Daily Archives: May 6, 2018

William Harvey Dana (3 November 1930-6 May 2014)

William Harvey Dana, NASA Research Pilot

William Harvey Dana, (Oracle 1948)

William Harvey Dana was born 3 November 1930 at Pasadena, California, the first of two children of Harvey Drexler Dana, a geologist, and Rose Frances Jourdan Dana. (Sister, Antoinette). Dana grew up in Bakersfield, California. He graduated from Bakersfield High School in 1948.

Bill Dana received an appointment as a cadet at the United States Military Academy, West Point, New York,. He graduated 1952 and was commissioned as a second lieutenant in the United States Air Force. Lieutenant Dana served until 1956.

In 1958, Dana earned a Master of Science degree in Aeronautical Engineering from the University of California, Los Angeles, California.

On 1 October 1958, Dana began as 40-year career at the NASA High-Speed Flight Station, Edwards Air Force Base, California, as an Aeronautical Research Engineer. (This was the day that the National Aeronautics and Space Administration was established, making Dana the first new employee to be hired by NASA). He was assigned to work on an X-15 performance simulator, and also to the North American XF-107 stability research program.

In September 1959, Bill Dana transferred to the Flight Operations Branch. One of his early projects was the North American Aviation JF-100C variable stability research aircraft.

NASA JF-100C Variable Stability Research Aircraft

IN 1962 Bill Dana married Miss Judi Miller. They would have four children, Sidney, Matt, Janet, and Leslie.

Dana made his first flight in the North American Aviation X-15 hypersonic research rocketplane on 4 November 1965. he reached a maximum speed of Mach 4.22, and a peak altitude of 80,200 feet (24,445 meters). He made a total of sixteen flights in the X-15s. Dana’s highest speed was Mach 5.34, 4 August 1966, and his highest altitude, 306,900 feet, (93,543 meters), on 1 November 1966. On 24 October 1968, Dana flew the final X-15 flight of the NASA X-15 Hypersonic Research program.

NASA Research Pilot William H. Dana with North American X-15A 56-6672 on Rogers Dry Lake. (NASA)

Bill Dana also flew NASA’s experimental “lifting body” aircraft. On 27 February 1970, he flew the Northrop HL-10 lifting body to 90,030 feet (27,441 meters), the highest altitude reached during its flight test program.

Bill Dana with the HL-10 lifting body, NASA 804. (NASA E-20168)
Dana watches the NB-52B fly over Rogers Dry Lake after HL-10 lifting-body flight, 30 November 1968. (NASA ECN-2203)

He made the first flight of the Northrop M2-F3, 2 June 1970. The M2-F3 was built from the M2-F2, which had been heavily damaged in a dramatic landing accident, 10 May 1967, resulting in severe injuries to the pilot, Bruce Peterson.

Wreck of NASA 803, 10 May 1967. (NASA E-16731)

On 23 September 1975, Bill Dana made the final powered flight of the Martin Marietta X-24B lifting body aircraft.

NASA Research Pilot William H. Dana with the X-24B lifting body, 1975. (NASA)

Bill Dana was assigned as the Chief Pilot of the NASA Dryden Flight Research Center, and in 1986, became the Assistant Chief Flight Operations Division at Dryden.

Bill Dana was the project pilot for NASA 835, the experimental F-15 HIDEC (Highly Integrated Digital Electronic Control) and NASA 840, the F/A-18 Hornet HARV (High Alpha Research Vehicle).

Bill Dana was the project pilot for NASA 835, the experimental F-15 HIDEC (Highly Integrated Digital Electronic Control), and NASA 840, the F/A-18 Hornet HARV (High Alpha Research Vehicle). (NASA)

Dana stopped test flying after 1993, when he was appointed Chief Engineer, NASA Dryden Flight Research Center. In 1997, he was awarded the NASA Distinguished Service Medal. He retired from NASA in 1998.

Bill Dana flew more than 8,000 hours in over 60 different aircraft types.

In 2000, NASA awarded Dana its Milton O. Thompson Lifetime Achievement Award, and on 23 August 2005, he was presented NASA’s Civilian Astronaut wings for his two X-15 flights above 50 miles.

William Harvey Dana died at Phoenix, Arizona, 6 May 2014, at the age of 83 years. He was buried at the Joshua Memorial Park in Lancaster, California.

William Henry (“Bill”) Dana, 2005. (NASA)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

6 May 1959

Kamov Ka-15

6 May 1959: Vsevolod Vladimirovich Vinitsky (Всеволод Владимирович Виницкий), with Sergei P. Sanayev, flew a Kamov Ka-15 coaxial helicopter to set a Fédération Aéronautique Internationale (FAI) World Record for Speed Over a Closed Circuit of 500 Kilometers Without Payload. The helicopter’s average speed over the course was 170.45 kilometers per hour (105.92 miles per hour).¹

Vsevolod Vladimirovich Vinitsky

Vsevolod Vladimirovich Vinitsky was born 11 February 1915 at Omsk, Akmola, Imperial Russia.

In 1932, he graduated from the Ural Geological Prospecting Technical School at Chelyabinsk.

1933 Sverdlovsk glider school.

1939 Polar Aviation Administration (Nikolaev) school of marine pilots, Glavsevmorputi.

1941 Red Army. Sept–Nov ’41 33rd Airborne Squadron (Western Front); 9/41–3/42 7th Airborne Squadron (WF); 3-9/42 commander with 7th Airborne Corps (WF); 9/42–5/44, commander 2nd Airborne Regiment (Ukranian Front) 44 combat sorties

8-9/45 c/o 51st Transport Aviation regiment Transbaikal front

’46–’50, pilot Polar Aviation

Test pilot Mil OKB 1950. First flight Mi-1U. 1952, 1st flight Mi-4

Flying a Mil Mi-1, he performed first engine-off touch-down autorotation in the Soviet Union. Perfected helicopter flight under icing and instrument meteorological conditions.

with D.K. Efremov, piloted the Ka-22

Test pilot at Gromov Flight Research Institute at Zhukovsky.

1963> TsAGI planetary station

Died at Moscow, 12 September 1992 at the age of 77 years. Buried Kuzminsky Cemetery, Moscow.

¹ FAI Record File Number 766

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

6 May 1941

Igor Sikorsky with his VS-300A, Stratford, Connecticut, 6 May 1941. (Sikorsky Archives)
Igor Ivanovich Sikorsky 1888–1970. Sikorsky Archives)
Igor Ivanovich Sikorsky 1889–1972. (Sikorsky Archives)

6 May 1941: At Stratford, Connecticut, Igor Sikorsky piloted his Vought-Sikorsky VS-300 helicopter to a new world’s record for endurance. He flew for 1 hour, 32 minutes, 26 seconds.¹ The previous record—1 hour, 20 minutes, 49 seconds—had been set by Ewald Rohlfs with the Focke-Wulf Fw 61 tandem-rotor helicopter, 25 June 1937.²

During its development, the VS-300 went through at least 18 changes in its rotor configuration. This photograph, taken after the record-setting flight, shows an intermediate version, with one main rotor for lift and three auxiliary rotors for anti-torque and directional control.

In the final configuration, Sikorsky arrived at what we now recognize as a helicopter, with the main rotor providing lift, thrust and roll control through variable collective and cyclic pitch, and a single tail rotor for anti-torque and yaw control.

The VS-300 had a welded tubular steel airframe and used a 28-foot (5.34 meters) diameter, fully-articulated, three-bladed main rotor, which turned clockwise (as seen from above) at 260 r.p.m. (The advancing blade was on the left. This would later be reversed.) The main rotor had collective pitch control for vertical control, but cyclic pitch (Sikorsky referred to this as “sectional control”) for directional control would not be developed for another several months.

The tail “propellers” (what we now consider to be rotors—one vertical and two horizontal) each had two blades with a diameter of 7 feet, 8 inches (2.337 meters) and turned approximately 1,300 r.p.m. The vertical rotor provided “torque compensation” (anti-torque) and the blade pitch was fully reversible. The horizontal rotors were mounted on 10-foot (3.048 meters) outriggers at the aft end of the fuselage. For lateral control, the pitch on one rotor was increased and the other decreased. For longitudinal control, the pitch of both rotors was increased or decreased together.

The VS-300 was originally equipped with an air-cooled, normally-aspirated 144.489-cubic-inch-displacement (2.368 liter) Lycoming O-145C-3 four-cylinder horizontally-opposed engine which was rated at 75 horsepower at 3,100 r.p.m. According to Mr. Sikorsky, “early in 1941,” the Lycoming engine was replaced by an air-cooled, normally-aspirated 198.608 cubic inch (3.255 liter) Franklin 4AC-199-E, a four-cylinder horizontally-opposed overhead valve (OHV) direct-drive engine with a compression ratio of 7:1, rated at 90 horsepower at 2,500 r.p.m. It is not known if this change was made prior to 6 May.

¹ During World War II, only a very few ballooning and gliding world records were certified by the Fédération Aéronautique Internationale. Although Sikorsky’s flight duration exceeded that of Rohlfs, it is not listed as an official world record.

² FAI Record File Number 13147

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

6 May 1941

Republic XP-47B 40-3051 prototype in flight. (Republic Aircraft Corporation)

6 May 1941: Just eight months after a prototype for a new single-engine fighter was ordered by the U.S. Army Air Forces, test pilot Lowery Lawson Brabham took off from the Republic Aviation Corporation factory airfield at Farmingdale, New York, and flew the prototype XP-47B Thunderbolt, serial number 40-3051, to Mitchel Field, New York.

During the flight, oil which had collected in the exhaust duct began burning. There was so much smoke that Brabham considered bailing out. He stayed with the prototype, though, and when he arrived at Mitchel Field, he exclaimed, “I think we’ve hit the jackpot!”

Alexander Kartveli

The prototype was designed by Alexander Kartveli, a Georgian immigrant and former chief engineer for the Seversky Aircraft Corporation, which became the Republic Aviation Corporation in 1939.

Alexander Kartveli (née Kartvelishvili, ალექსანდრე ქართველი) was born in Tbilisi, in the Kutais Governorate of the Russian Empire, (what is now, Georgia). After World War I, during which he was wounded, Kartvelishvili was sent to study at the Paris Aviation Higher College of Engineering in France by the government of the Democratic Republic of Georgia. He graduated in 1922. Kartvelishvili did not return to his country, which had fallen to the Red Army in the Soviet-Georgian War. He worked for Blériot Aéronautique S.A. until 1928, when he was employed by the Fokker American Company (also known as Atlantic Aircraft, or Atlantic-Fokker) which was headquartered at Passaic, New Jersey, in the United States. In 1931, he became chief engineer for the Seversky Aircraft Company in Farmingdale.

Republic XP-47B Thunderbolt prototype 40-3051 at Farmingdale, New York, 1941. The pilot standing in front of the airplane gives a scale reference. (Republic Aviation Corporation)

The XP-47B was the largest single-engine fighter that had yet been built. The production P-47B was 34 feet, 10 inches (10.617 meters) long with a wingspan of 40 feet, 9-5/16 inches (12.429 meters), and height of 12 feet, 8 inches (3.861 meters).¹ The wing area was 300 square feet (27.9 square meters). At a gross weight of 12,086 pounds (5,482 kilograms), it was nearly twice as heavy as any of its contemporaries.

Republic XP-47B Thunderbolt 40-3051 at Wright Field, Dayton, Ohio.(Ray Wagner Collection, San Diego Air & Space Museum Archives )

The XP-47B was powered by an air-cooled, supercharged and turbocharged, 2,804.4-cubic-inch-displacement (45.956 liter) Pratt & Whitney R-2800-21 (Double Wasp TSB1-G) two-row, 18-cylinder radial with a compression ratio of 6.65:1 had a normal power rating of 1,625 horsepower at 2,550 r.p.m., to an altitude of 25,000 feet (7,620 meters), and a takeoff/military power rating of 2,000 horsepower at 2,700 r.p.m. at 25,000 feet (7,620 meters). The engine drove a 12-foot, 2 inch (3.708 meter) diameter, four-bladed Curtiss Electric constant-speed propeller through a 2:1 gear reduction. The R-2800-21 was 4 feet, 4.50 inches (1.340 meters) in diameter and 6 feet, 3.72 inches (1.923 meters) long. The engine weighed 2,265 pounds (1,027 kilograms). Approximately 80% of these engines were produced by the Ford Motor Company. It was also used as a commercial aircraft engine, with optional propeller gear reduction ratios.

A large General Electric turbosupercharger was mounted in the rear of the fuselage. Internal ducts carried exhaust gases from the engine to drive the turbocharger. This supercharged air was then carried forward through an intercooler and then on to the carburetor to supply the engine. The engine’s mechanical supercharger further pressurized the air-fuel charge.

Republic XP-47B 40-3051. The pilot enters the cockpit through a hinged canopy segment. (Ray Wagner Collection Catalog, San Diego Air and Space Museum)

During flight testing, the XP-47B Thunderbolt demonstrated speeds of 344.5 miles per hour (554.4 kilometers per hour) at 5,425 feet (1,654 meters), and 382 miles per hour (615 kilometers per hour) at 15,600 feet (4,745 meters). Its maximum speed was 412 miles per hour (663 kilometers per hour) at 25,800 feet (7,864 meters). The test pilot reported that the engine was unable to produce full power during these tests. It was determined that it had a cracked cylinder head, resulting in a loss of 2.5–4% of its maximum rated power. Also, the XP-47B was painted in camouflage, resulting in a slight loss of speed.

It could climb to 15,000 feet (4,572 meters) in just five minutes.

The Thunderbolt was armed with eight Browning AN-M2 .50-caliber machine guns, four in each wing, with 3,400 rounds of ammunition. It could also carry external fuel tanks, rockets and bombs. The structure of the P-47 could be described as “robust” and it was heavily armored. The amount of damage that the airplane could absorb and still return was remarkable.

 

Republic XP-47B Thunderbolt 40-3051, 4 May 1941. (U.S. Air Force)
Republic XP-47B Thunderbolt 40-3051, 4 May 1941. (Republic Aviation Corporation)

During a test flight, 4 August 1942, the XP-47B’s tail wheel was left down. The extreme heat of the turbocharger’s exhaust set fire to the tire, which then spread to the airplane’s fabric-covered control surfaces. Unable to control the airplane, test pilot Filmore L. Gilmer bailed out. The prototype Thunderbolt crashed into Long Island Sound and was destroyed.

The third production Republic P-47B Thunderbolt, 41-5897, at Langley Field, Virginia, 24 March 1942. The door-hinged canopy of the XP-47B has been replaced by a rearward-sliding canopy, requiring that the radio antenna mast be moved.(NASA)
A Republic P-47B Thunderbolt in the NACA Full Scale Tunnel, 31 July 1942. (NASA LMAL 29051)

A total of 15,683 Thunderbolts were built; more than any other Allied fighter type. In aerial combat, it had a kill-to-loss ratio of 4.6:1. The P-47, though, really made its name as a ground attack fighter, destroying aircraft, locomotives, rail cars, and tanks by the many thousands. It was one of the most successful aircraft of World War II.

¹ Data from Pilot’s Flight Operating Instructions, Technical Order No. 01-65BC-1, 20 January 1943

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

6 May 1937

Airship D-LZ129 Hindenburg moored at New Jersey at the end of a previous voyage.
Airship D-LZ129 Hindenburg moored at New Jersey at the end of a previous voyage.

6 May 1937: After a three-day Trans-Atlantic crossing from Frankfurt, Germany, the rigid airship Hindenburg (D-LZ129) arrived at Lakehurst, New Jersey, with 36 passengers and 61 crewmembers.

Airship LZ-129 Hindenburg burning, 1925 hours, 6 May 1937, at Lakehurst, New Jersey.
Airship LZ-129 Hindenburg burning, 1925 hours, 6 May 1937, at Lakehurst, New Jersey.

At 7:25 p.m., while the airship was being moored, it suddenly caught fire. The fabric covering burned first, but then the hydrogen gas contained in the buoyancy tanks exploded and burned. Hindenburg settled to the ground and was completely destroyed within 30 seconds.

Water ballast rains down as Hindenburg burns at the mooring mast 1925 hours, 6 May 1937, at Lakehurst, New Jersey. SFA003016395
Hindenburg NY Daily News
Hindenburg settles to the ground. (Arthur Cofod, Jr./USAF 12293 A.C.)

Of those on board, 13 passengers and 22 crewmembers died. One member of the ground crew was also killed.

Surprisingly, though there were many survivors and witnesses—as well as newsreel footage of the accident—the cause has never been determined.

This dramatic accident ended the airship passenger industry.

Airship LZ-129 Hindenburg burning, 1925 hours, 6 May 1937, at Lakehurst, New Jersey.
Airship LZ-129 Hindenburg burning, 1925 hours, 6 May 1937, at Lakehurst, New Jersey.
Hindenburg burning

© 2015, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather