All posts by Bryan Swopes

About Bryan Swopes

Bryan R. Swopes grew up in Southern California in the 1950s–60s, near the center of America's aerospace industry. He has had a life-long interest in aviation and space flight. Bryan is a retired commercial helicopter pilot and flight instructor.

7 November 1945

Gloster Meteor F Mk.IV, EE455, Brittania, 1945. (Gloster Aircraft Co., Ltd.)

7 November 1945: Wing Commander Hugh Joseph Wilson, A.F.C. and Two Bars, Royal Air Force, Commandant of the Empire Test Pilots’ School at RAF Cranfield, set the first world speed record with a jet-propelled airplane, and the first speed record by an airplane in excess of 600 miles per hour (965.606 kilometers per hour), when he flew the Gloster Meteor F Mk.IV, EE454, to 975.68 kilometers per hour (606.26 miles per hour)—0.80 Mach—at an altitude of 75 meters (246) above Sea Level.

The course was an 8 mile (12.9 kilometers) straight away from the Herne Bay Pier to Reculver Point, along the south coast of the Thames Estuary. This was a new Fédération Aéronautique Internationale (FAI) record for speed over a 3 kilometer course. ¹

Gloster Meteor Mk.III EE457, sistership of the two record-setting Mk.IV prototypes. (Unattributed)
Gloster Meteor F Mk.III EE457, sister ship of the two record-setting Mk.IV prototypes. (Unattributed)

Months of preparation by both the Royal Air Force, which formed a special “flight,” and Gloster Aviation Co., Ltd., went into the speed record effort. Two Meteor F Mk.III fighters, EE454 and EE455, were modified to the new Mk.IV version to attempt the speed record.

Gloster Meteor F Mk.III EE455 prior to modification to Mk.IV. © IWM (ATP 15305D)

The standard B.37 Rolls-Royce Derwent Series I turbojet engines were replaced with Derwent Series V turbojets and lengthened jet nacelles. The wings were shortened, the tips reshaped and the canopy was cut down and strengthened. All trim tabs on flight control surfaces were disabled and their edges sealed. Landing gear and gear door up-latches were strengthened to prevent them from being sucked open at high speed. The airplanes were lightened and all armament deleted. The surfaces were smoothed and painted in a gloss finish. EE454 retained the standard camouflage pattern, while EE455 was painted in a distinctive yellow-gold color.

Many hours of flight testing were performed to ensure that the airplanes would be stable enough at high speeds while flying at the very low altitude required by the Fédération Aéronautique Internationale‘s rules. The slightest deviation from smooth flight could have disastrous results.

Group Captain Hugh J. Wilson CBE AFC with Gloster Chief Test Pilot Eric Stanley Greenwood OBE. (Photograph courtesy of Neil Corbett, Test & Research Pilots, Flight Test Engineers)
Wing Commander Hugh Joseph Wilson, A.F.C. and Two Bars, with Gloster Chief Test Pilot Eric Stanley Greenwood. (Photograph courtesy of Neil Corbett, Test & Research Pilots, Flight Test Engineers)

EE454 was flown by Wing Commander Hugh Joseph Wilson, A.F.C. and Two Bars (three awards), and EE455 by Gloster Chief Test Pilot Eric Stanley Greenwood. Each airplane was required to make four passes over the 3 kilometer (1.8641 statute miles) course, with two runs in each direction. The airplanes were required to remain at or below 75 meters (246 feet) during the runs over the course, and during the turns at the end of each run, below 400 meters  (1,312 feet).

On the day of the speed runs, the weather was marginal. It was cold and overcast, and visibility varied from 7 to 12 miles 11–19 kilometers) along the course. The wind was 8–12 miles per hour (3.6–5.4 meters per second) from the northwest.

Wilson made four passes over the course. His speeds for each run were 604, 608, 602 and 611 miles per hour (972, 978, 969, and 983 kilometers per hour). Greenwood made his speed runs an hour later. His runs were 599, 608, 598 and 607 miles per hour (964, 978, 962 and 977 kilometers per hour).

Wilson’s average speed was the higher of the two. His official FAI-homologated record speed is 975.68 kilometers per hour (606.26 miles per hour). Greenwood’s average speed was 970.63 kilometers per hour (603.122 miles per hour.).² Both pilots are credited with official FAI world speed records.

Color photograph of Gloster Meteor Mk.IV EE455 (RAF Museum)

Post-flight inspections revealed that the sheet metal of the Meteors’ engine intakes had significantly distorted by the intense pressure differentials experienced during the speed runs.

The B.37 Rolls-Royce Derwent Series V, interestingly, was not a direct development of the preceding Derwent Series I–IV engines. Instead, it was a scaled-down version of the RB.41 Nene, which was in turn, a scaled-up and improved Derwent I. The Derwent V had a single-stage, two-sided, centrifugal-flow compressor and a single-stage axial-flow turbine. The compressor impeller and turbine rotor were mounted on a single shaft which was supported on each end by roller bearings, and in the center by a ball bearing. The Derwent V used nine combustion chambers, and burned aviation kerosene. Engine lubricating oil was added to the fuel at a 1:100 ratio, by volume. The Series V had a Normal Power rating of 3,000 pounds of thrust (13.345 kilonewtons) at 14,000 r.p.m., and a Take-off or Military Power rating of 3,500 pounds of thrust (15.569 kilonewtons) at 14,600 r.p.m. (There was no time limit for this power setting.) The engine produced a maximum 4,000 pounds of thrust (17.793 kilonewtons) at 15,000 r.p.m. at Sea Level. During the speed runs, thrust was restricted to 3,600 pounds (16.014 kilonewtons) on both Meteors. The Derwent V engine was 7 feet, 4.5 inches (2.248 meters) long, 3 feet, 7 inches (1.092 meters) in diameter and weighed 1,280 pounds (581 kilograms).

(Rolls-Royce named its piston aircraft engines after predatory birds, e.g., Kestrel, Merlin, but its turbine engines were named after rivers.)

Gloster Meteor Mk. IV EE455 on jack stands. (Unattributed)
Gloster Meteor F Mk. IV EE455 on jack stands. (Unattributed)
Gloster Meteor F Mk. IV EE455 on jack stands. (Unattributed)

British Pathé news film of the speed runs can be seen at:

Group Captain Wilson was born at Westminster, London, England, 28 May 1908, the only son of Alfred Wilson and Jessie Wood Young Wilson. He was educated at the University School, Hastings, and the Merchant Taylors’ School, London.

Wilson received a short service commission as a Pilot Officer in the Royal Air Force, 13 September 1929 and was assigned to the No. 5 Flight Training School, at RAF Sealand, Flintshire, Wales. Pilot Officer Wilson was then assigned to 111 Squadron at Hornchurch, Essex, 1930–1932. He was promoted to Flying Officer, 13 March 1931. From 1932 to to 1934, “Willie” Wilson was assigned to the School of Naval Co-operation and Air Navigation at Lee-on-Solent, Hampshire.

On the completion of his five-year short service, Wilson was transferred to the Reserve Air Force Officers list. He qualified in flying boats and acted as a flight instructor for the RAF Reserve School. Wilson was promoted to Flight Lieutenant 1 April 1937, with seniority retroactive to 1 April 1936.

Flying Officer Wilson in the cockpit of a Blackburn Roc fighter.
Flying Officer Hugh Wilson in the cockpit of a prototype Blackburn Roc fighter, RAF Northolt, 22 May 1939.

While a reserve officer, Wilson was a test pilot for Blackburn Aircraft Ltd., and made the first flight of the Blackburn Roc. He then became a civil test pilot at the Royal Aircraft Establishment, Farnborough.

In 1939 Flight Lieutenant Wilson was recalled to active duty. He was assigned as Commanding Officer, Aerodynamic Flight, RAE Farnborough, and also flew with No. 74 Fighter Squadron at Biggin Hill. On 1 September 1940, Wilson was promoted to the rank of Squadron Leader. In 1941, Wilson was appointed chief test pilot at the Royal Aircraft Establishment and was responsible for testing all captured enemy aircraft. He was promoted to Wing Commander, 20 August 1945.

Squadron Leader Hugh J. Wilson, AFC and Bar, in teh cocpit of a captured Focke-Wulf Fw 190A3, Werke Number 313, in RAF markings as MP499. (Royal Air Force)
Squadron Leader Hugh J. Wilson, A.F.C. and Bar, in the cockpit of a captured Focke-Wulf Fw 190A 3, W.Nr. 313, in RAF markings as MP499, August 1942. (Detail from Imperial War Museum photograph)
CBE medal with Military ribbon.
Commander of the Order of the British Empire Medal with Military Division Ribbon. (Wikipedia)

Wing Commander Hugh Joseph Wilson, A.F.C. and Two Bars, Royal Air Force, was named Commander of the Most Excellent Order of the British Empire (C.B.E.) in the King’s Birthday Honours List, 13 June 1946.

On 22 February 1947, Wing Commander Wilson married Mrs. Moira Garnham (the former Miss Thom Isobel Moira Sergeant). They had one son. On 4 December 1959, he married Miss Patricia Frances Stanley Warren. They had two children.

Wing Commander Hugh J. Wilson retired from the Royal Air Force at his request 20 June 1948, with the rank of Group Captain. He died at Westminster, London 5 September 1990 at the age of 82 years.

Gloster Chief Test Pilot Eric Stanley “Terry” Greenwood (29 November 1908–February 1979) was the first pilot to exceed 600 miles per hour, while test flying the Meteors. He was appointed an Officer of the Most Excellent Order of the British Empire (O.B.E.) in the King’s Birthday Honours List, 13 June 1946.

¹ FAI Record File Number 9847

² FAI Record File Number 9846

© 2023 Bryan R. Swopes

6 November 1958

Bell X-1E 46-063 on Rogers Dry Lake. (NASA)
Bell X-1E 46-063 on Rogers Dry Lake, 1955. (NASA)

6 November 1958: NASA Research Test Pilot John B. (Jack) McKay made the final flight of the X-1 rocketplane program, which had begun twelve years earlier.

Bell X-1E 46-063 made its 26th and final flight after being dropped from a Boeing B-29 Superfortress over Edwards Air Force Base on a flight to test a new rocket fuel.

John B. McKay, NACA/NASA Research Test Pilot. (NASA)
John B. McKay, NACA/NASA Research Test Pilot. (NASA)

When the aircraft was inspected after the flight, a crack was found in a structural bulkhead. A decision was made to retire the X-1E and the flight test program was ended.

The X-1E had been modified from the third XS-1, 46-063. It used a thinner wing and had an improved fuel system. The most obvious visible difference is the cockpit, which was changed to provide for an ejection seat. Hundreds of sensors were built into the aircraft’s surfaces to measure air pressure and temperature.

The Bell X-1E was 31 feet (9.449 meters) long, with a wingspan of 22 feet, 10 inches (6.960 meters). The rocketplane’s empty weight was 6,850 pounds (3,107 kilograms) and fully loaded, it weighed 14,750 pounds (6,690 kilograms). The rocketplane was powered by a Reaction Motors XLR11-RM-5 rocket engine which produced 6,000 pounds of thrust (26.689 kilonewtons). The engine burned ethyl alcohol and liquid oxygen. The X-1E carried enough propellants for 4 minutes, 45 seconds burn.

The Bell X-1E rocketplane being loaded into a Boeing B-29 Superfortress mothership for another test flight. (NASA)
The Bell X-1E rocketplane being loaded into NACA 800, a Boeing B-29-96-BW Superfortress mothership, 45-21800, for another test flight. (NASA)

The early aircraft, the XS-1 (later redesignated X-1), which U.S. Air Force test pilot Charles E. (“Chuck”) Yeager flew faster than sound on 14 October 1947, were intended to explore flight in the high subsonic and low supersonic range. There were three X-1 rocketplanes. Yeager’s Glamorous Glennis was 46-062. The X-1D (which was destroyed in an accidental explosion after a single glide flight) and the X-1E were built to investigate the effects of frictional aerodynamic heating in the higher supersonic ranges from Mach 1 to Mach 2.

Bell X-1E loaded aboard Boeing B-29 Superfortress, circa 1955. (NASA)
Bell X-1E 46-063 loaded aboard NACA 800, a Boeing B-29-96-BW Superfortress, 45-21800, circa 1955. (NASA)

The X-1E reached its fastest speed with NASA test pilot Joseph Albert Walker, at Mach 2.24 (1,450 miles per hour/2,334 kilometers per hour), 8 October 1957. Walker also flew it to its peak altitude, 70,046 feet (21,350 meters) on 14 May 1958.

NACA test pilot Joseph Albert Walker made 21 of the X-1E's 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)
NACA test pilot Joseph Albert Walker made 21 of the X-1E’s 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)

There were a total of 236 flights made by the X-1, X-1A, X-1B, X-1D and X-1E. The X-1 program was sponsored by the National Advisory Committee on Aeronautics, NACA, which became the National Aeronautics and Space Administration, NASA, on 29 June 1958.

The X-1E is on display in front of the NASA administration building at the Dryden Flight Research Center, Edwards Air Force Base, California. Bell X-1E 46-063 on display at Dryden Flight Research Center © 2016, Bryan R. Swopes

6 November 1957

Fairey Rotodyne XE 521 photographed during its first flight, 6 November 1957. (Fairey Aviation Co., Ltd.)

6 November 1957: XE521 made its first flight at White Waltham with Squadron Leader Wilfred Ronald Gellatly, AFC, and Lieutenant Commander John George Peter Morton in the cockpit.

The Fairey Rotodyne was a unique aircraft. Like a helicopter, it was capable of hovering and low-speed translating flight. The main rotor had both cyclic and collective pitch and provided roll and pitch control. Unlike a helicopter, though, thrust for forward flight was provided by two turboprop engines. Varying the propellers’ pitch provided yaw control for the aircraft until about 80 knots, when the twin rudders were sufficiently effective. As the Rotodyne accelerated in forward flight, the stub wing provided increasing lift and at about 60 knots, the main rotor tip jets were turned off. The main rotor continued to turn in autorotation, as in a gyrocopter.

Squadron Leader Wilfred Ronald Gellatly, AFC, leans out of the cockpit after the first flight of Fairey Rotodyne XE521, 6 November 1957. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

Flight controls were similar to those of a helicopter, with a cyclic stick and collective lever with a twist throttle. The pedals, though, rather than controlling a tail rotor, varied the propeller blades’ pitch and rudder angle. The elevators were controlled by electric trim motors.

The Rotodyne’s four-blade main rotor used symmetrical airfoils. It was 90 feet (27.432 meters) in diameter and the blade tip speed was 720 feet per second (219.5 meters per second). The blades had a chord of 2 feet, 3 inches (0.686 meters). The rotor blades were built of steel for strength, fatigue life and resistance to corrosion. The leading edge spar was machined from a 35 foot rolled steel billet and the rear spar was fabricated of layered stainless steel. The airfoil is shaped by pierced stainless steel ribs. The steel skin was a single sheet, joined at the trailing edge.

The wing span was 46 feet, 6 inches (14.173 meters). The engines and main landing gear were  carried in long nacelles mounted under the wing.

The Rotodyne’s fuselage was 58 feet, 8 inches (17.812 meters) long. The cabin has a length of 46 feet (14.021 meters) and is 8 feet (2.438 meters) wide and 6 feet (1.829 meters) high, providing space for 40 passengers or up to 9,000 pounds (4,082.3 kilograms of cargo. Clamshell doors at the aft end provided for cargo loading. Overall height of the aircraft was 22 feet, 2 inches (6.756 meters).

XE521 under construction. © Hulton-Deutsch Collection/CORBIS/Corbis via Getty Images

The Rotodyne was powered by two Napier & Son Eland NEl.3 turboprop engines with a maximum rated power of 2,805 shaft horsepower and 500 pounds of thrust at 12,500 r.p.m. for takeoff. Maximum continuous power was 2,180 shaft horsepower and 420 pounds of thrust. These engines drove four-bladed Rotol propellers with a diameter of 13 feet (3.962 meters). An auxilary compressor at the rear of the engine supplied compressed air for the main rotor tip-jets. Each engine supplied power to opposite pairs of of rotor blades at 250 °C. (482 °F.)

The prototype had an empty weight of 24,030 pounds (10,899.9 kilograms)

Front view of Fairey Rotodyne with Squadron Leader Wilfred Ronald Gellatly OBE, AFC, RNZAF. (Fairey Aviation Co., Ltd.)

© 2020 Bryan R. Swopes

6 November 1935

Test pilot George Bulman in the cockpit of the prototype Hawker Monoplane F.36/34, K5083.

6 November 1935: The prototype Hawker Monoplane F.36/34, K5083, first flew at the Brooklands Aerodrome, Weybridge, Surrey, with Hawker’s Chief Test Pilot, Flight Lieutenant Paul Ward Spencer (“George”) Bulman, M.C., A.F.C., Royal Air Force Reserve,¹ in the cockpit. The airplane would be named “Hurricane” and become one of the most successful fighter aircraft of World War II.

Designed by Sydney Camm to meet a Royal Air Force Specification for a high speed monoplane interceptor, the airplane was developed around the Rolls-Royce PV-12 engine.

Sir Sydney Camm, CBE, FRAeS
Sir Sydney Camm, C.B.E., F.R.Ae.S. (1893–1966)

The Hurricane was built in the traditional means of a light but strong framework covered by doped linen fabric. Rather than wood, however, the Hurricane’s framework used high strength steel tubing for the aft fuselage. A girder structure covered in sheet metal made up the forward fuselage. A primary consideration of the fighter’s designer was to provide good visibility for the pilot. The cockpit sits high in the fuselage and gives the airplane its characteristic hump back profile. The cockpit was enclosed by a sliding canopy. The landing gear was retractable.

Hawker Monoplane F.36/34, K5083, front view. (World War Photos)
Hawker Monoplane F.36/34, K5083, the prototype Hawker Hurricane, photographed prior to its first flight. Note the flush exhaust ports and wooden fixed-pitch propeller. Photograph © IWM (MH 5475)
Right Profile of the prototype Hawker Hurricane, K5083. (© IWM-MH-5190)
Right profile of the prototype Hawker Monoplane F.36/34, K5083. © IWM (MH-5190)
Left profile (IWM)
Hawker Monoplane F.36/34, K5083. Left profile. © IWM (ATP 8654D)
Hawker Monoplane F.36/34, K5083, left rear quarter view. (World War Photos)

The Rolls-Royce PV-12 (“PV” stood for Private Venture) was a developmental liquid-cooled 1,649-cubic-inch-displacement (27.022 liter) 60° V-12 that would become the legendary Merlin aircraft engine. The PV-12 first ran in 1933 and initially produced 700 horsepower.

The engine was progressively improved and by the time the Hurricane prototype first flew, it was equipped with a supercharged Rolls-Royce Merlin C, Air Ministry serial number 111144. The Merlin C had a Normal Power rating of 1,029 horsepower at 2,600 r.p.m, at an altitude of 11,000 feet (3,353 meters), with +6 pounds per square inch boost. The V-12 engine turned a Watts two-bladed fixed-pitch wooden propeller through a gear reduction drive (possibly 0.420:1).

Right profile of the prototype Hawker Hurricane, K5083. Photograph © IWM (MH 5190)
Right quarter view of the prototype Hawker Monoplane F.36/34, K5083, in flight. Photograph © IWM (MH 5190)

An Aeroplane and Armament Experimental Establishment (A&AEE) test pilot, Flight Sergeant Samuel (“Sammy”) Wroath (366485), flew K5083 at the Martlesham Heath in early 1936. He wrote, “The aircraft is simple to fly and has no apparent vices.”

In early flight testing, K5083 had a maximum speed of 253 miles per hour (407 kilometers per hour) at Sea Level, an reached 315 miles per hour (507 kilometers per hour) at 16,200 feet (4,938 meters), with the Merlin turning 2,960 r.p.m., with +5.7 pounds of boost (0.39 Bar). The speed exceeded the RAF’s requirement by 5 miles per hour (8 kilometers per hour).

The prototype was able to take off in as little as 795 feet (242 meters) and to climb to 15,000 feet (4,572 meters) in just 5 minutes, 42 seconds. It reached 20,000 feet (6,096 meters) in 8 minutes, 24 seconds. The peak altitude reached was 30,000 feet (9,144 meters). The prototype’s estimated service ceiling was 34,500 feet (10,516 meters)and the estimated absolute ceiling was 35,400 feet (10,790 meters).

In May 1939 Hawker Monoplane F.36/34 K5083 was classified as a ground instruction airframe, with serial number 1112M. Reportedly, it remained in airworthy condition until 1942. Its status after that is not known.

Hawker Monoplane F.36/34 K5083 with “alighting gear” extended. (World War Photos)

The Hawker Hurricane Mk.I was ordered into production in the summer of 1936. The first production airplane, L1547, flew on 12 October 1937. The Hurricane Mk. I retained the wooden fixed-pitch propeller and fabric-covered wings of the prototype, though this would change with subsequent models.

The first production Hawker Hurricane Mk.I, L1547, circa October 1937. This airplane, assigned to No. 312 Squadron, was lost 10 October 1940, when it caught fire during a training flight near RAF Speke. The pilot, Sergeant Otto Hanzliĉek, parachuted from the airplane, but he landed in the Mersey River and drowned.

The Hurricane Mk.I was 31 feet, 5 inches (9.576 meters) long with a wingspan of 40 feet, 0 inches (12.192 meters), and overall height of 13 feet, 3 inches (4.039 meters) in three-point attitude. The wings had a total area of 257.6 square feet (23.9 square meters). Their angle of incidence was 2° 0′, and the outer wing panels had 3° 30′ dihedral. The leading edges were swept aft 5° 6′. The empty weight of the Hurricane I was 5,234 pounds (2,374 kilograms) and maximum gross weight was 6,793 pounds (3,081 kilograms).

The Hurricane Mk.I was powered by a Rolls-Royce Merlin Mk.II or Mk.III. The Mk.III was rated at 1,030 horsepower at 3,000 r.p.m. at 16,250 feet (4,953 meters). The engine turned a propeller with a diameter of 11 feet, 3 inches (3.429 meters).

Hawker Monoplane F.36/34 K5083 (BAE Systems)

The Mk.I’s best economical cruising speed was 212 miles per hour (341 kilometers per hour) at 20,000 feet (6,096 meters), and its maximum speed was 316 miles per hour (509 kilometers per hour) at 17,750 feet (5,410 meters) and 6,440 pounds (2,921 kilograms). The airplane’s range was 585 miles (941 kilometers). The Hurricane Mk.I could climb to 20,000 feet in 9.7 minutes.

The fighter was armed with eight Browning .303 Mark II machine guns mounted in the wings, with 334 rounds of ammunition per gun.

“No. 111 Squadron was responsible for the introduction of the Hurricane to the RAF with the first aircraft arriving at Northolt in December 1937, in advance of the official acceptance date of 1 January 1938. The CO, S/Ldr John Gillan, flew L1555 in record time from Edinburgh to Northolt on 10 February 1938.” (Daily Mail)

Peter Townsend described the Hurricane in his book, Duel of Eagles:

“. . . By December [1938] we had our full initial equipment of sixteen aircraft. The Fury had been a delightful play-thing; the Hurricane was a thoroughly war-like machine, rock solid as a platform for eight Browning machine-guns, highly manoeuverable despite its large proportions and with an excellent view from the cockpit. The Hurricane lacked the speed and glamour of the Spitfire and was slower than the Me. 109, whose pilots were to develop contempt for it and a snobbish preference for being shot down by Spitfires. But figures were to prove that during the Battle of Britain, machine for machine, the Hurricane would acquit itself every bit as well as the Spitfire and in the aggregate (there were more than three Hurricanes to two Spitfires) do greater damage among the Luftwaffe.”

Duel of Eagles, Group Captain Peter Wooldridge Townsend, CVO, DSO, DFC and Bar, RAF. Cassell Publishers Limited, London, Chapter 13 at Pages 153–154. 

Hawker Hurricanes at Brooklands. (BAE Systems)

At the beginning of World War II, 497 Hurricanes had been delivered to the Royal Air Force, enough to equip 18 squadrons. During the Battle of Britain, the Hurricane accounted for 55% of all enemy aircraft destroyed. Continuously upgraded throughout the war, it remained in production until July 1944. The final Hurrican, a Mk.IIc, PZ865, was flown for the first time by P.W.S. Bulman on 24 July 1944. A total of 14,503 were built by Hawker Aircraft Ltd., Gloster Aircraft Company, Austin Motor Company, and the Canadian Car and Foundry Company.

The final Hawker Hurricane, a Mk.IIc, PZ865, “The Last of the Many!” Chief Test Pilot P.W.S. “George” Bulman also took this fighter for its first flight, 22 July 1944. (BAE Systems)
P.W.S. Bulman with PZ865, July 1944.
Group Captain “George” Bulman flying the final Hawker Hurricane, PZ865, a Mk.IIc.

¹ Later, Group Captain Paul Ward Spencer Bulman, C.B.E., M.C., A.F.C. and Bar.

© 2018, Bryan R. Swopes