All posts by Bryan Swopes

About Bryan Swopes

Bryan R. Swopes grew up in Southern California in the 1950s–60s, near the center of America's aerospace industry. He has had a life-long interest in aviation and space flight. Bryan is a retired commercial helicopter pilot and flight instructor.

25 May 1953

George S. Welch with North American YF-100A 52-5754. (North American Aviation, Inc.)

25 May 1953: North American Aviation Chief Test Pilot George S. Welch took the YF-100A Super Sabre, U.S. Air Force serial number 52-5754, for its first flight at Edwards Air Force Base. The airplane reached Mach 1.03.

Development of the Super Sabre began with an effort to increase the speed of the F-86D and F-86E Sabre fighters. The wings had more sweep and the airfoil sections were thinner. A much more powerful engine would be needed to achieve supersonic speed in level flight. As design work on the “Sabre 45” proceeded, the airplane evolved to a completely new design. Initially designated XF-100, continued refinements resulted in the first two aircraft being redesignated YF-100A.

North American Aviation Chief Test Pilot George S. Welch in the cockpit of the YF-100A, 52-5754, at Los Angeles International Airport. (North American Aviation, Inc.)
North American Aviation Chief Test Pilot George S. Welch in the cockpit of YF-100A 52-5754 at Los Angeles International Airport. (North American Aviation, Inc.)

The two YF-100As, 52-5754 and 52-5755, were 47 feet, 11¼ inches (14.611 meters) long with a wingspan of 36 feet, 7 inches (11.151 meters) and height of 16 feet, 3 inches (4.953 meters). The wings were swept to 45° at 25% chord, and had 0° angle of incidence and 0° dihedral. The ailerons were placed inboard on the wings to eliminate their twisting effects at high speed. The airplane had no flaps. The pre-production prototypes weighed 18,135 pounds (8,226 kilograms) empty, and had a gross weight of 24,789 pounds (11,244 kilograms).

The new air superiority fighter was powered by a Pratt & Whitney Turbo Wasp J57-P-7 engine. The J57 was a two-spool axial-flow turbojet which had a 16-stage compressor section (9 low- and 7 high-pressure stages) and a 3-stage turbine (2 high- and 1 low-pressure stages). The J57-P-7 had a Maximum Continuous Power rating of 8,000 pounds of thrust (35.586 kilonewtons) at 5,875 r.p.m., N1, and 9550 r.p.m., N2. The engine’s Military Power rating was 9,700 pounds thrust (43.148 kilonewtons) at 6,275 r.p.m./9,900 r.p.m., for 30 minutes; and 14,800 pounds thrust (65.834 kilonewtons) at 6,275 r.p.m./9,900 r.p.m. with afterburner, limited to five minutes. The engine was 20 feet, 9.7 inches (6.342 meters) long, 3 feet, 3.9 inches (1.014 meters) in diameter, and weighed 5,075 pounds (2,303 kilograms). Later production aircraft used a J57-P-39 engine, which had the same ratings.

Cutaway illustration ofa North American Aviation F-100A Super Sabre. (Boeing)
Cutaway illustration of a North American Aviation F-100A Super Sabre. (Boeing)
North American Aviation YF-100 Super Sabre 52-5754. (U.S. Air Force)
North American Aviation YF-100 Super Sabre 52-5754, 19 May 1953. (North American Aviation, Inc.)
The prototype North American Aviation YF-100A Super Sabre, 52-5754, with the North American F-100 team. Chief Test Pilot George S. Welch is in the center of the front row, seated. (North American Aviation, Inc.)

The YF-100A had a maximum speed of 660 miles per hour (1,062 kilometers per hour) at 43,350 feet (13,213 meters). The service ceiling was 52,600 feet (16,033 meters). Range with internal fuel was 422 miles (679 kilometers).

During testing, 52-5754 reached Mach 1.44 in a dive. On 29 October 1953, Colonel Frank K. Everest set a world speed record of 1,215.298 kilometers per hour (755.151 miles per hour) with 754.¹

In service with the United States Air Force, the Super Sabre’s mission changed from air superiority fighter to fighter bomber. It was used extensively during the Vietnam War. North American Aviation, Inc., built 2,294 single and tandem-seat Super Sabres between 1954 and 1959.

North American Aviation YF-100A Super Sabre 52-5754. (U.S. Air Force)
North American Aviation YF-100A Super Sabre 52-5754 over Edwards Air Force Base, California, 25 May 1953. (North American Aviation, Inc.)
North American Aviation YF-100A Super Sabre 52-5754 lands on the dry lake at Edwards Air Force Base, California. (North American Aviation, Inc.)

George Welch was born George Lewis Schwartz, in Wilmington, Delaware, 10 May 1918. His parents changed his surname to Welch, his mother’s maiden name, so that he would not be effected by the anti-German prejudice that was widespread in America following World War I. He studied mechanical engineering at Purdue, and enlisted in the Army Air Corps in 1939.

North American Aviation YF-100A Super Sabre 52-5754 banks away from a chase plane during a flight test. (U.S. Air Force)

George S. Welch is best remembered as one of the heroes of Pearl Harbor. He was one of only two fighter pilots to get airborne during the Japanese surprise attack on Hawaii, 7 December 1941. Flying a Curtiss P-40B Warhawk, he shot down three Aichi D3A “Val” dive bombers and one Mitsubishi A6M2 Zero fighter. For this action, Lieutenant General H.H. “Hap” Arnold recommended the Medal of Honor, but because Lieutenant Welch had taken off without orders, an officer in his chain of command refused to endorse the nomination. He received the Distinguished Service Cross. During the War, Welch flew the Bell P-39 Airacobra and Lockheed P-38 Lightning on 348 combat missions. He had 16 confirmed aerial victories over Japanese airplanes and rose to the rank of Major.

Suffering from malaria, George Welch was out of combat, and when North American Aviation approached him to test the new P-51H Mustang, General Arnold authorized his resignation. Welch test flew the P-51, FJ-1 Fury, F-86 Sabre and F-100 Super Sabre. He was killed 12 October 1954 when his F-100A Super Sabre came apart in a 7 G pull up from a Mach 1.5 dive.

North American Aviation pre-production prototype YF-100A Super Sabre 52-5754 with drag chute deployed on landing at Edwards Air Force Base, California. (U.S. Air Force)
North American Aviation pre-production prototype YF-100A Super Sabre 52-5754 with drag chute deployed on landing at Edwards Air Force Base, California. The extended pitot boom is used to calibrate instruments early in the flight test program. (U.S. Air Force)
North American Aviation YF-100 Super Sabre 52-5754 with external fuel tanks, parked on the dry lake at Edwards Air Force Base, California. (U.S. Air Force)

¹ FAI Record File Number 8868

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

25 May 1927

1st Lieutenant James H. Doolittle, United States Army Air Corps, at the 1929 Cleveland National Air Races. Jimmy Doolittle is seen in this photograph sitting on the turtle deck of the Curtiss P-1C Hawk. (National Air and Space Museum)

25 May 1927: At Wright Field, now Wright-Patterson Air Force Base, Dayton, Ohio, First Lieutenant James H. “Jimmy” Doolittle, United States Army Air Corps, was the first pilot to successfully perform an outside loop.

Flying a Curtiss P-1B Hawk pursuit, he began the maneuver in level flight at 10,000 feet (3,048 meters), then pushed the nose down into a dive. When he reached 280 miles per hour (450 kilometers per hour), Doolittle continued to pitch the nose “down” and the airplane flew through a complete vertical circle, with the pilot’s head to the outside of the loop.

Lt. Jimmy Doolittle with a Curtiss P-1 Hawk, 4 February 1928. (NASM)
Lt. Jimmy Doolittle with a Curtiss P-1 Hawk, 4 February 1928. (National Museum of the United States Air Force)

Jimmy Doolittle attempted to repeat the outside loop at the 1929 Cleveland National Air Races, with a Curtiss P-1C Hawk, serial number 29-227. The airplane’s wings came off but Doolittle parachuted to safety. (The Curtiss P-1C used wing radiators instead of the large radiator under the nose of the P-1B. This substantially reduced the aerodynamic drag which allowed the airplane to accelerate to too high an airspeed during Doolittle’s maneuver.)

A crowd surrounds the wreckage of Jimmy Doolittle's Curtiss P-1C Hawk after it crashed during a demonstration at the 1929 Cleveland National Air Races. (Cleveland Press)
A crowd surrounds the wreckage of Jimmy Doolittle’s Curtiss P-1C Hawk after it crashed during an aerobatic demonstration at the 1929 Cleveland National Air Races. (Cleveland State University, Michael Schwartz Library, Special Collections, Cleveland Press Collection)

Jimmy Doolittle was one of America’s foremost pioneering aviators. He set many records, won air races, tested and developed new flying equipment and techniques. He was a highly-educated military officer, having earned his Bachelor of Arts from the University of California Berkeley School of Mines, and M.S and D.Sc. degrees in Aeronautical Engineering from the Massachusetts Institute of Technology. As a pioneer aviator, he won every international air race, and had been awarded every international aviation trophy. He was also the first pilot to fly completely by reference to instruments.

During the early days of America’s involvement in World War II, Lieutenant Colonel Doolittle planned and led the Halsey-Doolittle B-25 raid on Japan. He was awarded the Medal of Honor and promoted to brigadier general, and then placed in command of the Twelfth Air Force in North Africa. As a major general, he commanded the Fifteenth Air Force in the Mediterranean Theater of Operations. Lieutenant General Doolittle commanded the Eighth Air Force in England from January 1944 to September 1945. He supervised the transition of the 8th to the Boeing B-29 Superfortress and its eventual transfer to bases on Okinawa to continue the war against Japan. World War II came to an end before any of the 8th’s B-29s actually moved west.

Lieutenant General James H. Doolittle, U.S. Army Air Force (U.S. Army Photo C-2102)
Lieutenant General James H. Doolittle, U.S. Army Air Force (U.S. Army Photo C-2102)

After the war, Lieutenant General Doolittle was placed on the inactive list. On 4 April 1985, by Act of Congress, James H. Doolittle was promoted to General, United States Air Force, Retired.

General James Harold Doolittle is the only person to be awarded both the Medal of Honor and the Medal of Freedom. He died 27 September 1993 at the age of 96 years. He was buried at the Arlington National Cemetery, Arlington, Virginia.

Curtiss P-1B Hawk, A.C. 27-75. (U.S. Air Force)

The Curtiss P-1B Hawk was a single-engine, single-seat, single-bay biplane pursuit, an aircraft type now known as a fighter. The airplane and its D-12 Conqueror engine were both built by the Curtiss Aeroplane and Motor Co., Garden City, New York.

The P-1B was 22 feet, 10 inches (6.960 meters) long with an upper wingspan of 31 feet, 6 inches (9.601 meters). The lower wing had a span of 26 feet, 0 inches (7.925 meters), a narrower chord, and was staggered 3 feet, 2½ inches (0.978 meters) behind the upper. Both wings had significant taper with rounded tips. Their angle of incidence was 0°. The upper wing had no dihedral, while the inboard lower wing had 1°, and the outer, 5°. The total wing area was 252 square feet (23.4 square meters). The horizontal stabilizer span was 10 feet, 6.0 inches (3.200 meters) and its incidence could be adjusted from +3° to -1.5°. The vertical fin was offset 2° left of the airplane’s centerline. The overall height of the airplane was 8 feet, 10 inches (2.712 meters).

The P-1B had an empty weight of 2,105 pounds (955 kilograms), gross weight of 2,932 pounds (1,330 kilograms), and maximum weight of 3,562 pounds ( kilograms).

The P-1B was powered by a liquid-cooled, normally-aspirated, 1,145.1-cubic-inch-displacement (18.8 liter) Curtiss D-12D (V-1150-3) dual overhead cam (DOHC) 4-valve 60° V-12 engine with a compression ratio of 5.7:1. It was a direct-drive engine, rated at 415 horsepower at 2,000 r.p.m. at Sea Level, and 460 horsepower at 2,300 r.p.m. The D-12 was 58¾ inches (1.492 meters) long, 34¾ inches (0.883 meters) high and 28¼ inches (0.718 meters) wide. It weighed 680 pounds (308 kilograms). The P-1B was equipped with an aluminum Curtiss-Reed propeller with a diameter of 8 feet, 9 inches (2.667 meters).

The pursuit had a cruise speed of 127 miles per hour (204 kilometers per hour). Its maximum speed was 159.6 miles per hour (256.9 kilometers per hour) at Sea Level, and 157 miles per hour (253 kilometers per hour) at 5,000 feet (1,524 meters). It had a service ceiling of 21,400 feet (6,523 meters) and absolute ceiling of 22,900 feet (6,980 meters). Its range was 342 miles (550 kilometers).

The P-1B was armed with two fixed air-cooled Browning machine guns, one .50-caliber and one .30-caliber.

The Air Corps ordered 93 Curtiss P-1 Hawks between 1925 and 1929.

Doolittle flew a Curtiss Curtiss P-1A Hawk, 25-410, similar to the P-1B that Doolittle flew into an outside loop. (U.S. Air Force)
Curtiss P-1A Hawk, 25-410, similar in appearance to the P-1B that Doolittle flew into an outside loop. (U.S. Air Force)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

25 May 1889–26 October 1972

Igor Ivanovich Sikorsky, 1914. (Karl Karlovich Bulla)
Igor Ivanovich Sikorsky, 1914. Sikorsky is wearing the cross of the Imperial Order of St. Vladimir. (Karl Karlovich Bulla)

25 May 1889: И́горь Ива́нович Сико́рский (Igor Ivanovich Sikorsky) was born at Kiev, Russian Empire, the fifth of five children of Professor Ivan Alexeevich Sikorsky and Doctor Mariya Stefanovich Sikorskaya.

15 year-old Midshipman Igor Ivanovich Sikorksky, at lower right, with his sisters Olga, Lydia and Elena, and brother Sergei, 1904. (Sikorsky, a Lockheed Martin Company)
15 year-old Midshipman Igor Ivanovich Sikorksky, Imperial Naval Academy, at lower right, with his sisters Olga, Lydia and Elena, and brother Sergei, 1904. (Sikorsky, a Lockheed Martin Company)

He studied at the Imperial Naval Academy, St. Petersburg, from 1903 until 1906, when he left to study engineering, first in Paris, and then at the Kiev Polytechnic Institute.

Airplane pilot Igor Sikorsky with a passenger. (RIA Novosti)
Pilot Igor Ivanovich Sikorsky with a passenger, circa 1914. (RIA Novosti)

Flying an airplane of his own design, the S-5, on 18 April 1911, he received a Fédération Aéronautique Internationale pilot’s license from L’Aéro-Club Imperial de Russie (Imperial Russian Aero Club).

Igor I. Sikorsky's FAI pilot's license. (Sikorsky Historical Archives)
Igor I. Sikorsky’s FAI pilot’s license. (Sikorsky Historical Archives)

He was chief aircraft engineer for Russko-Baltiisky Vagonny Zavod at St. Petersburg and continued to develop airplanes. In 1913, he flew the twin engine S-21 Le Grand, to which he added two more engines, and it became the Russky Vityaz.

Igor Sikorsky with one of his early biplanes.
Igor Sikorsky with one of his early biplanes.
Sikorsky S-21 in flight
Sikorsky’s S-21 in flight, 1913

Igor Sikorsky married Olga Fyodorovna Simkovich. They had a daughter, Tania. The couple soon divorced, however.

Compagnie Générale Transatlantique liner, SS La Lorraine, 11,146 gross tons.
Compagnie Générale Transatlantique liner, SS La Lorraine, 11,146 gross tons.

Following the October Revolution, Sikorsky emigrated to the United States. Departing Le Havre, France, aboard SS La Lorraine, he arrived at New York on 31 March 1919. With financial backing from composer and conductor Sergei Vasilievich Rachmaninoff, he founded the Sikorsky Aero Engineering Company at Long Island, New York, in 1924, and continued designing and building airplanes.

In 1924, Sikorsky married Elisabeth Semion, who was also born in Russia, in 1903. They would have four children. In 1928, he became a citizen of the United States of America.

Sikorsky S-39 amphibian NC54V (Civil Air Patrol)
Sikorsky S-39 amphibian NC54V (Civil Air Patrol)

Beginning in 1934, Sikorsky Aircraft produced the S-42 flying boat for Pan American Airways at a new plant at Stratford, Connecticut.

U.S. Navy RS-1 (Sikorsky S-41) (National Museum of Naval Aviation)
U.S. Navy RS-1 (Sikorsky S-41) (National Museum of Naval Aviation)
A Pan American Airways Sikorsky S-42, NC16742, moored at Honolulu, Territory of the Hawaiian Islands. (hawaii.gov/hawaiiaviation)
Pan American Airways Sikorsky S-42, NC16734, moored at Honolulu, Territory of the Hawaiian Islands. (hawaii.gov/hawaiiaviation)

Interested in helicopters since the age of 9, he directed his creative effort toward the development of a practical “direct-lift” aircraft. The first successful design was the Vought-Sikorsky VS-300. Using a single main rotor, the VS-300 went through a series of configurations before arriving at the single anti-torque tail rotor design, the VS-316A. This was put into production for the U.S. military as the Sikorsky R-4.

The prototype VS-300 helicopter clears the ground for the first time, 14 September 1939. Igor Sikorsky is at the controls. His right foot rests on the anti-torque pedal. (Sikorsky Historical Archives)
The prototype VS-300 helicopter clears the ground for the first time, 14 September 1939. Igor Sikorsky is at the controls. His right foot rests on the anti-torque pedal. (Sikorsky Historical Archives)
Igor Sikorsky hovers the Vought-Sikorsky VS-300. (Sikorsky, a Lockheed Martin Company)
Igor Sikorsky hovers the Vought-Sikorsky VS-300A. (Sikorsky, a Lockheed Martin Company)
On behalf of the Fédération Aéronautique Internationale, the National Aeronautic Association of the United States issued Helicopter Pilot Certificate No. 1 to Igor I. Sikorsky, 10 December 1940. (Sikorsky Historical Archives)
On behalf of the Fédération Aéronautique Internationale, the National Aeronautic Association of the United States issued Helicopter Pilot Certificate No. 1 to Igor I. Sikorsky, 10 December 1940. (Sikorsky Historical Archives)
Igor Sikorsky in the cockpit of a production R-5 helicopter. (Sikorsky, a Lockheed Martin Company)
Igor Sikorsky in the cockpit of a Sikorsky S-48 (R-5) helicopter. (Sikorsky, a Lockheed Martin Company)

The company which Igor Sikorsky founded has continued as one of the world’s biggest helicopter manufacturers. Recently acquired by Lockheed Martin, Sikorsky continues to produce the UH-60-series of Blackhawk medium helicopters, the large CH-53K King Stallion, and the civil S-76D and S-92. A variant of the S-92 has been selected as the next helicopter for the U.S. presidential air fleet, the VH-92A. This helicopter is planned to be operational by 2020.

Igor Ivanovich Sikorsky died at Easton, Connecticut, 26 October 1972 at the age of 83 years.

Igor Sikorsky piloting his pontoon-equipped VS-300, 17 April 1941. (Sikorsky Historical Archives)
Igor Sikorsky piloting his pontoon-equipped VS-300, 17 April 1941. (Sikorsky Historical Archives)
s-47-4
Les Morris at the controls of the Vought-Sikorsky XR-4, 41-18874 (VS-316A), on its first flight at Stratford, Connecticut, 14 January 1942. (Sikorsky Historical Archives)
Lt. Carter Harman hovering in ground effect with Sikorsky YR-4B Hoverfly 43-28247 at Lalaghat, India, March 1944. This is the helicopter with which he made the first combat rescue, 21-25 April 1944. (U.S. Air Force)
Lt. Carter Harman hovering in ground effect with Sikorsky YR-4B Hoverfly 43-28247 at Lalaghat, India, March 1944. This is the helicopter with which he made the first combat rescue, 21-25 April 1944. (U.S. Air Force)
A Sikorsky R-5 flown by Jimmy Viner with Captain Jack Beighle, lifts a crewman from Texaco Barge No. 397, aground on Penfield Reef, 29 November 1945. (Sikorsky Historical Archive)
U.S. Army R-5 (Sikorsky S-48) flown by Jimmy Viner with Captain Jack Beighle, lifts a crewman from Texaco Barge No. 397, aground on Penfield Reef, 29 November 1945. (Sikorsky Historical Archive)
Sikorsky R-5 medevac, Korean War
U.S. Air Force H-5 (Sikorsky S-51) lifts off during the Korean War. (U.S. Air Force)
U.S. Coast Guard HOS-1 (Sikorsky S-49), with Igor Sikorsky as a passenger, over the Kill Devil Hills, North Carolina, 17 December 1947—the 44th annivesary of teh Wright Brothers first controlled, powered airplane flight. (Sikorsky Historical Archives)
U.S. Coast Guard HOS-1 (Sikorsky S-49), with Igor Sikorsky as a passenger, over the Kill Devil Hills, North Carolina, 17 December 1947—the 44th annivesary of the Wright Brothers first controlled, powered airplane flight. (Sikorsky Historical Archives)
U.S. Army YH-18A 49-2889 (Sikorsky S-52-2) (Ed Coates Collection)
U.S. Army YH-18A 49-2889 (Sikorsky S-52-2) (Ed Coates Collection)
SH-19A Air Rescue Sqd. AR.1999.026
U.S. Air Force SH-19A Chickasaw 51-3850 (Sikorsky S-55), Air Rescue Service. (U.S. Air Force)
Sikorsky H-34A-SI Choctaw (S-58) 57-1743 hovers in ground effect. Later registered as a civilian aircraft, N47246). (U.S. Army)
U.S. Army H-34A-SI Choctaw (Sikorsky S-58) 57-1743 hovers in ground effect. Later registered as a civilian aircraft, N47246). (U.S. Army)
Sikorsky CH-37 Mojave heavy-lift helicopter
U.S. Marine Corps CH-37 Mojave (Sikorsky S-56) heavy-lift helicopter
A U.S. Navy Sikorsky SH-3A Sea King (S-61), Bu. No. 149867, near Oahu, Hawaiian Islands, 5 April 1976. (PH2 (AC) Westhusing, U.S. Navy)
U.S. Navy SH-3A Sea King (Sikorsky S-61), Bu. No. 149867, near Oahu, Hawaiian Islands, 5 April 1976. (PH2 (AC) Westhusing, U.S. Navy)
A Sikorsky HH-3E Jolly Green Giant (66-13290) ot the 37th ARRS, hovering in ground effect at Da Nang, 1968. (U.S. Air Force)
U.S. Air Force HH-3E Jolly Green Giant (Sikorsky S-61R), 66-13290, of the 37th ARRS, hovering in ground effect at Da Nang, 1968. (U.S. Air Force)
Sikorsky CH-54A Tarhe 68-18448, Nevada National Guard, 16 Nober 1989. (Mike Freer/Wikipedia)
U.S. Army CH-54A Tarhe 68-18448 (Sikorsky S-64) heavy-lift helicopter, Nevada National Guard, 16 November 1989. (Mike Freer/Wikipedia)
Sikorsky MH-53M Pave Low IV, 68-8424, prepares for its last combat mission, Iraq, 27 September 2008. (A1C Jason Epley, U.S. Air Force)
U.S. Air Force MH-53M Pave Low IV 68-8424 (Sikorsky S-65), prepares for its last combat mission, Iraq, 27 September 2008. (A1C Jason Epley, U.S. Air Force)
U.S. Army Special Forces soldiers dismount a Sikorsky UH-60 Blackhawk, Zabul Province, Afghanistan, 21 January 2010. (Staff Sergeany Aubree Clute, U.S. Army)
U.S. Army Special Forces soldiers dismount a Sikorsky UH-60 Blackhawk, Zabul Province, Afghanistan, 21 January 2010. (Staff Sergeant Aubree Clute, U.S. Army)
U.S. Army UH-60L Blackhawk (Sikorsky S-70), Iraq, 2004. (Staff Sergeant Suzanne M. Jenkins, U.S. Air Force)
U.S. Army UH-60L Blackhawk (Sikorsky S-70), Iraq, 2004. (Staff Sergeant Suzanne M. Jenkins, U.S. Air Force)
Sikorsky HH-60G Pave Hawk 89-26212. (U.S. Air Force)
U.S. Air Force HH-60G Pave Hawk (Sikorsky S-70) 89-26212, Kunar Province, Afghanistan. (Captain Erick Saks, U.S. Air Force)
British Airways' Sikorsky S-61N G-BEON, 1982. ( )
British Airways’ Sikorsky S-61N G-BEON, 1982.
An Erickson Air-Crane, Inc. Sikorsky S-64 Skycrane drops water on a forest fire. (Sikorsky Archives)
An Erickson Air-Crane, Inc., Sikorsky S-64 Skycrane drops water on a forest fire. (Sikorsky Archives)
1280px-040327-pb-firehawk-17-16
A Los Angeles County Fire Department Sikorsky S-70A Firehawk, N160LA, during a rescue near Palmdale, California, 27 March 2004. (Alan Radecki/Wikipedia)
A Queen's Helicopter Flight Sikorsky S-76C, s/n 760753, G-XXEB (Russell Lee/Wikipedia)
A Queen’s Helicopter Flight Sikorsky S-76C, s/n 760753, G-XXEB (Russell Lee/Wikipedia)
Cougar Helicopters' Sikorsky S-92A C-GKKN landing at Ilulissat Airport, Greenland, 5 August 2010. (Algkalv/Wikipedia)
Cougar Helicopters’ Sikorsky S-92A C-GKKN landing at Ilulissat Airport, Greenland, 5 August 2010. (Algkalv/Wikipedia)
Sikorsky CH-53K King Stallion (Sikorsky, A Lockheed Martin Company)
The prototype Sikorsky CH-53K King Stallion (Sikorsky, A Lockheed Martin Company)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

24 May 1978

James S. McDonnell, Founder and Chairman of the Board, McDonnell Douglas Corporation, with the 5,000th Phantom. (Boeing)
James S. McDonnell, Founder and Chairman of the Board, McDonnell Douglas Corporation, with the 5,000th Phantom. (Boeing)

24 May 1978: McDonnell Douglas delivered the 5,000th F-4 Phantom II, F-4E-65-MC 77-0290, to the United States Air Force in a ceremony at the McDonnell Aircraft Company division at St. Louis, Missouri.

The Mach 2 fighter bomber was developed in the early 1950s as a long range, missile-armed interceptor for the U.S. Navy. The first Phantom II, XF4H-1 Bu. No. 142259, made its maiden flight at St. Louis with future McDonnell Douglas president Robert C. Little at the controls. During flight testing, the U.S. Air Force was impressed by the new interceptor and soon ordered its own version, the F-110A Spectre. Under the Department of Defense redesignation, both Navy and Air Force versions became the F-4. Its name, “Phantom II,” was chosen by James S. McDonnell, and was in keeping with his naming the company’s fighters after supernatural beings.

McDonnell Douglas F-4E-65-MC Phantom II, 77-0290, at St. Louis, 9 May 1978. (Boeing)
McDonnell Douglas F-4E-65-MC Phantom II, 77-0290, at St. Louis, 9 May 1978. (Boeing)

The Phantom was a very powerful aircraft and set several speed, altitude and time-to-altitude records. The second aircraft, YF4H-1 Bu. No. 142260, flew to 98,557 feet (30,040 meters) on 6 December 1959. On 22 November 1961, the same Phantom set a World Absolute Speed Record of 1,606.509 miles per hour (2,585.425 kilometers per hour). 142260 was entered in the record books again when it established a World Record for Altitude in Horizontal Flight of 66,443.57 feet (20,252 meters), 5 December 1961. Future astronaut Commander John W. Young, United States Navy, flew another Phantom II, Bu. No. 149449, from the runway at NAS Point Mugu on the southern California coast to an altitude of 30,000 meters (82,020.997 feet) in 3 minutes, 50.440 seconds.

The 5,000th Phantom II, McDonnell Douglas F-4E-65-MC 77-0290, climbing. (Boeing photo)
The 5,000th Phantom II, McDonnell Douglas F-4E-65-MC 77-0290, climbing. (Boeing photo)

The Phantom II first entered combat  during the Vietnam War. It became apparent that the all-missile armament was insufficient for the subsonic dogfights that it found itself in, and a 20 mm Gatling gun was added. Designed as an interceptor, it evolved into a fighter bomber and carried a bomb load heavier that a World War II B-17 bomber. The last American “aces” scored their victories while flying the Phantom over Vietnam.

The F-4 served with the U.S. Air Force until April 1996. The last operational flight was flown by an F-4G Wild Weasel assigned to the Idaho Air National Guard. A total of 5,195 Phantom IIs were built, most by McDonnell Douglas at St. Louis, but 138 were built in Japan by Mitsubishi. The Phantom is still in service with several air forces around the world.

McDonnell Douglas F-4E-65-MC 77-0290 going vertical. (Boeing)

McDonnell Douglas F-4E-65-MC Phantom II 77-0290 was transferred to the Türk Hava Kuvvetleri  (Turkish Air Force), where it retained the U.S. Air Force serial number. It was written off 30 May 1989, however, it was later modernized by Israel Aerospace Industries (IAI) to the F-4E-2020 Terminator standard and as of 2016, remained in service.

The 5,000th Phantom II, McDonnell Douglas/Israeli Aerospace Industries F-4E-2020 Terminator 77-0290 in service with the Turkish Air Force, 19 June 2013. (Iglu One One)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

24 May 1962, 12:45:16 UTC, T plus 00:00:00.57

Lieutenant Commander Malcolm Scott Carpenter, United States Navy, NASA Astronaut. (NASA)

24 May 1962: Lieutenant Commander Malcolm Scott Carpenter, United States Navy, NASA Astronaut, was launched aboard Mercury-Atlas 7 at 12:45:16.57 UTC, from Launch Complex 14 at the Cape Canaveral Air Force Station, Cape Canaveral, Florida. This was the fourth manned space flight of the American space program. Carpenter was the sixth human to fly in space.

During the launch, Carpenter experienced a maximum of 7.8 gs acceleration. 5 minutes, 12.2 seconds after liftoff, Aurora 7 separated from the Atlas booster and entered Earth orbit, having reached a speed of 17,534 miles per hour (28,219 kilometers per hour). The orbit was elliptical, with a minimum altitude of 86.87 nautical miles (160.88 kilometers) and a maximum of 144.96 nautical miles (268.47 kilometers). Carpenter completed an orbit every 88 minutes, 32 seconds.

During the orbital phase of the mission, a pitch horizon scanner—part of the automatic flight control system—malfunctioned, causing the capsule’s attitude jets to fire to correct perceived errors in the ship’s attitude. This caused an excessive consumption of the hydrogen peroxide fuel for the reaction controls.

At T+04:30:00 (four hours, thirty minutes after launch) the Mercury capsule’s retrorockets fired to slow the capsule and begin the reentry phase of the flight. Each of the retro rockets fired at 5 second intervals and burned for 10 seconds. The capsule decelerated 550 feet per second (168 meters per second) and fell out of orbit. The PHS failed again, yawing Aurora 7 25° off track, which prevented the full thrust of the retrorockets from being directed along the correct path. Scott Carpenter had to fire the rockets manually and this 3 second delay, along with the misalignment of the capsule, caused it to overshoot the planned splashdown point  in the Atlantic ocean by approximately 250 nautical miles (463 kilometers). (N. 19° 27′, W. 63° 59′)

Autographed photo of Scott Carpenter being hoisted aboard Sikorsky HSS-2 (SH-3A) Sea King, Bu. No. 148964 (c/n 61-036), in the Atlantic Ocean, 24 May 1962. (U.S. Navy)
Autographed photo of Scott Carpenter being hoisted aboard Sikorsky SH-3A Sea King, Bu. No. 148964 (c/n 61-036), in the Atlantic Ocean, 24 May 1962. (U.S. Navy)

At 10,000 feet (3,048 meters) Aurora 7‘s main parachute opened. Aurora 7 splashed down at 17:41:21 UTC. The total duration of the flight was 4 hours, 55 minutes, 57 seconds.

Scott Carpenter was recovered by a Sikorsky SH-3A Sea King helicopter from USS Intrepid (CVS-11). Aurora 7 was picked up by the Allan M. Sumner-class destroyer, USS John R. Pierce (DD-753), 6 hours after landing.

The flight of Scott Carpenter and Aurora 7 was a success, but Carpenter was subject to criticism for his performance during the mission.

In 1963, Carpenter was injured in a motorcycle accident and lost some mobility in his left arm. Despite two surgical procedures, it was determined that he was ineligible for spaceflight. He resigned from NASA in 1967 and retired from the U.S Navy in 1969 with the rank of Commander.

The Mercury spacecraft, named Aurora 7, was built by McDonnell Aircraft Corporation, St. Louis, Missouri. It was the 18th Mercury capsule built. Designed to carry one pilot, the Mercury space craft could be controlled in pitch, roll and yaw by thrusters. The space capsule was truncated cone with sides angled 20° from the longitudinal axis. It was 6 feet, 10 inches (2.083 meters) long and had a maximum diameter of 6 feet, 2.50 inches (1.892 meters). The total height of the spacecraft, from the tip of the aero spike to the booster adapter, was 26 feet, 1.26 inches (7.957 meters). Aurorra 7 weighed 4,244.09 pounds ( kilograms) at Launch.

The rocket, a “1-½ stage” liquid-fueled Atlas LV-3B, number 109-D, was built by the  Convair Division of General Dynamics at San Diego, California. It was developed from a U.S. Air Force SM-65 Atlas D intercontinental ballistic missile, modified for use as a “man-rated” orbital launch vehicle.

The LV-3B was 65 feet (19.812 meters) long from the base to the Mercury adapter section, and the tank section is 10 feet (3.038 meters) in diameter. The complete Mercury-Atlas orbital launch vehicle is 93 feet (28.436 meters) tall, including the escape tower. When ready for launch it weighed approximately 260,000 pounds (117,934 kilograms).

The Atlas’ three engines were built by the Rocketdyne Division of North American Aviation, Inc., at Canoga Park, California. Two Rocketdyne LR89-NA-5 engines and one LR105-NA-5 produced 341,140 pounds (1,517.466 kilonewtons) of thrust. The rocket was fueled by a highly-refined kerosene, RP-1, with liquid oxygen as the oxidizer.

Diagram of Atlas LV-3B (Space Launch Report)

Malcolm Scott Carpenter died 10 October 2013 at the age of 88. His spacecraft, Aurora 7, is on display at the Chicago Museum of Science and Industry, Lakeshore Drive, Chicago, Illinois.

MA-7, Aurora 7, lifts of from Launch Complex 14, Cape Canaveral Air Force Station, Florida, at 7:45:16 a.m., EST, 24 May 1962. (NASA)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather