8 January 1944: At Muroc Army Air Field (later to become Edwards Air Force Base), the Lockheed Aircraft Corporation’s chief engineering test pilot, Milo Garrett Burcham, took the prototype Model L-140, the Army Air Forces XP-80 Shooting Star, 44-83020, for its first flight.
Tex Johnston, who would later become Boeing’s Chief of Flight Test, was at Muroc testing the Bell Aircraft Corporation XP-59 Airacomet. He wrote about the XP-80’s first flight in his autobiography:
Early on the morning of the scheduled first flight of the XP-80, busload after busload of political dignitaries and almost every general in the Army Air Force arrived at the northwest end of the lake a short distance from our hangar. Scheduled takeoff time had passed. I was afraid Milo was having difficulties. Then I heard the H.1B fire up, and he taxied by on the lake bed in front of our ramp. What a beautiful bird—another product of Kelly Johnson, Lockheed’s famed chief design engineer—tricycle gear, very thin wings, and a clear-view bubble canopy. Milo gave me the okay sign.
This was the initial flight of America’s second jet fighter, and what a flight it was. Milo taxied along in front of generals and politicians, turned south and applied full power. I could see the spectators’ fingers going in their ears. The smoke and sand were flying as the engine reached full power, and the XP-80 roared down the lake. Milo pulled her off, retracted gear and flaps, and held her on the deck. Accelerating, he pulled up in a climbing right turn, rolled into a left turn to a north heading, and from an altitude I estimated to be 4,000 feet [1,219 meters] entered a full-bore dive headed for the buses. He started the pull-up in front of our hangar and was in a 60-degree climb when he passed over the buses doing consecutive aileron rolls at 360 degrees per second up to 10,000 feet [3,048 meters]. He then rolled over and came screaming back. He shot the place up north and south, east and west, landed and coasted up in front of the spectators, engine off and winding down. I have never seen a crowd so excited since my barnstorming days. I returned to the office and dictated a wire to [Robert M.] Stanley [Chief Test Pilot, Bell Aircraft Corporation] “WITNESSED LOCKHEED XP-80 INITIAL FLIGHT STOP VERY IMPRESSIVE STOP BACK TO DRAWING BOARD STOP SIGNED, TEX“ I knew he would understand.
—Tex Johnston: Jet-Age Test Pilot, by A.M. “Tex” Johnston with Charles Barton, Smithsonian Books, Washington, D.C., 1 June 1992, Chapter 5 at Pages 127–128.
A few minor problems caused Burcham to end the flight after approximately five minutes but these were quickly resolved and flight testing continued.
The XP-80 was the first American airplane to exceed 500 miles per hour (805 kilometers per hour) in level flight.
The Lockheed XP-80 was designed by Clarence L. “Kelly” Johnson and a small team of engineers that would become known as the “Skunk Works,” in response to a U.S. Army Air Corps proposal to build a single-engine fighter around the de Havilland Halford H.1B Goblin turbojet engine. (The Goblin powered the de Havilland DH.100 Vampire F.1 fighter.)
Lockheed Aircraft Corporation was given a development contract which required that a prototype be ready to fly within just 180 days.
The XP-80 was a single-seat, single-engine airplane with straight wings and retractable tricycle landing gear. Intakes for engine air were placed low on the fuselage, just forward of the wings. The engine exhaust was ducted straight out through the tail. For the first prototype, the cockpit was not pressurized but would be on production airplanes.
As was customary for World War II U.S. Army Air Forces aircraft, the prototype was camouflaged in non-reflective Dark Green with Light Gull Gray undersides. The blue and white “star and bar” national insignia was painted on the aft fuselage, and Lockheed’s winged-star corporate logo was on the nose and vertical fin. Later, the airplane’s radio call, 483020 was stenciled on the fin in yellow paint. The number 20 was painted on either side of the nose in large block letters. Eventually the tip of the nose was painted white and a large number 78 was painted just ahead of the intakes in yellow block numerals. Early in the test program, rounded tips were installed on the wings and tail surfaces. This is how the XP-80 appears today.
The XP-80 is 32 feet, 911/16 inches (9.9997 meters) long with a wingspan of 37 feet, ⅞-inch (11.2998 meters) and overall height of 10 feet, 21/16 inches (3.1004 meters). It had a Basic Weight for Flight Test of 6,418.5 pounds (2,911.4 kilograms) and Gross Weight (as actually weighed prior to test flight) of 8,859.5 pounds (4,018.6 kilograms).
The Halford H.1B Goblin used a single-stage centrifugal-flow compressor, sixteen combustion chambers, and single-stage axial-flow turbine. It had a straight-through configuration rather than the reverse-flow of the Whittle turbojet from which it was derived. The H.1B produced 2,460 pounds of thrust (10.94 kilonewtons) at 9,500 r.p.m., and 3,000 pounds (13.34 kilonewtons) at 10,500 r.p.m. The Goblin weighed approximately 1,300 pounds (590 kilograms).
The XP-80 has a maximum speed of 502 miles per hour (808 kilometers per hour) at 20,480 feet (6,242 meters) and a rate of climb of 3,000 feet per minute (15.24 meters per second). The service ceiling is 41,000 feet (12,497 meters).
Unusual for a prototype, the XP-80 was armed. Six air-cooled Browning AN-M2 .50-caliber machine guns were placed in the nose. The maximum ammunition capacity for the prototype was 200 rounds per gun.
The Halford engine was unreliable and Lockheed recommended redesigning the the fighter around the larger, more powerful General Electric I-40 (produced by GE and Allison as the J33 turbojet). The proposal was accepted and following prototypes were built as the XP-80A.
Lockheed built 1,715 P-80s for the U.S. Air Force and U.S. Navy. They entered combat during the Korean War in 1950. A two-seat trainer version was even more numerous: the famous T-33A Shooting Star.
Lockheed XP-80 Shooting Star 44-83020 was used as a test aircraft and jet trainer for several years. In 1949, it was donated to the Smithsonian Institution. 44-83020 is on display at the Jet Aviation exhibit of the National Air and Space Museum. It was restored beginning in 1976, and over the next two years nearly 5,000 man-hours of work were needed to complete the restoration.
© 2019, Bryan R. Swopes