23 January 1939

H. Lloyd Child, Curtiss-Wright Airplane Division test pilot. (Photograph courtesy of Neil Corbett, Test & Research Pilots, Flight Test Engineers)

23 January 1939:

     Buffalo, N.Y., January 24—(AP)—A Curtiss Hawk 75A pursuit plane, one of 100 being constructed for the French Government, has “substantially exceeded all known speed records” with a free dive of more than 575 miles an hour, it was announced today.

     The speed mark was established yesterday while the ship was undergoing acceptance tests, officials of the Curtiss Aeroplane Division of the Curtiss Wright Corporation said.

     The tests were made by H. Lloyd Child, chief test pilot of the Buffalo Curtiss plant, who said he “felt no ill effects and did not realize” that the speed was presumably the fastest man has ever traveled.”

     National Aeronautic Association officials said that no Federation Aeronautique Internationale records “even approached this speed.”

     The speed of the dive was so great that the marker on the recording airspeed indicator exceeded the instrument’s range and moved off the paper on which the graph of the dive was recorded.

     Aviation experts, who declined to be quoted directly, estimated that the speed might have exceeded 600 miles per hour, compared with the normal falling rate for a 170-pound man of 150 miles an hour.

     The dive was begun at an altitude of 22,000 feet, and the record speed was attained during a 9,000 foot dive.

     At no time during the dive, Child said, did the engine exceed 2,550 revolutions a minute, its normal rated speed in level flight. Hence, he explained, the strain on the motor during the dive was not increased, but was held to the speed of normal operation by the Curtiss electric propeller, with its unlimited blade pitch range.

     Since the motor’s speed was kept at normal during the dive, it was a “free,” rather than a “power” dive as when the motor throttle is opened wide, aviation experts explained.

     Previously, company officials explained, a limiting factor in the speed at which an airplane could dive was the engine’s revolutions each minute, since overspeeding would result to serious damage to the motor.

     The Curtis Hawk 75A pursuit plane is similar to the Curtiss P-36A, the standard pursuit airplane of the United States Army Air Corps.

     It carried two machine guns and is equipped to carry bombs under each wing when on a fighting mission.

     The greatest previously registered speed was 440.681 miles an hour, made by Francesco Agello of Italy over a three-kilometer course in level flight October 23, 1934.

     The world’s land speed record is held by George E. T. Eyston of England at 357.5 miles an hour, established September 16, 1938.

The Cincinnati Enquirer, Vol. XCVIII, No. 291, Wednesday, January 25, 1939, at Page 1, Columns 1 and 2

A U.S. Army Air Corps Curtiss-Wright P-36 Hawk, 12 MD, assigned to Wright Field for flight testing. (U.S. Air Force)

The Oakland Tribune reported:

‘Faster Than Any Man Alive,’ Flier Says After Diving 575 M.P.H.

     BUFFALO, N.Y., Jan. 25.—(AP)—A test pilot who free-power dived a heavily armed pursuit airplane at more than 575 miles per hour claimed today the distinction of having traveled “faster than any other human being.”

     Chief test pilot H. Lloyd Child dropped a Curtiss Hawk 75A through the clouds above Buffalo Airport yesterday at almost 1000 feet a second to exceed “all known speed records,” the Curtiss aeroplane division of the Curtiss-Wright Corporation announced.

     Child was testing the plane for the French Army, which has purchased 100 of the ships. The terrific speed was recorded on instruments installed by the French Government’s representatives, who witnessed the flight.

     The velocity was so great the marker on the indicator exceeded the instrument’s range and moved off the paper roll. Aviation experts said Child probably exceeded 600 miles per hour.

     “I didn’t feel anything,” the test pilot commented, “it was all over too quickly.”

     Child said the dive was part of a day’s work.

     “No danger at all, I would say,” he commented.

     His spare time hobby, skiing, however, “is awful dangerous,” Child asserted.

     “I wouldn’t be surprised if someone would exceed my speed soon. A diving speed of 700 miles per hour is within the realm of possibility,” he added.

Oakland Tribune, VOL. CXXX—NO. 25, Wednesday, January 25, 1939, Page 3, Columns 2 and 3

The prototype Curtiss-Wright Model 75 Hawk, X17Y, s/n 11923. (Curtiss-Wright Corporation)

The Curtiss-Wright Model 75 was a single-seat, single-engine, low wing monoplane with retractable landing gear. The airplane was designed by Donovan Reese Berlin. Curtiss-Wright intended to offer it as a pursuit for the U.S. Army Air Corps. H. Lloyd Child took the prototype, X17Y,¹ for its first flight 6 May 1935.

Donovan Reese Berlin. A scale model of the Model 75 Hawk stands on his desk. (Niagara Aerospace Museum)

After evaluation by the Air Corps at Wright Field, the rival Seversky Aircraft Corporation SEV-1XP was selected by the Air Corps and 77 P-35s were ordered. Don Berlin worked on improving the Model 75, and in 1937, the Air Corps ordered 210 Curtiss P-36As.

Curtiss-Wright P-36A Hawk. (U.S. Air Force)

Curtiss-Wright also offered versions of the Hawk 75 to foreign governments. Variants were available with fixed or retractable gear, a choice of Pratt & Whitney Twin Wasp or Wright Cyclone engines, and various combinations of machine gun and cannon armament.

The Curtiss Hawk 75 A was 28.8 feet (8.78 meters) long with wingspan of 37.3 feet (11.37 meters) and height of 9.25 feet (2.82 meters). The total wing area was 236.0 square feet (21.93 square meters). With a Pratt & Whitney engine, the airplane had an empty weight of 4,713 pounds (2,127.3 kilograms), and gross weight of 5,922 pounds (2,675.7 kilograms).

French Armée de l’air Curtiss H75-C1 chasseur. (Armée de l’air)

The Armée de l’air initially ordered 100 Hawk 75A-1s, designated H75-C1 in French service. Pratt & Whitney Twin Wasp engines (including spares) were ordered separately. They were delivered to France for final assembly, and were unpainted. These airplanes had minor differences from U.S. Army Air Corps P-36As. For example, the instrument markings were metric. It was French custom to have the throttle off when pushed full forward, and wide open when pulled rearward. The pilot’s seat was different in order to fit the standard French parachute.

The French H75-A1 was powered by an air-cooled, supercharged, 1,829.39-cubic-inch-displacement (29.97 liter) Pratt & Whitney Twin Wasp SC-G [Specification Number PW-5028-C]. This was a two-row 14-cylinder radial engine with a compression ratio of 6.7:1. The SC-G was rated at 900 horsepower at 2,550 r.p.m. at 11,000 feet (3,353 meters), and 1,050 horsepower at 2,700 r.p.m., for take off. The engine drove a three-bladed, 10 foot, 1½ inch (3.086 meters) diameter Curtiss Electric constant-speed propeller through a 16:9 gear reduction. The SC-G was 48.00 inches (1.219 meters) in diameter, 59.90 inches (1.521 meters) long, and weighed 1,423 pounds (645 kilograms).

The Hawk 75A-1 had a maximum cruise speed of 260 miles per hour (418 kilometers per hour) at 19,000 feet (5,790 meters). Its maximum speed was 258 miles per hour (413 kilometers per hour) at Sea Level, 290 miles per hour at 8,200 feet (2,500 meters), and 303 miles per hour (488 kilometers per hour) at 19,000 feet (5,790 meters). Although Child demonstrated a dive at over 575 miles per hour, in service, the Hawk was restricted to a maximum dive speed of 455 miles per hour (732 kilometers per hour). The airplane had a service ceiling of 32,800 feet (9,997 meters), and absolute ceiling of 33,700 feet (10,272 meters).

The Armée de l’air H75A-1 was armed with four FN-Browning de Belgique mle 1938 7.5 mm. × 54 mm MAS machine guns, with two mounted on the engine cowl, synchronized to fire through the propeller arc, and one in each wing. 2,200 rounds of ammunition were carried. The 7.5 mm (the bullet diameter was actually 7.78 mm, or .306-caliber) was a shorter, less powerful cartridge than the .303 British (7.7 × 56 mm) or U.S. standard .30-06 Springfield (7.62 × 63 mm) cartridges.

France followed with orders for Hawk 75A-2, 75A-3 and 75A-4 fighters. These had different combinations of guns and engine variants.

After the surrender of France to invaders from Nazi Germany, many Curtiss Hawks made their way to England. In service with the Royal Air Force, these airplanes were called the Mohawk.

Curtiss H75-C1s in service with France, World War II. (Armée de l’air)

Henry Lloyd Child was born at Philadelphia, Pennsylvania, 25 May 1904, the second of two children of Edward Taggart Child, a consulting engineer in shipbuilding, and Lillian Rushmore Cornell Child. He was baptized at the Church of the Good Shepherd, Rosemont, Pennsylvania, 22 December 1913. Child graduated from Flushing High School in Flushing, New York, then attended the Haverford School in Philadelphia.

Henry Lloyd Child, 1926. (The Class Record)

“Skipper” Child majored in mechanical engineering at the University of Pennsylvania where he was a member of the Hexagon Senior Engineering Society and the Phi Sigma Kappa (ΦΣΚ) and Sigma Tau (ΣΤ) fraternities. He was a member of the varsity and all-state soccer team, and also played football and tennis. Child graduated with a bachelor of science degree, 15 June 1926.

After graduation from college, Child went to work for the Curtiss-Wright Corporation as an engineer.

Child joined the United States Navy, 23 November 1927. He was trained as a pilot at Naval Air Station Hampton Roads, Norfolk, Virginia, and was commissioned as an Ensign. He was promoted to lieutenant (junior grade), 7 November 1932, and to lieutenant, 11 November 1935.

While maintaining his commission in the Navy, Child returned to Curtiss-Wright as a test pilot.

Mr. And Mrs. Henry Lloyd Child (née Allene Anne Gausby), 28 October 1939.

Henry Lloyd Child married Miss Allene Ann Gausby of Hamilton, Ontario, Canada, 28 October 1939. They had met in July 1938, while playing in a tennis tournament at Muskoka, Northern Ontario. They would have a daughter, Beverley L. Child.

Miss Allene Anne Gausby

H. Lloyd Child worked for Lockheed from 1958 to 1968, when he retired. He died at Palmdale, California 5 August 1970 at the age of 66 years.

H. Lloyd Child’s high speed dive was the subject of an 8-page article in “True Comics” #6, November 1941. (Parents’ Magazine Press)

See: http://comicbookplus.com/?dlid=24805

Curtiss advertisement, 1940. (Curtiss-Wright Corporation)

¹ At this time, American experimental aircraft were prohibited from carrying the national identifier, “N-,” to lead their registration mark.

© 2022, Bryan R. Swopes

23 January 1909

The Blériot XI in flight, May 1909. (Library of Congress Prints and Photographs Division)
Louis Charles Joseph Blériot. (Library of Congress)
Louis Charles Joseph Blériot. (Library of Congress)

23 January 1909: The Blériot XI made its first flight at Issy-les-Moulineaux, near Paris, France. The airplane was flown by Louis Charles Joseph Blériot. It was designed by Raymond Saulnier and was a development of the earlier Blériot VIII.

Saulnier later founded Morane-Saulnier Aviation—Sociètè Anonyme des Aèroplanes Morane-Saulnier—with the Morane brothers, Léon and Robert.

The Blériot XI was a single-seat, single-engine monoplane. It was 26.24 feet (7.998 meters) long with a wingspan of 25.35 feet (7.727 meters) and overall height of 8 feet (2.438 meters). It had an empty weight of 507 pounds (229.9 kilograms).

Raymond Saulnier

(Sources give conflicting specifications for the Blériot XI, probably because they were often changed in an effort to improve the airplane. Dimensions given here are from the three-view drawings, below.)

In its original configuration, the airplane was powered by an air-cooled, 3.774 liter (230.273 cubic inches) R.E.P.  two-row, seven-cylinder fan engine (or “semi-radial”) which produced 30 horsepower at 1,500 r.p.m., driving a four-bladed paddle-type propeller. The R.E.P. engine weighed 54 kilograms (119 pounds). This engine was unreliable and was soon changed for an air-cooled 3.117 liter (190.226 cubic inch) Alessandro Anzani & Co., 60° three-cylinder “fan”-type radial engine (or W-3) and a highly-efficient Chauvière Intégrale two-bladed propeller. The Anzani engine produced 25 horsepower at 1,400 r.p.m.

Blériot Type XI, front view.
Blériot Type XI, side view.
Blériot Type XI, top view.

The Blériot XI had a maximum speed of 76 kilometers per hour (47 miles per hour) and its service ceiling was 1,000 meters (3,281 feet).

Just over six months from its first flight, on 25 July 1909, Louis Blériot flew his Blériot XI across the English Channel from Calais to Dover. He flew the 25 mile (40 kilometer) distance in 36 minutes. The airplane was slightly damaged on landing.

Blériot’s original airplane is in the collection of the Musee des Arts et Metiers, Paris, France.

The Blériot XI was a successful and influential design. It was widely used by both civilian and military aviators.

The original Blériot XI at Musee des Arts et Metiers (PHGCOM. Use authorized.)
The original Blériot XI at Musee des Arts et Metiers (PHGCOM. Use authorized.)

© 2019, Bryan R. Swopes

22 January 2011, 05:37:57 UTC

H-IIB/Kounoyori 2 lifts off at Tangashima, 05:37:57 UTC, 22 January 2011 (Naritama)
H-IIB 304/Kounotori 2 lifts off at Launch Area Y2, Tangashima, 05:37:57 UTC, 22 January 2011 (Naritama)

22 January 2011: At 05:37:57 UTC (2:37:57 p.m., Japan Standard Time), JAXA, the Japan Aerospace eXploration Agency, launched a two-stage H-IIB rocket carrying an H-II Transfer Vehicle from the Tanegashima Space Center, with supplies for the International Space Station. The Kounotori 2 lifted off from Yoshinobu Launch Complex Y-2 on Tanegashima, an island south of Kyushu, Japan.

The H-II Transfer Vehicle was manufactured by Mitsubishi Heavy Industries. It has an approximate length of 9.8 meters (32.2 feet) and diameter of 4.4 meters (14.4 feet). Kounotori 2 carried 5,300 kilograms (11,685 pounds) of supplies and equipment. The transfer vehicle docked at the ISS on 27 January and remained at the station for 22 days. It empty transfer vehicle reentered the atmosphere on 30 March 2011 and was destroyed.

Kounotori 2 H-II Transfer Vehicle approches International Space Station, 27 January 2011. (NASA ISS026-E-020910)
Kounotori 2 H-II Transfer Vehicle approaches International Space Station, 27 January 2011. (NASA)
JAXA H-IIB Launch Vehicle

The H-IIB orbital launch vehicle is 56.6 meters (185.7 feet) long, with a diameter of 5.2 meters (17.1 feet). Excluding the payload, the rocket has a mass of 531 metric tons (1,170,655 pounds). It is capable of lifting a 19,000 kilogram (41,888 pounds) payload to low Earth orbit, or 8,000 kilograms (17,637 pounds) to a geosynchronous orbit.

The first stage is 38 meters (124.7 feet) long. It has two Mitsubishi LE-7A rocket engines, each rated at 843 kiloNewtons (189,514 pounds) of thrust at Sea Level, and 1,074 kiloNewtons (241,445 pounds) of thrust in vacuum. These engines burn liquid hydrogen propellant with liquid oxygen.

The first stage is equipped with four SRB-A “strap-on” solid rocket boosters, each rated at 2,305 kiloNewtons (518,185 pounds) of thrust, burning polibutadiene.

The total thrust of the H-IIB at launch is 10,907 kiloNewtons (2,451,991 pounds). The solid boosters burn for 1 minute, 54 seconds, while the main engines burn for another 3 minutes, 58 seconds.

The second stage is 11 meters (36.1 feet) long with a diameter of 4 meters (13.1 feet). It is powered by a single Mitsubishi LE-5B engine rated 137.2 kiloNewtons (30,844 pounds) of thrust. It also is fueled with liquid hydrogen and liquid oxygen. It second stage burn time is 8 minutes, 19 seconds.

Kounotori 2/H-IIB 304 was the second launch of a H-IIB rocket. As of August 2015, there have been 5 successful launches.

The first JAXA/Mitsubishi H-IIB Orbital Launch Vehicle, TF-1, at Launch Area Y2, Tanegashima Space Center. (JAXA)
The first JAXA/Mitsubishi H-IIB Orbital Launch Vehicle, TF-1, at Launch Area Y2, Tanegashima Space Center. (JAXA)

© 2019, Bryan R. Swopes

22 January 1970

Boeing 747-121 N736PA, Pan American Clipper Young America, watercolor by John T. McCoy. (SFO Museum)

22 January 1970: Captain Robert M. Weeks, Captain John Noland and Flight Engineer August (“Mac”) McKinney flew the Pan American World Airways Boeing 747-121, N736PA, Clipper Young America, from New York to London on a 6 hour, 14 minute inaugural passenger-carrying flight of the new wide-body jet. Aboard were a cabin crew of 17 and 332 passengers.

Crew members of the first Pan Am Boeing 747 to arrive at Heathrow. (Rolls Press/Pepperfoto/Getty Images via The Guardian)

The Associated Press reported:

The 747 Age Is Here

     LONDON (AP)—A Boeing 747 jetliner arrived in London from New York today on the maiden transatlantic commercial jumbo jet flight.

     An overheated engine grounded the original aircraft and a substitute called Young America left New York at 1:52 a.m. EST, nearly seven hours after the scheduled departure time. The jet, carrying 332 passengers and 20 crew, touched down at London’s Heathrow Airport at 8:06 a.m. EST.

     London Airport services were geared to deal as quickly as possible with the passengers and 30,000 pounds of baggage and cargo aboard the Pan American World Airways jumbo.

     SOME PASSENGERS booked on the return flight to New York switched to other aircraft because of today’s delays, but a Pan Am spokesman said most of the passengers were waiting for the Jumbo.

     The [sic] included actress Raquel Welch, who has been making a television spectacular in London.

     The Boeing took 6 hours 15 minutes on the Atlantic flight. The pilot was Capt. Robert M. Weeks, 49, a veteran of 28 years with Pan Am who has logged more than 15,000 hours on Pan Am routes.

     THE AIRCRAFT drew up at stand 1-29 on Heathrow’s Pier Five at 8:10 a.m., and passengers began disembarking four minutes later.

     One of the passengers, Mrs. Joe Tepera of Fort Worth Tex., told newsmen: “The flight was simply great. Flying in a beautiful plane like that was worth the delay.

     “All the passengers were good humored and when the plane finally took off they applauded. They did the same when it landed. I personally would not hesitate flying in a jumbo again.”

     Michael J. Flynn of Chicago said: “The delay didn’t bother me much. We were given a first class meal. It’s a good plane.”

     BUT ONE PASSENGER, who declined to be named, said he was annoyed at the service aboard the jumbo and the delay caused by switching planes in New York.

     “The plane is simply too big for anyone to be given proper service,” he said.

     Michael Brody, 21-year-old American who claims he wants to give away his multimillion-dollar fortune, was among the passengers.

     “I am here for a rest. I am not going to give away any more money in Britain,” he told newsmen.

     A Pan Am spokesman said the jumbo had been rechristened Young America in New York for the historic flight, but the aircraft carried the name Clipper Victor on its fuselage on arrival here.

     THE HUGE PLANE made most of the smooth flight at 33,000 feet.

     Richard Hobson, air correspondent of the British Press Association, who traveled on the jumbo, said: “From my position in one of the economy sections of the 747 where the seating is nine-abreast, divided by two aisles, was like being in a news theater. A film show—and the plane is equipped for them—would have completed the illusion.”

     Pan Am has received five of the 33 jumbos ordered. Trans World Airlines plans to start jumbo service in March and British Overseas Airways Corp. will receive the first of 12 jumbos early in April and hopes to get them in service in June.

     A British Airport Authority spokesman reported the first passenger cleared all baggage and airport formalities 34 minutes after the jet touched down.

     “IT DOESN’T LOOK bad at all,” he said.

     The spokesman gave this breakdown on times for clearing the jumbo’s passengers:

Time arrive 8:06 a.m. EST.
Doors open: 8:19.
First passenger off plane: 8:20
Last passenger off plane: 8:32.
First passenger into baggage hall: 8:34.
Last passenger into baggage hall: 8:57.
First passenger into immigration: 8: …
Last passenger out of immigration: 8:39.
First passenger into customs: 8:25.
Last passenger out of customs: 9:04.
First passenger to clear airport: 8:46.
Last passenger to clear airport: 9:05.

     Six Pan Am buses took the passengers into London.

Honolulu Star-Bulletin, Vol. 59, No. 22, 22 Jan 1970, Page D-16, Columns 1–8

Pan American World Airways’ Boeng 747-121, N732PA, Clipper Storm King. (Aldo Bidini via Wikimedia)

The 747-100 series was the first version of the Boeing 747 to be built. It was operated by a flight crew of three and was designed to carry 366 to 452 passengers. It is 231 feet, 10.2 inches (70.668 meters) long with a wingspan of 195 feet, 8 inches (59.639 meters) and overall height of 63 feet, 5 inches (19.329 meters). The interior cabin width is 20 feet (6.096 meters), giving it the name “wide body.” Its empty weight is 370,816 pounds (168,199 kilograms) and the Maximum Takeoff Weight (MTOW) is 735,000 pounds (333,390 kilograms).

The 747-100 is powered by four Pratt & Whitney JT9D-7A high-bypass ratio turbofan engines. The JT9D is a two-spool, axial-flow turbofan engine with a single-stage fan section, 14-stage compressor (11 high- and 3 low-pressure stages) and 6-stage turbine (2 high- and 4 low-pressure stages). The engine is rated at 46,950 pounds of thrust (208.844 kilonewtons), or 48,570 pounds (216.050 kilonewtons) with water injection (2½-minute limit). This engine has a maximum diameter of 7 feet, 11.6 inches (2.428 meters), is 12 feet, 10.2 inches (3.917 meters) long and weighs 8,850 pounds (4,014 kilograms).

The 747’s cruise speed is 0.84 Mach (555 miles per hour, 893 kilometers per hour) at 35,000 feet (10,668 meters) and it’s maximum speed is 0.89 Mach (588 miles per hour/946 kilometers per hour). The maximum range at MTOW is 6,100 miles (9,817 kilometers).

The Boeing 747 was MUCH BIGGER than the Boeing 707 that it replaced. (CBS News/Boeing)

N736PA had initially been named Clipper Victor, but the name was changed to Clipper Young America for the inaugural New York to London flight when the 747 scheduled to make that flight—Clipper Young America—suffered mechanical problems. The 747 was hijacked on 2 August 1970 and flown to Cuba. After that incident, N736PA was renamed Clipper Victor — its original name. It was destroyed in a collision with another Boeing 747 at Tenerife, Canary Islands, 27 March, 1977.

Pan American Airways' Boeing 747-121 N736PA, Clipper Young America, at London Heathrow Airport, 22 January 1970. (Getty Images via BBC History)
Pan American Airways’ Boeing 747-121 N736PA, Clipper Young America, at London Heathrow Airport, 22 January 1970. (Getty Images via BBC History)

The 747 has been in production for 53 years. As of January 2022, 1,569 747s of all models had been built. 205 of these were 747-100 series aircraft. On 12 January 2021, Boeing announced that the final 747s, four Boeing 747-8F freighters, had been ordered by Atlas Air Worldwide Holdings, Inc. The final Boeing 747, N862GT, was rolled out of the factory on 3 October 2022. The production of the “jumbo jet” has come to a close.

The final Boeing 747, a 747-8F freighter, N862GT, is rolled out of the factory at Paine Field, 3 October 2022. (Image by PaineAirport.com via Twitter)

© 2023, Bryan R. Swopes

22 January 1968, 22:48:08.86 UTC, T + 00:00:00.86

Apollo 5 Saturn IB (AS-204) lifts off with LM-1 at Launch Complex 37B, Cape Kennedy Air Force Station, Cape Canaveral, Florida, at 22:48:09 UTC, 22 January 1968. (NASA)

22 January 1968: At 22:48:00.86 UTC (5:48:08 a.m., Eastern Standard Time) a Saturn IB rocket lifted off from Launch Complex 37B at the Cape Kennedy Air Force Station, Cape Kennedy, Florida, carrying LM-1, an unmanned Apollo Program lunar lander, into a low-Earth orbit.

AS-204 reached Mach 1 at T + 0:59.8, passing 24,574 feet (7,490.16 meters). First stage separation occurred at T + 02:23.6, at an altitude of 194,228 feet (59,201 meters), with the vehicle accelerating through 7,563 feet per second (2,305 meters per second).

The AS-204 S-IVB engine cut off occurred at T + 09:53 at 536,166 feet (163,423 meters) with the vehicle travelling 25,659 feet per second (7,820 meters per second). Orbital insertion occurred at T + 00:10:03 at an altitude of 88 nautical miles (163 kilometers) with a velocity of 25,684 feet per second (7,828 meters per second). The orbit was elliptical with an apogee of 120 nautical miles (222 kilometers) and perigee of 88 nautical miles (163 kilometers). The orbital period was 88.39 minutes.

Apollo 5 lefts off from Launch Complex (NASA)

The Lunar Module separated from the S-IVB stage at T + 00:53:55.24. It was the allowed to cold-soak for about 3 hours. At T + 03:59.46, the LM’s descent engine was fired but aborted by the guidance computer after 4.0 seconds. A little over 3 hours later, at T + 06:10:42, the descent engine was fired a second time, and burned until T +  06:13:14.7.

The ascent engine fired at  06:12:14.7 while the descent and ascent stages were still joined. The engine burned 60.0 seconds. It was fired a second time at T + 07:44:13.

With the tests completed, the orbits of the separated LM stages were allowed to decay. LM-1 quickly re-entered Earth’s atmosphere and was destroyed.

The purpose of the Apollo 5 mission was to test the Grumman-built Lunar Module in actual spaceflight conditions. Engines for both the descent and ascent stages had to be started in space, and be capable of restarts. Although the mission had some difficulties as a result of programming errors, it was successful and a second test flight with LM-2 determined to be unnecessary and was cancelled.

Apollo 5/Saturn IB (AS-204) clears the tower at Launch Complex 37B, Cape Kennedy Air Force Station, Cape Canaveral, Florida, 22:48 UTC, 22 January 1968. (NASA)

SA-204 ¹ had originally been the scheduled launch vehicle for the Apollo 1 manned orbital flight.

When a fire in the command module killed astronauts Virgil I. (“Gus”) Grissom, Edward H. White and Roger B. Chaffee, 27 January 1967, the rocket was undamaged. It was moved from Launch Complex 39 and reassembled at LC 37B for use as the launch vehicle for Apollo 5.

Apollo 5 Saturn IB AS-204 at Launch Complex 37B, 22 January 1968. (NASA)

The Saturn IB AS-204 was a two-stage, liquid-fueled, heavy launch vehicle. It consisted of a S-IB first stage and S-IVB second stage. The total height of AS-204 was 181 feet, 0.355 inches (55.17782 meters). The Saturn IB rocket stood 141 feet, 8.644 inches (43.19636 meters), without payload. It had a maximum diameter of 22.8 feet (6.949 meters), and the span across the first stage guide fins was 40.7 feet (12.405 meters). Its empty weight was 159,000 pounds (72,122 kilograms) and at liftoff, Apollo 5 weighed 1,285,044 pounds (582,886 kilograms). The Saturn IB was capable of launching a 46,000 pound (20,865 kilogram) payload to Earth orbit.

The S-IB first stage was built by the Chrysler Corporation Space Division at the Michoud Assembly Facility near New Orleans, Louisiana. The first stage was 80 feet, 4.089 inches (24.4878606 meters) long, with a maximum diameter of 21 feet, 8.0 inches (6.604 meters) (21 feet, 5.0 inches across the Redstone tanks). The stage was powered by eight Rocketdyne H-1 engines, burning RP-1 and liquid oxygen. Eight Redstone rocket fuel tanks, with four containing the RP-1 fuel, and four filled with liquid oxygen, surrounded a Jupiter rocket fuel tank containing liquid oxygen. Total thrust of the S-IB stage was 1,666,460 pounds (7,417.783 kilonewtons) and it carried sufficient propellant for a maximum 4 minutes, 22.57 seconds of burn. The first stage of AS-204 was S-IB-4.

Saturn S-IB first stages in final assembly at Michoud, 1967. (NASA GPN-2000-000043)

The McDonnell Douglas Astronautics Company S-IVB stage was built at Huntington Beach, California. The stage was 61 feet, 4.555 inches (18.708497 meters) long, with a maximum diameter of 21 feet, 8.0 inches (6.604 meters). It was powered by a single Rocketdyne J-2 engine, fueled by liquid hydrogen and liquid oxygen. The J-2 produced 229,714 pounds of thrust (1,021.819 kilonewtons), at high thrust, and 198,047 pounds (880.957 kilonewtons) at low thrust). The second stage carried enough fuel for 7 minutes, 49.50 seconds burn at high thrust.

Three-view drawing of the Lunar Module with dimensions. (NASA)

The Lunar Module was a two-stage vehicle designed to transport two astronauts from Lunar Orbit to the surface of the Moon, provide shelter and a base of operations while on the Moon, and then return the astronauts to lunar orbit, rendezvousing with the Apollo Command and Service Module.  It was designed and built by the Grumman Aerospace Corporation at Bethpage, Long Island, New York.

The Descent Stage incorporated extendable landing gear, a hypergolic-fueled rocket engine to brake from orbital speed, establish a landing trajectory, and then decelerate for landing. The TRW Space Technology Laboratories Lunar Module Descent Engine (LMDE) produced a maximum of 10,500 pounds of thrust (46.706 kilonewtons), and could be throttled from 10–100% thrust. The stage also carried support equipment, oxygen, water, etc., needed by the astronauts, and equipment for use during surface activities.

To return to Lunar Orbit, the Descent Stage was left behind, and the Bell Aerosystems Lunar Module Ascent Engine (LMAE) was fired. This engine also used hypergolic fuel and produced 3,500 pounds of thrust (15.569 kilonewtons).

LM-1 weighed 36,342 pounds (16,484 kilograms).

Apollo Lunar Module LM-1 being assembled with upper stage. (NASA)
Apollo Lunar Module LM-1 being assembled with upper stage. (NASA)

¹ The Apollo Program Saturn rockets were designated as both AS-xxx and SA-xxx. The AS-xxx designation was applied to the complete vehicle, or “full stack,” while the SA-xxx designation applied to only the multi-stage rocket assembly.

© 2019, Bryan R. Swopes