Tag Archives: Aircraft Accident

12 August 1985

Japan Air Lines’ Boeing 747-146SR, JA8119. (Robin787)

12 August 1985: The worst accident involving a single aircraft occurred when a Boeing 747 operated by Japan Air Lines crashed into a mountain in the Gunma Prefecture, killing 520 persons. There were just 4 survivors.

JAL Flight 123 was a Boeing 747-146SR, registration JA8119. It departed Tokyo International Airport enroute Osaka International Airport. There were 15 crewmembers, led by Captain Masami Takahama, with First Officer Yutaka Sasaki and Second Officer Hiroshi Fukuda. There were 509 passengers aboard.

Flight 123 lifted off at 6:12 p.m., 12 minutes behind schedule. 12 minutes after takeoff, as the 747 was at its cruising altitude, the fuselage rear pressure bulkhead suddenly failed, causing explosive decompression of the cabin. Cabin air then rushed into the unpressurized tail section. The resulting overpressure caused a failure of the APU bulkhead and the support structure for the vertical fin. The airliner’s vertical fin separated from the fuselage. All four of the 747’s hydraulic systems were ruptured. The hydraulic system was quickly depleted, leaving the crew unable to move any flight control surfaces.

JAL 123 following loss of its vertical fin.

Control of the airplane began to quickly deteriorate and the only control left was to vary the thrust on the four turbofan engines. The flight crew began an emergency descent and declared an emergency.

For the next 32 minutes, JA8119 flew in large uncontrolled arcs. The 747 rolled into banks as steep as 60°, and at one point, the nose pitched down into a dive reaching 18,000 feet per minute (91 meters per second). The crew was able to bring the 747 back to a nose-high attitude at about 5,000 feet (1,524 meters), but again lost control. At 6:56 p.m., JAL 123 disappeared from air traffic control radar.

Mount Takamagahara, 1,978.6 meters above Sea Level. (Σ64, via Wikipedia)

The airliner struck a ridge on 1,978.6 meter (6,491.5 feet) Mount Takamagahara at 340 knots (391 miles per hour, or 630 kilometers per hour), then impacted a second time at an elevation of 5,135 feet (1,565 meters). The aircraft was totally destroyed.

Investigation of the accident determined that the 747 had previously been damaged when its tail struck the runway during a landing, 2 June 1978. The rear pressure bulkhead had cracked as a result of the tail strike, but was repaired by a team of Boeing technicians. After the crash, it was discovered that the repair had not been correctly performed. Boeing engineers calculated that it could be expected to fail after 10,000 cycles. It was on the 12,219th cycle when the bulkhead failed.

Boeing 747-146SR JA8119 had accumulated a total of 25,030 flight hours by the time of the accident, on 18,835 flights.

Computer-generated image depicting the damage to JAL Flight 123. (Anynobody via Wikipedia)

© 2017, Bryan R. Swopes

9 August 1896

Karl Wilhelm Otto Lilienthal. (NASM)

9 August 1896: Pioneering aviator Karl Wilhelm Otto Lilienthal was fatally injured when his glider stalled on his fourth flight of the day.

Flying at the Rhinow Hills, near Stölln in what is now northern Germany, he had been gliding as far as 820 feet (250 meters). The weather was windy. As he sailed off the slope, his glider suddenly pitched up. Lilienthal tried to correct the attitude by swinging back and fourth, but he had lost lift and the glider fell about 50 feet (15 meters) to the ground.

Seriously injured, he was taken to a doctor who determined that he had fractured the third cervical vertebra. He was then transported by train to Berlin where a very successful surgeon, Professor Ernst von Bergman, had a clinic.

Lilienthal died about 36 hours after his injury, 10 August 1896. Among his last words were, “Sacrifices must be made.”

His discoveries in controlled flight inspired the Wright Brothers to pursue aviation.  He is considered to be one of the most influential of the early pioneers of flight, and is known as The Father of Flight.

Otto Lilienthal flying one of his gliders.

© 2017, Bryan R. Swopes

8 August 1957

Mikoyan-Gurevich Ye-50/3 (Mikoyan Design Bureau via The Corner of the Sky)
Nikolay Arkadevich Korovin

8 August 1957: At Ramenskoye Airfield, Moscow, Russia, senior test pilot Lieutenant Colonel Nikolay Arkadevich Korovin (Коровин Николай Аркадьевич) was scheduled to take an experimental prototype interceptor to an altitude of 20,000 meters (65,617 feet).

The airplane was the Mikoyan-Gurevich Ye-50/3 (also known as the E-50/3). It was powered by an afterburning turbojet engine and a liquid-fueled rocket engine. This was the third prototype of the series.

The three Ye-50 prototypes were variants of the MiG 21. They were developed from the earlier MiG Ye-2, with a rocket engine installed. This was not merely a booster engine, but the aircraft carried sufficient fuel for as much as 20 minutes of rocket-assisted flight. A planned production interceptor, the Ye-50A, was designated MiG 23U. Only one of these was built.

Mikoyan-Gurevich Ye-50/3 (Mikoyan Design Bureau via The Corner of the Sky)

The Ye-50/3 differed from Ye-50/2 with an increased fuel capacity and extended air intake with sharp leading edge. The Ye-50/3 was 4.85 meters (48.72 feet) long with a wingspan of 8.11 meters (21.61 feet). The aircraft had an empty weight of 5,920 kilograms (13,051 pounds), and maximum takeoff weight of 8,500 kilograms (18,739 pounds).

The Ye-50/3 was powered by an A.A. Mikulin AM-9E afterburning turbojet engine rated at 3,800 kilograms force ( pounds thrust) and a liquid-fueled Dushkin S-155 rocket engine. The S-155 used a hypergolic mixture of nitric acid and kerosene as fuel. It produced 1,300 kgf (2,866 pounds of thrust).

Mikoyan-Gurevich Ye-50/3 (Mikoyan Design Bureau via The Corner of the Sky)

The Ye-50/3 had been completed in April 1957. Prior to 8 August, Ye-50/3 had made 10 test flights, 6 of which successfully used the rocket engine. It had a maximum speed of 2,460 kilometers per hour (1,529 miles per hour), or Mach 2.33. The service ceiling was 23,000 meters (75,460 feet. Its range was 475 kilometers (295 miles).

The Ye-50/3 was the only one of the three prototypes to be armed. It carried two Nudelman-Rikhter NR-30 30 mm autocannon.

Mikoyan-Gurevich Ye-50/3 (Mikoyan Design Bureau via The Corner of the Sky)

Ramenskoye Airfield was very busy that day. Colonel Korovin’s launch was delayed by traffic on the runway. Finally, he took of at 12:50 p.m. and accelerated into a climb.

At 1:01 p.m., Colonel Korovin radioed that the aircraft was in a spin. 30 seconds later, he called that he was ejecting.

The Ye-50/3 crashed near the village of Radovitsy, approximately 100 kilometers (62 miles) southeast of Ramenskoye. The body of Colonel Korovin was located about 150 meters (164 yards) from the crash site, still in his ejection seat. The parachute had not opened, and the test pilot had been killed on impact.

The accident investigation found that during the delay to takeoff, the liquid oxidizer accumulated in the combustion chamber. This caught fire as the prototype took off. The rocket engine’s turbopump exploded. The explosion damaged the flight control system and the prototype caught fire. The fire burned away a portion of the airplane’s vertical fin. When it entered a spin, Colonel Korovin was unable to recover. It was found that he had removed his gloves and tried to manually pull the ejection seat parachute release cable, but to no avail.

On 9 September 1957, Lieutenant Colonel Korovin was posthumously named a Hero of the Soviet Union.

Cockpit of Mikoyan-Gurevich Ye-50/3. (Mikoyan Design Bureau via The Corner of the Sky)
Коровин Николай Аркадьевич

Nikolay Arkadevich Korovin was born 7 May 1920 at the village of Galanovo in the Votsk Autonomous Oblast (now, the Udmurt Republic). His family were peasants who worked on a collective farm. Korovin completed six grades of formal education.

In 1938 Korovin joined the Red Army. He received further education at a military school in Perm, a city in Russia near the Ural Mountains, graduating in 1939. The following year, he completed pilot training at the Stalingrad Military Aviation School.

From 1941 through 1944, Korovin served as a pilot instructor at Chkalovskaya (now Orenburg, Kazakhstan). In March 1944, he was assigned to combat operations, first with the 91st Guards Aviation Regiment (Ground Attack), and then the 92nd Guards. He fought on the second Ukrainian Front, and in Hungary, Checkoslavakia and Austria. He flew 66 combat missions in the Ilyushin Il-2 Штурмовик (Šturmovík) during the Great Patriotic War.

The Ilyushin Il-2 Šturmovík was the most-produced aircraft of the Second World War. (NASM)

Korovin remained in the Soviet Air Force following the War. He graduated from a senior officers tactical school at Taganrog, Rostov Oblast, in 1950, and then, in 1951, became a senior test pilot for the State Red Banner Scientific-Testing Institute for the Air Force (GK NII VVS). In 1955, Korovin flew government tests of the MiG 19.

During his military career, Lieutenant Colonel Nikolay Arkadevich Korovin was awarded the Order of Lenin, Order of the Red Banner, Order of the Patriotic War 1st Degree, and Order of the Red Star (two awards). His remains were buried at the military cemetery at Chkalovskaya.

© 2017, Bryan R. Swopes

 

8 August 1955

8 August 1955: While being carried aloft by a Boeing B-29 Superfortress, the Bell X-1A was being readied for it’s next high-altitude supersonic flight by NACA test pilot Joe Walker. During the countdown, an internal explosion occurred. Walker was not injured and was able to get out. The X-1A was jettisoned. It crashed onto the desert floor and was destroyed.

A number of similar explosions had occurred in the X-1D, X-1-3 and the X-2. Several aircraft had been damaged or destroyed, and Bell Aircraft test pilot Skip Ziegler was killed when an X-2 exploded during a captive flight. A flight engineer aboard the B-29 mothership was also killed. The B-29 was able to land but was so heavily damaged that it never flew again.

Debris from the X-1A crash site was brought back to Edwards AFB for examination. It was discovered that a gasket material used in the rocket engine fuel systems was reacting with the fuel, resulting in the explosions. The problem was corrected and the mysterious explosions stopped.

Test pilot Joe Walker “horsing around” with the Bell X-1A, 1955. (NASA)

© 2015, Bryan R. Swopes

6 August 1945

Major Richard Ira Bong, United States Army Air Forces. (U.S. Air Force)

6 August 1945: After serving three combat tours flying the Lockheed P-38 Lightning in the Southwest Pacific, Major Richard Ira Bong, Air Corps, United States Army, was assigned as an Air Force acceptance test pilot for new Lockheed P-80 Shooting Star jet fighters at the Lockheed Air Terminal, Burbank, California.

The P-80A was a brand new jet fighter, and Major Bong had flown just 4 hours, 15 minutes in the type during 12 flights.

Shortly after takeoff in P-80A-1-LO 44-85048, the primary fuel pump for the turbojet engine failed. A back-up fuel pump was not turned on. The Shooting Star rolled upside down and Bong bailed out, but he was too low for his parachute to open and he was killed. The jet crashed at the intersection of Oxnard Street and Satsuma Avenue, North Hollywood, California, and exploded.

Site of the crash of Major Richard I. Bong’s Lockheed P-80A-1-LO fighter, 44-85048, at Oxnard Street and Satsuma Avenue, North Hollywood, California. (Contemporary news photograph)
This graphic appeared in the Los Angles Times, 7 August 1945, at Page 3. (Los Angeles Times)
General Douglas MacArthur with Major Richard I. Bong.
General Douglas MacArthur with Major Richard I. Bong.

Richard I. Bong was known as the “Ace of Aces” for scoring 40 aerial victories over Japanese airplanes between 27 December 1942 and 17 December 1944 while flying the Lockheed P-38 Lightning. He was awarded the Medal of Honor, which was presented by General Douglas MacArthur, 12 December 1944. [The following day, General MacArthur was promoted to General of the Army.]

The citation for Major Bong’s Medal of Honor reads: “For conspicuous gallantry and intrepidity in action above and beyond the call of duty in the Southwest Pacific area from 10 October to 15 November 1944. Though assigned to duty as gunnery instructor and neither required nor expected to perform combat duty, Major Bong voluntarily and at his own urgent request engaged in repeated combat missions, including unusually hazardous sorties over Balikpapan, Borneo, and in the Leyte area of the Philippines. His aggressiveness and daring resulted in his shooting down eight enemy airplanes during this period.”

General of the Army Henry H. (“Hap”) Arnold and Major Richard I. Bong, circa 1945.

The Lockheed P-80-1-LO was the United States’ first operational jet fighter. It was a single-seat, single-engine low-wing monoplane powered by a turbojet engine. The fighter was designed by a team of engineers led by Clarence L. (“Kelly”) Johnson. The prototype XP-80A, 44-83020, nicknamed Lulu-Belle, was first flown by test pilot Tony LeVier at Muroc Army Air Field (now known as Edwards Air Force Base), 8 January 1944.

Lockheed P-80A-1-LO shooting Star 44-85004, similar to the fighter being test flown by Richard I. Bong, 6 August 1945. (U.S. Air Force)

The P-80A was a day fighter, and was not equipped for night or all-weather combat operations. The P-80A was 34 feet, 6 inches (10.516 meters) long with a wingspan of 38 feet, 10.5037 inches (11.84919 meters) ¹ and overall height of 11 feet, 4 inches (3.454 meters).

The leading edges of the P-80A’s wings were swept aft 9° 18′ 33″. They had an angle of incidence of +1° at the root and -0° 30′ at the tip. There was 3° 50′ dihedral. The total wing area was 237.70 square feet (22.083 square meters).

The fighter had an empty weight of 7,920 pounds (3,592 kilograms) and a gross weight of 11,700 pounds (5,307 kilograms). The maximum takeoff weight was 14,000 pounds (6,350 kilograms).

Lockheed P-80 Shooting Star production, alongside P-38 Lightnings. (SDASM)

Early production P-80As were powered by either an Allison J33-A-9 or a General Electric J33-GE-11 turbojet engine. The J33 was a licensed version of the Rolls-Royce Derwent. It was a single-shaft turbojet with a 1-stage centrifugal compressor section and a 1-stage axial-flow turbine. The -9 and -11 engines were rated at 3,825 pounds of thrust (17.014 kilonewtons). The J33s were 8 feet, 6.9 inches (2.614 meters) long, 4 feet, 2.5 inches (1.283 meters) in diameter and weighed 1,775 pounds (805 kilograms).

The P-80A had a cruising speed of 445 miles per hour (716 kilometers per hour) at 20,000 feet (6,096 meters). Its maximum speed was 548 miles per hour (882 kilometers per hour) at 2,700 feet (823 meters) and and 501 miles per hour (806 kilometers per hour) at 34,700 feet (10,577 meters).² The service ceiling was 45,000 feet (13,716 meters).

Lockheed P-80A-1-LO Shooting Star 44-85155, similar to the jet fighter which Major Bong was flying, 6 August 1945. (U.S. Air Force)

The P-80A Shooting Star was armed with six air-cooled Browning AN-M2 .50-caliber aircraft machine guns mounted in the nose.

Dick Bong poses with “Marge,” his Lockheed P-38J Lightning. A large photograph of his fiancee, Miss Marjorie Vattendahl, is glued to the fighter’s nose.

¹ Wing span with rounded wing tips. P-80As with squared (“clipped”) tips had a wing span of 37 feet, 7.5037 inches (11.46819 meters).

² Several hundred of the early production P-80 Shooting stars had all of their surface seams filled, and the airplanes were primed and painted. Although this process added 60 pounds (27.2 kilograms) to the empty weight, the decrease in drag allowed a 10 mile per hour (16 kilometers per hour) increase in top speed. The painted surface was difficult to maintain in the field and the process was discontinued.

© 2018, Bryan R. Swopes