Category Archives: Aviation

9 September 1913 (27 August 1913, Old Style)

Цветная фотография Петра Николаевича Нестерова.  Staff-Captain Pyotr Nikolayevich Nesterov, Imperial Russian Army, is wearing the Order of St. Anna, Order of St. Stanislav, and the Commemorative Medal for the Tercentenary of the Romanov Dynasty. (Colorized by Olga Shirnina: “Color by Klimbim.” Image used with permission.)

9 September 1913 (27 August 1913, Old Style ¹): At the Syretsky military airfield west of Kiev, Ukraine, Imperial Russia, Пётр Николаевич Нестеров (Pyotr Nikolayevich Nesterov), a military officer, flew a Nieuport IV.G into an inside loop, the first time this aerobatic maneuver had ever been performed.

Nesterov’s Loop

Also known as “Nesterov’s Loop,” or a “dead loop,” the inside loop was completed by entering from a dive, pulling the nose up and flying in a closed curve in the vertical plane (with the top of the airplane toward the center of the loop at all times), and then returning to a dive.

This maneuver is now performed beginning and ending in straight and level flight, but airplanes of the time had insufficient power.

Staff-Captain P.N. Nesterov (left) with his aircraft mechanic and the Nieuport IV. (Energy News)

The airplane flown by Lieutenant Nesterov was a Nieuport IV, designed by the French aircraft company, Société Anonyme des Éstablissements Nieuport, and built in Russia by several manufacturers. The variant flown by the Imperial Russian Air Service was powered by an air-cooled, normally-aspirated, 10.292 liter (628.048 cubic inch displacement Société des Moteurs Gnome Gamma seven-cylinder rotary engine, which produced 70 horsepower at 1,200 r.p.m.

“. . . I sat head down for a few moments and did not feel rush of blood to the head, I was sitting tightly, and legs pressed on the pedal … Tools in the open boxes remained in their places. Gasoline and oil also keeps the centrifugal force at the bottom of the tank, ie, at the top, and normally fed to the engine, which worked perfectly the entire upper half of the loop. In general, all this proves that the airplane made ​​regular rotation, only in the vertical plane, as all the time there was a dynamic equilibrium. With this only turning the air is defeated by man. . . . Man mistakenly forgot that in the air the support is everywhere, and he should cease to determine the direction in relation to the earth. “

The pilot innovator Peter Nesterov, National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute

P.N. Nesterov with the Nieuport IV in which he performed an inside loop.

One year later, 8 September 1914 (25 August 1914, Old Style), Nesterov became the first pilot to destroy an enemy aircraft in aerial combat. Flying a Morane Saulnier Type G near Zhovkva, Ukraine, Nesterov rammed an Albatros B.II. Both aircraft were so badly damaged that they crashed. The Austrian pilot, Franz Malina, and observer, Baron Friederich von Rosenthal, were both killed. Nesterov died of injuries the following day.

Monument commemorating P.N. Nesterov and his inside loop at  Kiev, Ukraine. (Unattributed)

¹ Imperial Russia used the Julian Calendar until the October Revolution when the Gregorian calendar was adopted.

© 2017, Bryan R. Swopes

8 September 2001

Special Air Mission 27000, a Boeing VC-137C, 72-7000, on final approach for landing.

8 September 2001: Special Air Mission 27000, a Boeing VC-137C, serial number 72-7000, served as an airborne office and transport for seven United States presidents over 29 years. It made its last flight from Andrews Air Force Base, Maryland to San Bernardino International Airport, California, where technicians from Boeing disassembled the aircraft and transported it in sections to the Ronald Reagan Presidential Library and Museum at Simi Valley, California. It was reassembled and is on display inside the Air Force One Pavilion.

Aboard for its final flight were Secretary of the Air Force James G. Roche, Vice Chief of Staff Lieutenant General Lance W. Lord, U.S. Air Force, and former First Lady of the United States, Nancy Reagan.

The VC-137C was a specially-built Model 707-353B four-engine jet airliner. Known by the call sign Air Force One when the President is aboard, it otherwise is referred to as Special Air Mission 27000. Its sister ship, 72-6000, is at the National Museum of the United States Air Force, where it recently was returned to display after renovation.

Boeing VC-137C 72-7000 on display at the Air Force One Pavilion, Ronald Reagan Presidential Library and Museum, Simi Valley, California. (Wikipedia)

© 2015, Bryan R. Swopes

8 September 1954

Albert Scott Crossfield, NACA Test Pilot. (LIFE Magazine via Jet Pilot Overseas)
Albert Scott Crossfield, NACA Test Pilot. (Allan Grant/LIFE Magazine)

8 September 1954: Scott Crossfield, a NACA Aeronautical Research Pilot at the High Speed Flight Station, Edwards Air Force Base, California, took the North American Aviation F-100A-5-NA Super Sabre, 52-5778, on its first NACA test flight—and his first flight in an F-100.

Tests of the prototype and early production Super Sabres revealed directional stability problems, a very dangerous inertia coupling characteristic that could cause the aircraft to go violently out of control (and which would result in the death of North American’s chief test pilot, George Welch, in just another three weeks). The highly swept wings could stall at high angles of attack, causing the airplane to pitch up in the deadly “Sabre dance.” NACA wanted to explore the causes of these aerodynamic problems and design solutions.

Scott Crossfield pre-flights a North American Aviation F-100A Super Sabre. Note the extended leading-edge "slats". (LIFE Magazine via Jet Pilot Overseas.)
Scott Crossfield pre-flights a North American Aviation F-100A Super Sabre. Note the extended leading-edge “slats”. (Allan Grant/LIFE Magazine)

During the flight there was an engine fire warning and Crossfield shut down the Pratt & Whitney J57-P-7 turbojet engine. The F-100A had no flaps and North American’s own test pilots did not think a “dead stick” landing was possible due the very high landing speed required.

Scott Crossfield signs the maintenance forms for an F-100, certifying the airplane ready for flight. (LIFE Magazine via Jet Pilot Overseas)
Scott Crossfield signs the maintenance forms for an F-100, certifying the airplane ready for flight. (Allan Grant/LIFE Magazine)

Scott Crossfield tells the story in his autobiography:

. . . As a matter of fact, North American tests pilots were then flipping coins to see who would bring an F-100 in dead-stick to fulfill a requirement of the Air Force acceptance tests. I was not concerned. Dead-stick landings in low L-over-D [Lift-over-Drag] airplanes were my specialty. Every test pilot develops a strong point. I was certain that my talent lay in dead-stick landings.

With the engine idling and generating no energy to the plane’s systems, I was running out of hydraulic pressure to operate the controls. Following the handbook instructions, I pulled a lever which extended a miniature “windmill” into the slipstream. This “windmill” churned, building up pressure in the hydraulic lines. Unknown to me, there was a major leak in the line. The windmill was not helping, but hurting me. It was pumping hydraulic fluid overboard as fast as it could turn.

Scott Crossfield climbs into the cockpit of a North American Aviation F-100A-5-NA Super Sabre. (LIFE Magazine via Jet Pilot Overseas)
Scott Crossfield climbs into the cockpit of a North American Aviation F-100A-5-NA Super Sabre. (Allan Grant/LIFE Magazine)

I called Edwards tower and declared an emergency. All airborne planes in the vicinity of the base were warned away from the lake area. I held the ailing F-100 on course, dropping swiftly, following the glide path that I used for the dead-stick Skyrocket. [Douglas D-558-II Skyrocket] I flared out and touched down smoothly. It was one of the best landings I have ever made, in fact. Seconds later, while the F-100 was rolling out, the remaining bit of hydraulic pressure in the control lines drained out and the controls froze.

I then proceeded to violate a cardinal rule of aviation: never try tricks with a compromised airplane. The F-100 was still rolling at a fast clip, coming up fast on the NACA ramp, when I made my poor decision. I had already achieved the exceptional, now I would end it with a flourish, a spectacular wind-up. I would snake the stricken F-100 right up the ramp and bring it to a stop immediately in front of the NACA hangar. This trick, which I had performed so often in the Skyrocket, was a fine touch. After the first successful dead-stick landing in an F-100, it would be fitting.

Instrument panel of a North American Aviation F-100 Super Sabre. (U.S. Air Force)
Instrument panel of a North American Aviation F-100 Super Sabre. The fire warning light and hydraulic pressure gauge are at the upper right corner. (U.S. Air Force)

According to the F-100 handbook, the hydraulic brake system—a separate hydraulic system from the controls—was good for three “cycles,” engine out. This means three pumps on the brake, and that proved exactly right. The F-100 was moving at about fifteen miles an hour when I turned up the ramp. I hit the brakes once, twice, three times. The plane slowed, but not quite enough. I was still inching ahead ponderously, like a diesel locomotive. I hit the brakes a fourth time—and my foot went clear to the floorboards. The hydraulic fluid was exhausted. The F-100 rolled on, straight between the yawning hangar doors!

The good Lord was watching over me—partially anyhow. The NACA hangar was then crowded with expensive research tools—the Skyrocket, all the X-1 series, the X-3, X-4 and X-5. Yet somehow, my plane, refusing to halt, squeezed by them all and bored steadily on toward the side wall of the hangar.


The nose of the F-100 crunched through the corrugated aluminum, punching out an eight-inch steel I-beam. I was lucky. Had the nose bopped three feet to the left or right, the results could have been catastrophic. Hitting to the right, I would have set off the hangar fire-deluge system, flooding the hangar with 50,000 barrels of water and ruining all the expensive airplanes. Hitting to the left, I would have dislodged a 25-ton hangar-door counterweight, bringing it down on the F-100 cockpit, and doubtless ruining Crossfield.

Chuck Yeager never let me forget the incident. He drew many laughs at congregations of pilots by opening his talk: “Well, the sonic wall was mine. The hangar wall was Crossfield’s.” That’s the way it was at Edwards. Hero one minute, bum the next. That I was the first pilot to land an F-100 dead-stick successfully, and memorized elaborate and complete instrument data on the engine failure besides, was soon forgotten.

The F-100 is a tough bird. Within a month NACA’s plane was flying again, with Crossfield back at the helm. In the next few weeks I flew forty-five grueling flights in the airplane, pushing it to the limits, precisely defining the roll coupling. (On one flight the coupling was so severe that it cracked a vertebra in my neck.) These data confirmed, in actual flight, the need for a new F-100 tail, which North American was planning to install on later models of the airplane.

Every night after landing, I taxied the F-100 slowly to the NACA ramp. At the bottom, placed there on orders of Walt Williams, there was a large new sign, symbolic of the new atmosphere at Edwards. It said:

PLEASE COME TO A COMPLETE STOP BEFORE TAXIING UP RAMP 

Always Another Dawn, The Story Of A Rocket Test Pilot, by A. Scott Crossfield with Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960. Chapter 20 at Pages 196–199.

North American F-100A-5-NA Super Sabre parked on Rogers Dry Lake, 1959. It had been repaired and returned to service after running through the NACA hangar wall at Edwards AFB, 8 September 1954. In 1960, FW-778 was retired to Davis-Monthan AFB, Tucson, AZ. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778 parked on Rogers Dry Lake, 1959. It had been repaired and returned to service after running through the NACA hangar wall at Edwards AFB, 8 September 1954. In 1960, FW-778 was retired to Davis-Monthan AFB, Tucson, AZ. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778 parked on the ramp in front of the NACA hangar, Edwards Air Force Base, California, 1959. (NASA)
North American F-100A Super Sabre on the ramp near the NACA High-Speed Flight Station in 1957. (NASA)
NACA High Speed Flight Station, 24 August 1954. The Boeing P2B-1S Superfortress is parked at the northeast corner of the ramp. (NASA DFRC E54-1361)

© 2017, Bryan R. Swopes

7 September 1997

Lockheed Martin F-22A 91-4001 lands at Dobbins ARB after its first flight, 7 September 1997. (AP/The Hindu)
Lockheed Martin F-22A 91-4001 lands at Dobbins ARB after its first flight, 7 September 1997. (AP/The Hindu)

7 September 1997: At 10:18 a.m., Lockheed Martin Aeronautics Company Chief Test Pilot Alfred P. (“Paul”) Metz took off from Dobbins Air Reserve Base, Marietta, Georgia, flying the first F-22A Block 1 Engineering and Manufacturing Development Prototype, c/n 4001, call sign, “Raptor 01.” The new air superiority “stealth” fighter flew for just under one hour, reaching an altitude of 20,000 feet (6,096 meters). Metz was accompanied by two F-16 chase planes.

Previously employed by Northrop Corporation, in 1990, Paul Metz had also made the first flight of the Raptor’s rival, the YF-23A Advanced Tactical Fighter prototype.

Test pilot Paul Metz with teh second F-22A EMD prototype, 91-4002, at Edwards Air Force Base, California.
Test pilot Paul Metz with the second F-22A EMD prototype, 91-4002, at Edwards Air Force Base, California. (U.S. Air Force)

Alfred Paul Metz was born 21 June 1946 at Springfield, Ohio. In 1968, he graduated form Ohio State University, Columbus, Ohio, with a bachelor’s degree in aeronautical engineering.

Metz entered the U.S. Air Force in 1968. He flew 68 combat missions during the Vietnam War as a pilot of the Republic F-105G Thunderchief (“Wild Weasel”), assigned to the 17th Wild Weasel Squadron, 388th Tactical Fighter Wing, based at Korat Royal Thai Air Force Base, Thailand. He was twice awarded the Distinguished Flying Cross.

Metz graduated from the Air Force Test Pilot School at Edwards Air Force Base, California, in 1976, and remained at Edwards for the next two years. He was then assigned as an instructor at the U.S. Navy Test Pilot School at NATC Patuxent River, Maryland, in 1978.

Metz left the Air Force in 1980 and joined Northrop Aircraft as an engineering test pilot. He became Northrop’s chief test pilot in 1985. After flying as an engineering test pilot for the B-2 stealth bomber, Paul Metz joined Lockheed Martin’s F-22 program in 1992.

Paul Metz continued testing the F-22A for four years before joining the F-35 Joint Strike Fighter program. He was next appointed Vice President for Flight Test. Metz retired in 2006.

A Lockheed Martin F-22A Raptor in flight. (Wikipedia)
A Lockheed Martin F-22A Raptor in flight. (Wikipedia)

The Lockheed Martin F-22A Raptor is a single-seat, twin-engine fighter designed with stealth technology. It is 62 feet, 1 inch (18.923 meters) long with a wingspan of 44 feet, 6 inches (13.564 meters) and height of 16 feet, 8 inches (5.080 meters). The fighter has an empty weight of 43,340 pounds (19,659 kilograms) and a maximum takeoff weight of 83,500 pounds (37,875 kilograms).

The F-22 is powered by two Pratt & Whitney F119-PW-100 afterburning turbofan engines which incorporate thrust vectoring exhaust nozzles to enhance the fighter’s maneuverability.

The F-22A can cruise at Mach 1.82 and has a maximum speed of Mach 2.25. Its service ceiling is greater than 65,000 feet (19,812 meters) and the combat radius is 470 miles (756 kilometers).

The fighter is armed with a 20 mm M61A2 Vulcan 6-barrel cannon with 480 rounds of ammunition, and can carry AIM-9 Sidewinder and AIM-120 AMRAAM air-to-air missiles. The F-22 can also be configured for ground attack.

The F-22A entered service with the U.S. Air Force in 2003, with “initial operational capability” achieved in 2005. Including flight test aircraft, 195 F-22s were produced before the program prematurely ended in 2012.

In 2000, 91-4001 was removed from flight status and used to test battle damage survivability.

The stripped air frame of 91-4001 at Hill AFB, Utah. (f-16.net)
The stripped air frame of 91-4001 at Hill AFB, Utah. (f-16.net)

© 2018, Bryan R. Swopes

7 September 1965

Bell Model 209 prototype, N209J, in flight with skids retracted. (Bell Helicopter Co.)
Bell Model 209, N209J, prototype of the AH-1G Huey Cobra attack helicopter, in flight with landing skids retracted. (Bell Helicopter Company)

7 September 1965: First flight of the prototype Bell Model 209 attack helicopter. Test pilot William Thomas (“Bill”) Quinlan was in command. The duration of the flight was twelve minutes.

The Model 209 was a private venture, built in just seven months and rolled out at Fort Worth, Texas, 2 September 1965. The prototype aircraft combined the drive system, rotors and tail boom of the production UH-1C gunship with a streamlined fuselage which placed the two pilots in tandem.

The prototype was equipped with retractable landing gear which gave the 209 increased speed, but the expense and complexity were enough that this feature was not included on production aircraft.

This helicopter would be developed into the famous AH-1G Huey Cobra.

N209J,the Bell Model 209 prototype, shown in camouflage colors. (Bell Helicopter Company)
N209J, the Bell Model 209 prototype, shown in camouflage colors. (Bell Helicopter Company)

The second prototype, AH-1G 66-15246, was used by the Army for flight testing at Edwards Air Force Base, California, from 3 April to 21 April 1967.

66-15246 had an overall length of 52 feet, 11.65 inches (16.146 meters) with rotors turning. The fuselage was 44 feet, 5.20 inches (13.433 meters) long, and it was 3 feet, 0 inches (0.914 meters) wide. The HueyCobra had a short “stub wing” with a span of 10 feet, 11.60 inches (3.343 meters). Its angle of incidence was 14°. The wing’s area was 27.8 square feet (2.6 square meters). 66-15426 had an empty weight of 5,516 pounds (2,502 kilograms) and maximum gross weight of 9,500 pounds (4,309 kilograms).

Bell Model 209, N209J, prototype of the AH-1G Cobra, with landing skids extended. (U.S. Army)

The two-bladed Model 540 “door-hinge” main rotor was 44 feet, 0 inches (13.411 meters) in diameter. The blades had a chord of 2 feet, 3 inches (0.686 meters) and 10° negative twist. The main rotor turned counter-clockwise when viewed from above. (The advancing blade is on the helicopter’s right.) Normal rotor r.p.m. (power on) was 314–324 r.p.m., and power off, 304–339 r.p.m. The minimum transient rotor speed, power off, was 250 r.p.m.

The two blade tail rotor assembly had a diameter of 8 feet, 6 inches (2.591 meters) with a chord of 8.41 inches (0.214 meters). There was no twist. It was mounted on the left side of the pylon in a pusher configuration and turned counter-clockwise as seen from the helicopter’s left. (The advancing blade is above the axis of rotation.) The tail rotor pylon was cambered to allow aerodynamic forces in forward flight to “unload” the tail rotor.

Bell AH-1G Cobra three-view drawing. (U.S. Army Aviation Systems Test Activity)

The AH-1G was powered by a Lycoming LTC1K-4 (T53-L-13) turboshaft engine rated at 1,400 shaft horsepower, though it was derated to the helicopter’s transmission limit. The T53-L-13 is a two-shaft free turbine with a 6-stage compressor (5 axial-flow stages, 1 centrifugal-flow stage) and a 4-stage axial-flow turbine (2 high-pressure stages, 2 low-pressure power turbine stages). The T53-L-13 is 3 feet, 11.9 inches (1.217 meters) long, 1 foot, 11.0 inches (0.584 meters) in diameter and weighs 549 pounds (249 kilograms).

The speed of the Cobra was effected by the armament configuration, whether “clean,” light or heavy scout, or “heavy hog.” At 5,000 feet (1,524 meters), the cruise speed in the clean configuration was 138.0 knots (158.8 miles per hour, 255.6 kilometers per hour); light scout, 134.0 knots (154.2 miles per hour, 248.2 kilometers per hour); and heavy hog, 127.0 knots (146.2 miles per hour, 235.2 kilometers per hour). The maximum airspeed in level flight was 149.0 knots (171.5 miles per hour, 276.0 kilometers per hour); 144.0 knots (165.7 miles per hour, 266.7 kilometers per hour); and 136.5 knots (157.1 miles per hour, 252.8 kilometers per hour), respectively.

The limiting airspeed (VNE) was 190 knots (KCAS) (219 miles per hour, 352 kilometers per hour) below 3,000 feet (914 meters) density altitude.

In autorotation, the airspeed for the minimum rate of descent was 74.0 knots (85.2 miles per hour, 137.1 kilometers per hour) with the main rotor turning 294 r.p.m., resulting in a rate of descent of 1,750 feet per minute (8.89 meters per second).

Bell AH-1G Cobra. (U.S. Army)

The basic armament for the AH-1G Cobra was an Emerson M28 turret which could be equipped with one or two General Electric M134 Miniguns, or a combination of a Minigun with a Philco Ford M129 automatic grenade launcher, or two grenade launchers. Each Minigun was supplied with 4,000 rounds of 7.62 NATO ammunition, while a grenade launcher had 300 rounds of 40 × 53 millimeter high-velocity explosive ammunition.

Four hardpoints on the stub wing could be loaded with M18 7.62 NATO Minigun pods; XM35 pods, containing a short-barreled General Electric XM195 20 millimeter Gatling gun (a variant of the M61 Vulcan); rocket pods with seven or nineteen 2.75-inch unguided rockets.

The prototype Cobra, Bell Model 209 N209J, is in the collection of the U.S. Army Aviation Museum, Fort Rucker, Alabama, as is the second prototype, 66-15246.

© 2017, Bryan R. Swopes