three children of Magnus Alexander Maximillian von Braun, head of the Posen provincial government, and Emmy von Quistorp.

Wernher von Braun originally wanted to be a musician and composer, having learned to play the cello and piano at an early age. After reading a speculative book on space flight, though, his interests shifted.

In 1929, the 17-year-old von Braun joined Verein für Raumshiffahrt, the German rocketry association. He worked with Hermann Oberth in testing liquid-fueled rockets, based on successful rockets designed by Dr. Robert H. Goddard in the United States.

Rudolf Nebel (left) and Wernher von Braun with small liquid-fueled rockets, circa 1930. (Unattributed)
Rudolf Nebel (left) and Wernher von Braun with small liquid-fueled rockets, circa 1930. (Unattributed)

Von Braun graduated from Technische Hochschule Berlin in 1932, with a degree in mechanical engineering (Diplom-Ingenieur). Two years later, he received a doctorate in physics (Dr. phil.) at Friederich-Wilhelm University of Berlin. He also studied at ETH Zürich.

In Germany before World War II, Dr.-Ing. von Braun worked on the problems of liquid-fueled rockets and developed the Aggregat series of rockets, including the A4, which would become known as the V-2 (Vegeltungswaffe 2) military rocket. The German Army’s Ordnance Department gave von Braun a grant to further study liquid-fueled rockets, which he pursued at an artillery range at Kummersdorf, just south of Berlin. As rocketry work expanded, the tests were eventually moved to the Peenemünde Military Test Site on the island of Usedom on the Baltic coast, where von Braun was technical director under Colonel Dr. Ing. Walter R. Dornberger.

Wernher von Braun with a number of German officers at Peenemunde, March 1941. (Left to right) Oberst Dr. Walter Dornberger, General Friederich Olbricht, Major Heinz Brandt, von Braun; others not identified. (Bundesarchiv, Bild 146-1978-Anh.024-03/CC-BY-SA 3.0)
Prof. Dr.-Ing. Wernher von Braun with a number of German officers at Peenemünde, March 1941. (Left to right) Colonel Dr. Ing. Walter Dornberger (partially out of frame), General der Infanterie Friederich Olbricht*, Major Heinz Brandt, Prof. Dr. von Braun; others not identified. (Bundesarchiv, Bild 146-1978-Anh.024-03/CC-BY-SA 3.0) [*General Olbricht developed Operation Valkyrie, the plot to assassinate Hitler and overthrow the Nazi regime.]
Aggregat 4 prototype (probably V-3) ready for launch at Prüfstand VII, August 1942. (Bundesarchiv)

The first successful launch of the A4 took place 3 October 1942. By the end of World War II, Nazi Germany had launched more than 3,200 V-2 rockets against Belgium, England, France and The Netherlands.

As World War II in Europe came to a close and the collapse of Nazi Germany was imminent, von Braun had to choose between being captured by the Soviet Red Army or by the Allies. He surrendered to the 324th Infantry Regiment, 44th Infantry Division, United States Army in the Bavarian Alps, 2 May 1945.

Dornberger, Herber Axter, von Braun and Hans Lindenberg, 3 May 1945. (U.S. Army)
Major-General Dr. Ing. Walter R. Dornberger; Lieutenant-Colonel Herbert Axster, Dornberger’s chief of staff; Prof. Dr.-Ing. Wernher von Braun (with left arm in cast); and Hans Lindenberg, chief propulsion engineer; at Reutte, Austria, 3 May 1945. (Technician 5th Class Louis Weintraub, U.S. Army)

Under Operation Paperclip, Wernher von Braun and many other scientists, engineers and technicians were brought to the United States to work with the U.S. Army’s ballistic missile program at Fort Bliss, Texas, White Sands Proving Grounds, New Mexico, and the Redstone Arsenal, Huntsville, Alabama.

Sufficient parts and materiel and been transferred from Germany to construct more than one hundred V-2 rockets for testing at White Sands. Over a five year period, there were 67 successful launches, but it is considered that as much knowledge was gained from failures as successes.

Dr. von Braun with V-2 rocket compnents in Texas, circa 1945. (Unattributed)
Dr. von Braun with V-2 rocket components at White Sands Proving Grounds, New Mexico, 1 November 1946. (Thomas D. McAvoy)

In 1950, von Braun and his team were sent to Redstone Arsenal, Huntsville, Alabama, where they worked on more advanced rockets. The first production rocket was the short-range ballistic missile, the SSM-A-14 Redstone, which was later designated PGM-11. This rocket was capable of carrying a 3.8 megaton W39 warhead approximately 200 miles (322 kilometers) The first Redstone was launched at Cape Canaveral Air Force Station, 20 August 1953. Modified Redstone MRLV rockets were used to launch the first Mercury spacecraft with NASA astronauts Alan Shepherd and Gus Grissom. Von Braun later worked on the U.S. Army’s Jupiter-A intermediate range ballistic missile. A modified Jupiter-C was used to launch Explorer 1, the United States’ first satellite.

Explorer 1 launch, Launch Complex 26A, Cape Canaveral Air Force Station, 1 February 1958, 03:48:00 UTC. (NASA)
Mercury-Redstone 4 (Liberty Bell 7) launch at Pad 5, Cape Canaveral Air Force Station, 12 20 36 UTC, 21 July 1961. (NASA)

Wernher von Braun traveled to Germany in 1947 to marry his cousin, Maria Luise von Quistorp, and then returned to the United States. He became a naturalized citizen of the United States of America in 1955.

The von Braun family, circa 1955 (U.S. Army)
Prof. Dr. von Braun with his family, circa 1957. Left to right, Maria Luise von Braun, Margrit Cécile von Braun, Dr. von Braun and Iris Careen von Braun. (U.S. Army)

In 1960 von Braun and hist team were transferred from the Army Ballistic Missile Agency to NASA’s new Marshall Space Flight Center at Redstone Arsenal. He was now able to pursue his original interest, manned flight into space. Work proceeded on the Saturn rocket series, which were intended to lift heavy payloads into Earth orbit. This resulted in the Saturn A, Saturn B and the Saturn C series, ultimately becoming the Saturn V moon rocket.

With the Apollo Program coming to an end, Dr. von Braun left NASA in 1972. A year later, he was diagnosed with kidney cancer. Wernher von Braun died of pancreatic cancer, 17 June 1977 at the age of 65 years.

Apollo 4 Saturn V (AS-501) on the launch pad at sunset, the evening before launch, 8 November 1967. (NASA)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

22 March 1956

Boeing P2B-1S, Bu. No. 84029, at Edwards AFB, 22 March 1956. (NASA)

22 March 1956: While carrying the U.S. Navy’s Douglas D-558-II Skyrocket, problems developed aboard both the research rocketplane and the “mothership.” The modified four-engine heavy bomber, a U.S. Air Force Boeing B-29-95-BW Superfortress (which had been transferred to the U.S. Navy and redesignated P2B-1S Superfortress), had a runaway propeller on the Number 4 engine, outboard on the right wing. The propeller broke apart from excessive rotational speed, slicing through the Number 3 engine, the fuselage, and striking the Number 2 engine.

Douglas D-558-II Skyrocket, Bu. No., 37974, NACA 144, is dropped from the Boeing P2B-1S Superfortress, Bu. No. 84029, NACA 137. (NASA)

NACA research test pilot John Barron (“Jack”) MacKay, in the cockpit of the Skyrocket, had called “No drop!” because of problems with the rocketplane, but he was jettisoned so that the mothership could maintain flight and make an emergency landing.

McKay dumped the Skyrocket’s propellants and glided to the lake bed.

John Barron McKay, NACA/NASA Research Test Pilot. (NASA)

“Each rocket-plane pilot had worked out, in conjunction with the pilot of the mother ship, a procedure to follow if any emergency developed in either plane. Jack McKay, who had developed into a very able test pilot, and I had agreed with Butchart that if something went wrong after either of us had entered the cockpit of the Skyrocket and had closed the canopy, he would immediately jettison the rocket plane, leaving the rocket-plane pilot to look after his own hide. As a matter of fact, McKay and Butchart later ran into such an emergency. One day something went haywire in a propeller on the B-29 mother plane. As agreed, Butchart instantly cut loose the Skyrocket. A split second later the B-29 prop tore loose and cartwheeled through the space the Skyrocket had just vacated. McKay landed without difficulty; but had Butchart not cut the parasite plane loose, the prop would have ripped into its fuel tanks, causing an explosion that would have killed everyone, including McKay.”

Always Another Dawn: The Story of a Rocket Test Pilot, by A. Scott Crossfield and Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960, Chapter 21 at Pages 201–202.

The Superfortress pilots, Stanley Paul Butchart and Neil Alden Armstrong, landed the plane safely on the lake bed at Edwards Air Force Base.

Neil Armstrong would land on The Moon 13 years later.

The P2B1-S is jacked up inside a hangar at Edwards AFB so the the Douglas D-558-II Skyrocket can be loaded aboard.
The P2B-1S is jacked up inside a hangar at Edwards AFB so the the Douglas D-558-II Skyrocket can be loaded aboard. (NASA)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

22 March 1948

Tony LeVier in the cockpit of Lockheed TP-80C-1-LO 48-356, the prototype T-33A Shooting Star two-place trainer.
Tony LeVier in the cockpit of Lockheed TP-80C-1-LO 48-356, the prototype T-33A Shooting Star two-place trainer. (Jet Pilot Overseas)

22 March 1948: Just over one year since being injured when the prototype P-80A was cut in half by a disintegrating turbojet engine, Lockheed test pilot Anthony W. (“Tony”) LeVier made the first flight of the prototype TP-80C-1-LO, serial number 48-356, a two-place jet trainer. The airplane was redesignated TF-80C Shooting Star on 11 June 1948 and to T-33A, 5 May 1949.

Adapted from a single-seat P-80C Shooting Star jet fighter, Lockheed engineers added 38.6 inches (0.980 meter) to the fuselage forward of the wing for a second cockpit, instrumentation and flight controls, and another 12 inches (0.305 meter) aft. A more powerful engine, an Allison J33-A-23 with 4,600 pounds of thrust, helped offset the increased weight of the modified airplane. Internal fuel capacity decreased 72 gallons (273 liters) to 353 (1,336 liters). While the P-80 fighter was armed with six .50-caliber machine guns in the nose, the trainer was usually unarmed. Two machine guns could be installed for gunnery training.

In production for 11 years, 5,691 T-33As were built by Lockheed, with licensed production of another 656 by Canadair Ltd., and 210 by Kawasaki Kokuki K.K. For over five decades, the “T-Bird” was used to train many tens of thousands of military pilots worldwide.

Lockheed TP-80C-1-LO 48-356 prototype, with P-80C-1-LO Shooting Star 47-173, at Van Nuys Airport, California
Lockheed TP-80C-1-LO 48-356 prototype, with P-80C-1-LO Shooting Star 47-173, at Van Nuys Airport, California. (Lockheed Martin)

TF-80C 48-356 was rebuilt as the prototype for Lockheed’s YF-94A interceptor, and then modified further to the F-94B. Sources have reported it as being stored at Edwards Air Force Base, California.

Prototype Lockheed YF-94 48-356, first flight, 16 April 1949. (U.S. Air Force)
Prototype Lockheed YF-94 48-356, first flight, 16 April 1949. (U.S. Air Force)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

21 March 1987

McDonnell F-4C-21-MC Phantom II 63-7711, 196th Tactical Fighter Squadron, 193d Tactical Fighter Wing, California Air National Guard, landing at March Air Force Base, 20 January 1987. (Rob Schleiffert/Wikimedia Commons)
Captain Dean Paul Martin, USAF

The men and women who volunteer to protect our country put their lives at risk every day—even during peacetime and near to home.

On 21 March 1987, Captain Dean Paul Martin, Jr., United States Air Force, a fighter pilot assigned to the 196th Tactical Fighter Squadron, 163rd Tactical Fighter Group, California Air National Guard, paid the ultimate price when his McDonnell F-4C-25-MC Phantom II, serial number 64-0923, slammed into 11,501.6-foot (3,505.7 meter) Mount San Gorgonio. The airplane hit at the 5,500-foot level (1,676 meters), inverted, at 560 miles per hour (901 kilometers per hour). Also killed was Captain Ramon Ortiz, USAF, the Weapons System Officer.

Captain Martin was piloting the #2 aircraft, Grizzly 72, in a flight of three. They took off from March Air Force Base in Riverside County, California, in trail, and made a maximum performance climb through multiple layers of cloud and falling snow. Much of the time it was not possible to maintain visual contact, and formation was maintained with radar.

The flight leader, Grizzly 71, requested to climb to a higher altitude to get clear of the clouds but Air Traffic Control was not able to authorize that because of a large volume of civilian traffic above them. Martin was unable to maintain formation, and knowing that mountains were near, requested a left turn. The controller authorized the turn, but had to repeat himself several times due to frequency congestion.

The pilot of the #3 aircraft, Grizzly 73, briefly caught sight of Martin’s Phantom through a break in the clouds. He saw Grizzly 72 begin a sharp left roll and its afterburners ignite before it disappeared into the clouds again.

It is probable that Captain Martin lost spatial orientation because of the steep climb under acceleration while passing in and out of cloud layers.

There may have been another factor, though: Martin was divorced from his second wife, Olympic Gold Medalist Dorothy Hamill, but had hopes of a reconciliation. While obtaining a briefing in the weather office just prior to this flight, a worker there asked Martin what he thought about Hamill’s re-marriage two weeks earlier. Martin had been unaware of this and was visibly shaken by the news. This may have been an additional distraction at just the wrong time.

At any rate, Dean Paul Martin joined the Air Force to make something of himself and to make a meaningful contribution. He wanted to be more than “Dean Martin’s son” or an entertainer. The crash on Mt. San Gorgonio is a sad end to a noble venture.

Mount San Gorgonio in the San Bernardino Mountains, is the highest peak in Southern California. (skmnational.org)

Martin had told his sister, Deana,

“I will always be with you. Just look up in the sky and I will be there protecting you.”

Peace is Our Profession. But it is always a perilous occupation. Rest in Peace, Gentlemen.

McDonnell F-4C-20-MC Phantom II 63-7644, of teh 196th Tactical Fighter Squadron, 193rd Tactical Fighter Wing, California Air National Guard, at march Air force base, California, ca, 1987. This is similar to the F-4C flown by Captain Martin. (U.S. Air Force)
McDonnell F-4C-20-MC Phantom II 63-7644 of the 196th Tactical Fighter Squadron, 193rd Tactical Fighter Wing, California Air National Guard, at March Air Force Base, California, ca. 1987. This is similar to the F-4C flown by Captain Martin. (U.S. Air Force)

Dean Paul Martin, Jr., was born 17 November 1951 in Santa Monica, California. He was the first of three children of entertainer Dean Martin and Dorothy Jean Biegger Martin. He was educated at the Urban Military Academy in Brentwood, California, and was a pre-med student at the University of California, Los Angeles (UCLA). While there, he played football and tennis. Martin later completed his degree at the University of Southern California (USC).

“Dino, Desi and Billy,” circa 1965. Left to right: Dean Paul Martin, Jr.; Desiderio Alberto Arnaz IV; and William Hinsche. (Reprise Records)

During the mid-1960s, Martin, then known as “Dino,” was a member of the singing group, “Dino, Desi and Billy,” with Desi Arnaz, Jr., and William Hinsche. Their most successful songs were “I’m a Fool” and “Not the Lovin’ Kind.”

“Dino” Martin earned a private pilot license at the age of 16 years.

He was a professional tennis player, and, later, was a wide receiver for the World Football League Las Vegas Casinos, in Las Vegas, Nevada.

Mr. and Mrs. Dean Paul Martin, Jr., (née Olivia Osuna Hussey), 17 April 1971.

On 17 April 1971, Martin married Miss Olivia Hussey in Las Vegas, Nevada. (Miss Hussey is best known for her portrayal of Juliet Capulet in Franco Zeffirelli’s “Romeo and Juliet,” 1968). They had a son, Alexander. The couple were divorced 24 January 1979 in Los Angeles, California.

Also in 1979, Martin starred with actress Ali McGraw in Paramount Pictures’ “The Players.” Martin’s character was a professional tennis player.

Ali McGraw and Dean Paul Martin on the set of “The Players, “1979. (Paramount Pictures)

Dean Paul Martin, Jr., joined the United States Air Force 5 November 1980, and underwent pilot training in the Cessna T-37 Tweet at Columbus Air Force Base, near Columbus, Missouri, and then went on to advanced training at Laughlin Air Force Base, Del Rio, Texas, flying the Northrop T-38 Talon. He trained as fighter pilot in the McDonnell F-4 Phantom II at Luke Air Force Base, west of Phoenix, Arizona, completing the course in November 1981. He was assigned to the 193d Tactical Fighter Wing, California Air National Guard, based at March Air Force Base, Riverside County, California. He initially served as a Weapons System Officer in the McDonnell F-4C Phantom II, before upgrading to aircraft commander.

A spokesman for the California Air National Guard, Major Steve Mensik, said, “Captain Martin was one of the better pilots, an exceptional athlete who handled himself well in the cockpit.”

Lieutenant and Mrs. Dean Paul Martin, Jr., (née Dorothy Stuart Hamill), 8 January 1982.

Martin married Olympic Gold Medalist Miss Dorothy Stuart Hamill, 8 January 1982, in Beverly Hills, California. They divorced in 1984.

Captain Ramon Ortiz, U.S.A.F.

Captain Martin’s remains were buried at the Los Angeles National Cemetery.

Ramon Ortiz was born 31 August 1947, in Ponce, Puerto Rico, an island in the Caribbean Sea and an unincorporated territory of the United States.

Ortiz joined the United States Air Force 22 December 1973 and served on active duty until 13 November 1980.

Captain Ortiz’ remains were buried at Palm Memorial Park, Las Vegas, Nevada.

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather