18 October 1984

Rockwell International B-1B Lancer 82-0001 takes off for the first time at Air Force Plant 42, Palmdale, California. (U.S. Air Force)

18 October 1984: The first production Rockwell International B-1B Lancer, serial number 82-0001, a supersonic four-engine strategic bomber with variable sweep wings, made its first flight from Air Force Plant 42, Palmdale, California.

Rockwell test pilot Mervyn Leroy Evenson (Colonel, U.S.Air Force, retired) was the aircraft commander, with co-pilot Lieutenant Colonel Leroy Benjamin Schroeder; Major S.A. Henry, Offensive Systems Officer; Captain D.E. Hamilton, Defensive Systems Officer.

Rockwell International B-1B takeoff on Oct. 25, 1986. Note the lit afterburners. (U.S. Air Force)

After 3 hours, 20 minutes, the B-1B landed at Edwards Air Force Base where it would enter a flight test program.

Rockwell B-1B 82-0001 parked at the Rockwell International facility, AF Plant 42, Palmdale, California, 3 September 1984. (Rockwell)
Rockwell B-1B 82-0001 parked at the Rockwell International Corp. facility, Palmdale, California, 3 September 1984. (MSGT Mike Dial, U.S. Air Force)

The Rockwell International B-1B Lancer is a supersonic intercontinental bomber capable of performing strategic or tactical missions. It is operated by a flight crew of four.

The B-1B is 147 feet, 2.61 inches (44.8719 meters) long, with the wing span varying from 86 feet, 8.00 inches (26.4160 meters) at 67.5° sweep to 136 feet, 8.17 inches (41.6603 meters) at when fully extended to 15° sweep. It is 33 feet, 7.26 inches (10.2428 meters) high to the top of the vertical fin. The bomber’s empty weight is approximately 180,500 pounds (81,873 kilograms). Its maximum weight in flight is 477,000 pounds (216,634 kilograms). The internal payload is up to 75,000 pounds (34,019 kilograms).

The bomber is powered by four General Electric F101-GE-102 turbofan engines, mounted in two-engine nacelles under the wing roots. These are rated at 17,390 pounds of thrust (17.355 kilonewtons) and produce 30,780 pounds (136.916 kilonewtons) with “augmentation.” The engine has two fan stages, a 9-stage axial-flow compressor and a 3-stage turbine. The F101-GE-102 is 15 feet, 0.7 inches (4.590 meters) long, 4 feet, 7.2 inches (1.402 meters) in diameter and weighs 4,460 pounds (2,023 kilograms).

Rockwell International B-1B Lancer. (U.S. Air Force)

“The Bone” has a maximum speed of Mach 1.2 at Sea Level (913 miles per hour, or 1,470 kilometers per hour). The service ceiling is “over 30,000 feet” (9,144 meters). The Lancer’s maximum range is “intercontinental, unrefueled.”

It can carry up to 84 Mk.82 500-pound (226.8 kilogram) bombs, 24 Mk.84 2,000-pound (907.2 kilogram) bombs or other weapons in three weapons bays. The B-1B was built with the capability to carry 24 B61 thermonuclear bombs, though, since 2007, the fleet no longer has this capability.

A Rockwell B-1B Lancer drops Mk. 82 bombs from its three weapons bays. (U.S. Air Force)

100 B-1B Lancers were built between 1983 and 1988. As of May 2018, 62 B-1B bombers are in the active Air Force inventory. The Air Force plans upgrades to the aircraft and plans to keep it in service until 2036.

To comply with the START weapons treaty, B-1B 82-0001 was scrapped at Ellsworth Air Force Base, South Dakota, in the mid-1990s.

A Rockwell International B-1B in flight. (U.S. Air Force)
A Rockwell International B-1B Lancer in flight. (U.S. Air Force)

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

18 October 1922

Brigadier General William Mitchell, Air Service, United States Army, 1879–1936. (United States Air Force)

18 October 1922: At Selfridge Field, near Mount Clemens, Michigan, Assistant Chief of the Air Service Brigadier General William Mitchell set a Fédération Aéronautique Internationale (FAI) World Absolute Speed Record flying a Curtiss R-6 biplane, Air Service serial number A.S. 68564, over a 1 kilometer course at a speed of 358.84 kilometers per hour (222.973 miles per hour).¹

This was the same airplane with which Lieutenant Russell L. Maughan had won the Pulitzer Trophy just three days earlier.

Brigadier General William Mitchell stands in the cockpit of a Thomas Morse pursuit.

Sources vary as to the speed General Mitchell attained, e.g., 222.96 m.p.h., 222.97 m.p.h., 224.28 m.p.h., and 224.4 m.p.h. A contemporary news magazine listed the officially recognized speed as 224.58 miles per hour (361.43 kilometers per hour):

American World’s Speed Record Homologated

The speed record made by General Mitchell, of the American Air Service, on October 18 last year, when he attained a speed of 224.58 m.p.h., has now been homologated by the International Aeronautical Federation.

FLIGHT,  The Aircraft Engineer & Airships, No. 733. (No. 2, Vol. XV) January 11, 1923, at Page 26.

Brigadier General Billy Mitchell at Selfridge Field, Michigan, 1922. This airplane may be a Thomas-Morse MB-3 fighter. (U.S. Air Force)
Brigadier General Billy Mitchell at Selfridge Field, Michigan, 1922. This airplane may be a Thomas-Morse MB-3 fighter. (U.S. Air Force)

“Billy” Mitchell had been the senior American air officer in France during World War I. He was a determined advocate for the advancement of military air power and encouraged his officers to compete in air races and attempt to set aviation records to raise the Air Service’ public profile. He gained great notoriety when he bombed and sank several captured German warships to demonstrate the effectiveness of airplanes against ships.

His outspoken advocacy resulted in the famous Court Martial of Billy Mitchell, in which a military court consisting of twelve senior Army officers found Mitchell guilty of insubordination. He was reduced in rank and suspended for five years without pay. Major General Douglas MacArthur (later, General of the Army, a five-star rank) said that the order to serve on the court was “one of the most distasteful orders I ever received.” Mitchell resigned from the Army and continued to advocate for air power. He died in 1936.

After his death, President Franklin D. Roosevelt elevated Billy Mitchell to the rank of Major General on the retired officers list. The North American Aviation B-25 twin-engine medium bomber was named “Mitchell” in recognition of General Mitchell’s efforts to build up the military air capabilities of the United States.

The Curtiss R-6 Racers were single-engine, single seat, fully-braced biplanes with fixed landing gear, developed from the U.S. Navy Curtiss CR. The airplane and its D-12 Conqueror engine were both built by the Curtiss Aeroplane and Motor Co., Garden City, New York. The fuselage was a stressed-skin monocoque, built with two layers of wood veneer covered by a layer of doped fabric. The wings were also built of wood, with plywood skins and fabric-covered ailerons. Surface radiators were used for engine cooling.

Two R-6 Racers were built of the U.S. Army at a cost of $71,000, plus $5,000 for spare parts.

The Curtiss R-6 was 19 feet, 0 inches (5.791 meters) long with a wing span of 19 feet, 0 inches (5.791 meters). It had an empty weight of 2,121 pounds (962 kilograms).

The R-6 was powered by a water-cooled, normally-aspirated 1,145.11-cubic-inch-displacement (18.765 liter) Curtiss D-12 dual overhead cam (DOHC) 60° V-12 engine, which was developed by  Arthur Nutt, based on the earlier Curtiss K-12 which had been designed by Charles B. Kirkham. The D-12 had four valves per cylinder and a compression ratio of 5.7:1, and was rated at 415 horsepower at 2,000 r.p.m., and 460 horsepower at 2,300 r.p.m. During testing, it produced a 475 horsepower at 2,320 r.p.m. using a 50/50 mixture of 95-octane gasoline and benzol. The D-12 was a direct-drive engine and it turned a two-bladed, fixed-pitch, forged aluminum propeller designed by Dr. Sylvanus A. Reed. The Curtiss D-12 was 56¾ inches (1.441 meters) long, 28¼ inches (0.718 meters) wide and 34¾ inches (0.882 meters) high. It weighed 678.25 pounds (307.65 kilograms).

The R-6 racer had a maximum speed of 240 miles per hour (386 kilometers per hour). The service ceiling was 22,000 feet (6,706 meters), and it had a maximum range of 281 miles (452 kilometers).

A.S. 68564 disintegrated in flight at the Pulitzer Trophy Race, 4 October 1924, killing its pilot, Captain Burt E. Skeel.

Curtiss R-6, serial number A.S. 68564, at Selfridge Field, 14 October 1922. (San Diego Air and Space Museum Archives)

¹ FAI Record File Number 15252

© 2017, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

18 October 1909

Charles, Comte de Lambert (1865–1944)

18 October 1909: Charles Alexandre Maurice Joseph Marie Jules Stanislas Jacques Count de Lambert, the first student to successfully complete Wilbur Wright’s aviation school at Pau, Pyrénées-Atlantiques, flew his Wright Model A Flyer from Port Aviation (Juvisy-sur-Orge), Viry-Châtillon (in the outskirts of Paris), the World’s first airport, to the Eiffel Tower.

The Comte de Lambert departed Port Aviation at 4:36 p.m. He circled the Tower at an altitude of 400 meters (about 1,300 feet) and then returned to Pau, located on the northern edge of the Pyrenees.

The Comte Charles de Lambert flies around the Eiffel Tower in Paris in his Wright aeroplane during his circular tour from Juvisy - Paris - Juvisy. (Photo by Topical Press Agency/Getty Images)
“The Comte Charles de Lambert flies around the Eiffel Tower in Paris in his Wright aeroplane during his circular tour from Juvisy – Paris – Juvisy.” (Photo by Topical Press Agency/Getty Images)

The flight covered approximately 48 kilometers (30 miles) with an elapsed time of 49 minutes, 39 seconds.

Comte de Lambert’s flight coincided with an evening banquet celebrating a two-week “Grande Quinzaine de l’Aviation de Paris“. L’Aéroclub de France awarded him a Gold Medal for his achievement, and France appointed him Chevalier de la Légion d’Honneur.

de Lambert, immediately after landing at Pau, 18 October 1909.
de Lambert, immediately after landing at Pau, 18 October 1909. (Collection of Gerard J. van Heusden)

The Wright Model A, produced from 1907 to 1909, was the world’s first series production airplane. It was slightly larger and heavier than the Wright Flyer III which had preceded it. It was a two-place, single-engine canard biplane built of a wooden framework braced with wires and covered with muslin fabric. A new system of flight controls allowed the pilot to sit upright rather than lying prone on the lower wing.

The dual horizontal elevators were placed forward and the dual vertical rudders aft. The biplane was 31 feet (9.449 meters) long with a wingspan of 41 feet (12.497 meters). The wings had a chord of 6.6 feet, and vertical separation of 6 feet. The airplane had an empty weight of approximately 800 pounds (363 kilograms).

A water-cooled 240.5 cubic-inch-displacement (3.940 liter) Wright inline four-cylinder gasoline engine produced 32 horsepower at 1,310 r.p.m. Two 8½ foot (2.591 meters) diameter, two-bladed, counter-rotating propellers, driven by a chain drive, are mounted behind the wings in pusher configuration. They turned 445 r.p.m.

The Wright Model A  could fly 37 miles per hour (kilometers per hour).

Charles Comte de Lambert at the controls of a Wright Flyer at l’Ecole d’Aviation, Pau, Pyrénées-Atlantiques,1908.
Charles Comte de Lambert at the controls of a Wright Flyer at l’Ecole d’Aviation, Pau, Pyrénées-Atlantiques,1908. (Calizo Photography)

© 2016, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

17 October 1974

First flight, Sikorsky YUH-60A 73-21650 at Stratford, Connecticut, 17 October 1974. (Sikorsky, a Lockheed Martin Company)

17 October 1974: Sikorsky Chief Pilot James R. (Dick) Wright and project chief test pilot John Dixson made the first flight of the prototype YUH-60A, 73-21650, at the company’s Stratford, Connecticut, facility. This helicopter was the first of three prototypes.

Early flight testing revealed excessive vertical vibrations associated with the main rotor. Extensive engineering and flight testing determined that this was caused by air flow upward through the rotor system and around the transmission and engine cowlings. The purpose of the low-mounted main rotor was to aid in fitting inside transport aircraft with minimal disassembly. It was necessary to increase the height of the mast and reshape the cowlings to achieve an acceptable level of vibration.

After eight months of testing, the U.S. Army selected the YUH-60A for production over its competitor, the Boeing Vertol YUH-61A. In keeping with the Army’s tradition of naming helicopters after Native Americans, the new helicopter was named Black Hawk, who was a 17th Century leader of the Sauk (or Sac) people.

Sikorsky YUH-60A 73-21650 at roll-out, 28 June 1974, with low main rotor, large-area tail rotor pylon and swept stabilator. (Sikorsky, a Lockheed Martin Company)

The Sikorsky Model S-70 (YUH-60A) was designed to meet the requirements of the U.S. Army Utility Tactical Transport Aircraft System (UTTAS). It had a 3-man crew and could carry an 11-man rifle squad. The helicopter could be transported by a Lockheed C-130 Hercules.

The three UTTAS prototypes were 63 feet, 6 inches (19.355 meters) long, with rotors turning. The span of the horizontal stabilizer was 15 feet, 0 inches (4.572 meters). The prototypes’ overall height was 16 feet, 10 inches (5.131 meters).

The three Sikorsky YUH-60A UTTAS prototypes. A fourth prototype, an S-70, was built and retained by Sikorsky for internal research and development and demonstrations. (Vertical Flight Society)

The YUH-60A had an empty weight of 11,182 pounds (5,072 kilograms) and gross weight of 16,750 pounds (7,598 kilograms). The helicopter had a structural load factor of 3.5 Gs. With 1,829 pounds (830 kilograms) of fuel, it had an endurance of 2 hours, 18 minutes.

The YUH-60A had a four-blade fully-articulated main rotor with elastomeric bearings. It had a diameter of 52 feet, 0 inches (15.850 meters). During flight testing, the diameter was increased to 52 feet, 4 inches (15.951 meters), and finally to 52 feet, 8 inches (16.053 meters). The blades were built with titanium spars and used two different airfoils and a non-linear twist (resulting in a net -16.4°). The outer 20 inches (0.508 meters) were swept aft 20°. These characteristics improved the helicopter’s maximum speed and hover performance. The main rotor turned counterclockwise, as seen from above (the advancing blade is on the right) at 258 r.p.m. The blade tip speed was 728 feet per second (222 meters per second). During flight testing it was decided to change the main transmission gear reduction ratio in order to operate the engines at a slightly increased r.p.m. At the higher r.p.m., the engines produced an additional 50 horsepower, each.

Sikorsy YUH-60A 73-21650 (c/n 70-001), right profile. In this photograph, the prototype has been modified closer to teh production variant. The rotor mast is taller, the vertical fin has been decreased in size, the crew side window is the two-piece version. (U.S. Army Aviation Museum)
Sikorsky YUH-60A 73-21650 (c/n 70-001), right profile. In this photograph, the prototype has been modified closer to the production variant. The rotor mast is taller, the vertical fin has been decreased in size, a variable-pitch stabilator has replaced the fixed horizontal stabilizer, the engine cowlings have been redesigned, and the crew side window is the two-piece version. (U.S. Army Aviation Museum)

The four-bladed bearingless tail rotor was positioned on the right side of the tail rotor pylon in a tractor configuration. The tail rotor diameter was 11 feet (3.353 meters), and turned 1,214 r.p.m., rotating clockwise as seen from the helicopter’s left (the advancing was blade below the axis of rotation). The blade tip speed was 699 feet per second (213 meters per second). The tail rotor blades had -18° of twist. Because the Black Hawk’s engines are behind the transmission, the aircraft’s center of gravity (c.g.) is also aft. The tail rotor plane is inclined 20° to the left to provide approximately 400 pounds of lift (1.78 kilonewtons) to offset the rearward c.g.

Cutaway illustration of the T700-GE-700 turboshaft engine. (Global Security)

Power was supplied by two General Electric T700-GE-700 modular turboshaft engines, rated at 1,622 shaft horsepower at 20,900 r.p.m. Np, at Sea Level under standard atmospheric conditions. The T700 has a 5-stage axial-flow, 1-stage centrifugal-flow compressor, with a 2-stage axial-flow gas producer and 2-stage axial-flow power turbine. The T700 is 3 feet, 11 inches (1.194 meters) long, 2 feet, 1 inch (0.635 meters) in diameter and weighs 437 pounds (198 kilograms). The helicopter’s main transmission was designed for 2,828 horsepower. The engines are derated to the transmission limit.

The YUH-60A had a cruise speed of 147 knots (169 miles per hour/272 kilometers per hour) at 4,000 feet (1,219 meters) and 95 °F. (35 °C.). It could climb at 450 feet per minute (2.29 meters per second) at the same altitude and air temperature.

Sikorsky YUH-60A prototype, 73-21650, late configuration. (Vertical Flight Society)

While operating with an Army crew on the night of 9 August 1976, YUH-60A 73-21650 developed a significant vibration. An emergency landing was made. Because of darkness and mist, the pilots thought they were landing in a corn field, but it was actually a pine tree plantation. The helicopter’s rotors cut down more than 40 trees with trunk diameters up to 5 inches (12.7 centimeters).

Close inspection by Army and Sikorsky personnel found that the only visible damage was to the four main and four tail-rotor blades other than nicks and dents to the airframe that were of no structural concern. All gearboxes and engines turned freely, and all flight controls responded properly. ¹ The blades were replaced on-site and the helicopter was flown out the following day.

73-21650 crashed into the Housatonic River near the Stratford plant at 9:10 a.m.,  Friday, 19 May 1978, killing all three Sikorsky employees on board, pilots Albert M. King, Jr., John J. Pasquarello, and flight engineer John Marshall.

During routine maintenance an airspeed sensor for the all-flying tailplane had been disconnected. As the Black Hawk transitioned from hover to forward flight, the all-flying tailplane remained in the hover position and forced the helicopter’s nose to pitch down to the point that recovery was impossible.

A Sikorsky YUH-60A and Boeing Vertol YUH-61A hover for the camera. (U.S. Army)
A Sikorsky YUH-60A and Boeing Vertol YUH-61A hover for the camera. (U.S. Army)

The Black Hawk has been in production since 1978. More than 4,000 of the helicopters have been built and the type has been continuously improved. The current production model is the UH-60M.

Sikorsky is a Lockheed Martin Company.

A Sikorsky UH-60M Black Hawk in flight. (Sikorsky, a Lockheed Martin Company)
Sikorsky's UH-60M Black Hawk for the U.S. Army, seen here in the Military Hangar at Sikorsky Aircraft in Stratford, Conn. Feb. 20, 2008.
Sikorsky’s UH-60M Black Hawk for the U.S. Army, seen here in the Military Hangar at Sikorsky Aircraft in Stratford, Connecticut, 20 February 2008. (Sikorsky, a Lockheed Martin Company)

¹ Black Hawk: The Story of a World Class Helicopter, by Ray D. Leoni, American Institute of Aeronautics and Astronautics, Reston, Virginia, 2007, Chapter 8 at Page 173.

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

17 October 1922

A Vought VE-7SF takes off from USS Langley (CV-1). (National Naval Aviation Museum)
A Vought VE-7 takes off from USS Langley (CV-1). (National Naval Aviation Museum)

17 October 1922: Lieutenant Commander Virgil Childers (“Squash”) Griffin, Jr., United States Navy, made the first takeoff from an aircraft carrier of the U. S. Navy when he flew a Chance Vought Corporation VE-7 fighter from the deck of USS Langley (CV-1) while the ship was anchored in the York River along the west side of Chesapeake Bay, Maryland.

A Vought VE-7 taking off from USS Langley, 1922. The second airplane is an Aeromarine. (U.S. Navy)
A Vought VE-7 taking off from USS Langley, 1922. The second airplane is an Aeromarine 39 trainer. (U.S. Navy)

USS Langley was the United States Navy’s first aircraft carrier. The ship was named in honor of an American scientist, Samuel Pierpont Langley. It was a former collier, USS Jupiter (AC-3), which had been converted at the Norfolk Navy Yard, 1921–1922. As an aircraft carrier, Langley had a complement of 468 men, including the air wing. The ship was 542 feet, 2.5 inches (165.27 meters) in length, overall, with a beam of 65 feet, 6 inches (19.96 meters) and draft of 22 feet, 1 inch (6.73 meters). The aircraft carrier had a full load displacement of 15,150 long tons (15,393 Metric tons).

Langley was powered by a General Electric turbo-electric drive, with a total of 6,500 shaft horsepower. She could make 15.5 knots (17.8 miles per hour; 28.7 kilometers per hour). The aircraft carrier had a maximum range of 4,000 miles (6,437 kilometers).

USS Langley (CV-1) with Vought VE-7SF fighters on the flight deck, at anchor off Culebra Island, Puerto Rico, 18 March 1926. In the background are a USS Tennessee-class and two USS New Mexico-class battleships. (U.S. Navy)

In addition to her air group of up to 36 airplanes, Langley was defended by four 5-inch/51-caliber guns (127 mm × 6.477 meters). This gun could fire a 50-pound (22.7 kilogram) shell a distance of 15,850 yards (14, 493 meters) when elevated to 20°. Its maximum rate of fire was 9 rounds per minute.

As the more modern aircraft carriers Lexington and Saratoga came in to service, Langley was once again converted, this time to a sea plane tender, and reclassified as AV-3, 21 April 1937.

USS Langley was badly damaged by Japanese dive bombers during the Battle of the Java Sea, 27 February 1942, having been struck by five bombs. The ship was scuttled approximately 75 miles south of Tjilatjap, Java, to prevent capture, when her escorting destroyers fired two torpedoes into her.

USS Langley (CV-1), 1922. (U.S. Navy)
USS Langley (CV-1), 1922. (U.S. Navy)

The Chance Vought VE-7 was originally ordered as a two-place trainer, but its performance and handling qualities were so good that it was widely used as a fighter. The VE-7SF was a single-place, single-engine biplane built for the U.S. Navy.

The VE-7 was 22 feet 5-3/8 inches (6.842 meters) long, with a wingspan of 34 feet, 4 inches (10.465 meters), and height of 8 feet 7½ inches (2.629 meters). The two-bay wings were separated by a vertical gap of 4 feet, 8 inches (1.422 meters) and the leading edge of the  lower wing was staggered 11 inches (27.9 centimeters) behind that of the upper wing. Both wings had 1.25° dihedral. The upper wing had +1.75° incidence, lower wing had +2.25°. The VE-7 had weighed 1,392 pounds (631 kilograms) empty and had gross weight of 1,937 pounds (879 kilograms)

Vought VE-7SF 2-F-16. (Chance Vought)
Vought VE-7SF 2-F-16. (Chance Vought)

The VE-7 was powered by a water-cooled, normally-aspirated, 716.69-cubic-inch-displacement (11.744 liters) Wright-Hispano E3 Alert single-overhead-camshaft (SOHC) 60° V-8 engine, rated at 215 horsepower at 2,000 r.p.m. The engine drove a two-bladed fixed-pitch wooden propeller with a diameter of 8’8″ (2.642 meters). The Wright E3 weighed 465 pounds (211 kilograms).

The VE-7 had a maximum speed of 106  miles per hour (171 kilometers per hour) and service ceiling of 15,000 feet (4,572 meters). Its maximum range was 290 miles (467 kilometers).

The fighter was armed with two Vickers .30-caliber (7.62 mm) machine guns, synchronized to fire forward through the propeller arc.

Chance Vought VE-7, 2-F-16, assigned to Fighter Squadron 2 (VF-2) (Chance Vought)
Chance Vought VE-7SF, 2-F-16, assigned to Fighter Squadron 2 (VF-2) (Chance Vought)

Rear Admiral Jackson R. Tate, U.S. Navy (Retired) described the first takeoff:

“We were operating just north of the Tongue of the Shoe, seaward of the main channel from Norfolk, Va. A trough about 6 feet long, set up on sawhorses was rigged at the aft end of the flight deck. When the tail skid of the VE-7 used in the test was placed in the trough, she was in the flight attitude.

“We had no brakes, so the plane was held down on the deck by a wire with a bomb release at the end. This was attached to a ring in the landing gear. ‘Squash’ Griffin climbed in, turned up the Hispano Suiza engine to its full 180 hp and gave the “go” signal. The bomb release was snapped and the Vought rolled down the deck. Almost before it reached the deck-center elevator it was airborne. Thus, the first takeoff from a U.S. carrier.”

United States Navy aircraft carrier USS. George H.W. Bush (CVN-77) (Mass Coomunications Specialist 3rd Class Tony Curtiss, U.S. Navy)
United States Navy nuclear-powered aircraft carrier USS George H. W. Bush (CVN-77). (Mass Communications Specialist 3rd Class Tony Curtis, U.S. Navy)

Virgil Childers Griffin, Jr., was born at Montgomery, Alabama, 18 April 1891. He was the first of three children of Virgil Childers Griffin, secretary of the Railroad Commission of Alabama, and Mary Lee Besson Griffin.

Midshipman Virgil C. Griffin, Jr., U.S.N.A.

Griffin was admitted as a midshipman at the United States Naval Academy, Annapolis, Maryland, 25 June 1908, a member of the Class of 1912. Four years later he graduated. Virgil C. Griffin, Jr., was commissioned an ensign, United States Navy, 8 June 1912, with a date of precedence 28 April 1908.

On 14 July 1912, Ensign Griffin was assigned to the 16,000 ton battleship, USS South Carolina (BB-26). Griffin was promoted to lieutenant (junior grade), 8 June 1915. He remained aboard South Carolina until June 1916.

Lieutenant (j.g.) Griffin applied for flight trainning, and on completion, was designated Naval Aviator # 41.

The United States entered World War I in April 1917. On 8 June 1917, Lieutenant (j.g.) Griffin was one of one hundred Naval Aviators who “arrived safely in France for any duty that may present itself. . . They are the first of the American fighting forces to reach France.” On 8 June 1918, Griffin was promoted to lieutenant (permanent rank). He was in command of the U.S. Navy sea plane base at Saint-Trojan, in southwestern France. Griffin was promoted to the rank of lieutenant commander (temporary), 21 September 1918 (Constructive date of precedence 28 February 1907).

Lieutenant Commander Griffin returned to the United States in 1919. He was assigned to the Department of the Navy, Washington, D.C., first to the Naval Operations Aviation Divivision, and in 1920, Naval Operations Inspection Division. Later in 1920, Griffin was assigned to the Atlantic Fleet Ship Plane Division, Mitchel Field, Mineola, New York.

On 8 December 1920, Lieutenant Commander Griffin married 25-year-old Alabama native Miss Elize Whiting Hall, at Mobile, Alabama.

In 1923, Lieutenant Commander Griffin returned to sea duty aboard USS Langley. he was next stationed at NAS Pensacola, Florida, 1924–1925. He served aboard USS Lexington (CV-2), 1926–1927. In 1929, Griffin returned to Langley, before being assigned Scoutig Squadron TWO (VS-2B) aboard USS Saratoga, flying the Vought O2U-2 Corsair.

On 29 December 1931, Griffin was promoted to commander. He was stationed at NAS Pearl Harbor, Territory of Hawaii, in 1932.

Commander Griffin once again returned to Langley, as the aircraft carrier’s executive officer, 1933–1934.

In 1937, Commander Griffin was commanding officer, NAS Anacostia, Washington D.C. He had additional duties in the Navy’s Bureau of Aeronautics.

In 1938 and 1939, Commander Griffin was chief of staff and aide to the Commander, Carrier Division TWO (ComCarDiv 2), aboard USS Yorktown.

Consolidated PBY-3 of Patrol Wing FIVE, circa 1939. (U.S. Navy)

Later in 1939, Commander Griffin was assigned as commanding officer Patrol Wing FIVE. The wing included patrol squadrons VP-51, VP-52, VP-53 VP-54, and the airplane tenders USS Gannet (AVP-8), USS Thrush (AVP-3), USS Owl (AM-2) and USS Patoka (AV-6).

Griffin was promoted to the rank captain, 1 November 1939. On 1 May 1940, Captain Griffin was placed in command of NAS Isle Grande, San Juan, Puerto Rico.

Captain Virgil C. Griffin, Jr., U.S. Navy, with Mrs. Ernest Hemingway (née Martha Ellis Gelhorn), circa 1942. (National Museum of the United States Navy) 80-G-13028a

Captain Virgil Childers Griffin, Jr., retired from the United States Navy, 1 January 1947. He died at San Diego, California, 27 March 1957, at the age of 66 years. He was buried at the Fort Rosecrans National Cemetery.

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather