Tag Archives: Aircraft Accident

20 December 1962

Milton O. Thompson with a Lockheed JF-104A Starfighter at Edwards Air Force Base, circa 1962. The JF-104A is similar to the one he ejected from, 20 December 1962. (NASA)

20 December 1962: Milton Orville Thompson, a NASA test pilot assigned to the X-15 hypersonic research program, was conducting a weather check along the X-15’s planned flight path from Mud Lake, Nevada, to Edwards Air Force Base in California, scheduled for later in the day. Thompson was flying a Lockheed F-104A-10-LO Starfighter, Air Force serial number 56-749, call sign NASA 749.

NASA 749, a Lockheed JF-104A Starfighter, 56-749, with an ALSOR sounding rocket on a centerline mount, at Edwards Air Force Base. Right front quarter view. (NASA)
NASA 749, a Lockheed JF-104A Starfighter, 56-749, with an ALSOR sounding rocket on a centerline mount, at Edwards Air Force Base. (NASA)

In his autobiography, At the Edge of Space, Thompson described the day:

“The morning of my weather flight was a classic desert winter morning. It was cold, freezing in fact, but  the sky was crystal clear and there was not a hint of a breeze—a beautiful morning for a flight.”

Completing the weather reconnaissance mission, and with fuel remaining in the Starfighter’s tanks, Milt Thompson began practicing simulated X-15 approaches to the dry lake bed.

X-15 pilots used the F-104 to practice landing approaches. The two aircraft were almost the same size, and with speed brakes extended and the flaps lowered, an F-104 had almost the same lift-over-drag ratio as the X-15 in subsonic flight. Thompson’s first approach went fine and he climbed back to altitude for another practice landing.

Lockheed F-104A-10-LO Starfighter 56-749 (NASA 749) carrying a sounding rocket on a centerline mount. (NASA)
Lockheed F-104A-10-LO Starfighter 56-749 (NASA 749) carrying an ALSOR sounding rocket on a centerline mount. (NASA)

When Milt Thompson extended the F-104’s flaps for the second simulated X-15 approach, he was at the “high key”— over Rogers Dry Lake at 35,000 feet (10,668 meters) — and supersonic. As he extended the speed brakes and lowered the flaps, NASA 749 began to roll to the left. With full aileron and rudder input, he was unable to stop the roll. Adding throttle to increase the airplane’s airspeed, he was just able to stop the roll with full opposite aileron.

Thompson found that he could maintain control as long as he stayed above 350 knots (402 miles per hour/648 kilometers per hour) but that was far too high a speed to land the airplane. He experimented with different control positions and throttle settings. He recycled the brake and flaps switches to see if he could get a response, but there was no change. He could see that the leading edge flaps were up and locked, but was unable to determine the position of the trailing edge flaps. He came to the conclusion that the trailing edge flaps were lowered to different angles.

Thompson called Joe Walker, NASA’s chief test pilot, on the radio and explained the situation:

     I told him the symptoms of my problem and he decided that I had a split trailing edge flap situation with one down and one up.

     He suggested I recycle the flap lever to the up position to attempt to get both flaps up and locked. I had already tried that, but I gave it another try. Joe asked if I had cycled the flap lever from the up to the takeoff position and then back again. I said no. I had only cycled the flap lever from the up position to a position just below it and then back to the up position. Joe suggested we try it his way. I moved the flap lever from the up position all the way to the takeoff position and then back to the up position. As soon as I moved the lever to the takeoff position, I knew I had done the wrong thing.

     The airplane started rolling again, but this time I could not stop it. The roll rate quickly built up to the point that I was almost doing snap rolls. Simultaneously, the nose of the airplane started down. I was soon doing vertical rolls as the airspeed began rapidly increasing. I knew I had to get out quick because I did not want to eject supersonic and I was already passing through 0.9 Mach. I let go of the stick and reached for the ejection handle. I bent my head forward to see the handle and then I pulled it. Things were a blur from that point on.

At the Edge of Space: The X-15 Flight Program, by Milton O. Thompson, Smithsonian Institution Press, Washington and London, 1992. Chapter 5 at Pages 119–120.

Impact crater caused by crash of Milt Thompson's Lockheed F-104 Starfighter, 20 Decemver 1962. NASA)
Impact crater caused by the crash and explosion of Milt Thompson’s Lockheed JF-104A Starfighter, 20 December 1962. (NASA)

As Thompson descended by parachute he watched the F-104 hit the ground and explode in the bombing range on the east side of Rogers Dry Lake. He wrote, “It was only 7:30 a.m. and still a beautiful morning.”

© 2018, Bryan R. Swopes

18 December 1969

Lockheed SR-71A 69-7953. (U.S. Air Force)
Lockheed SR-71A 61-7953. (U.S. Air Force)
Colonel Joseph W. Rogers with a Lockheed SR-71A. (U.S. Air Force)
Colonel Joseph W. Rogers with a Lockheed “Blackbird.” (U.S. Air Force)

18 December 1969: Colonel Joseph William Rogers and Major Gary Heidelbaugh were flying  Lockheed SR-71A 61-7953 to test a new system installation followed by a training mission. The functional test had gone well and the Blackbird rendezvoused with a KC-135 tanker before proceeding with the mission.

After coming off the tanker, Colonel Rogers (call sign “Dutch 68”) radioed the regional air traffic control center for permission to climb through all flight levels to 60,000 feet (18,288 meters), or Flight Level Six Zero Zero.

A short transcript of the radio and intercom transmissions follows:

(Pilot, Colonel Joseph W. Rogers; RSO, Major Gary Heidelbaugh; L.A. Center: Los Angeles Center, the Federal Aviation Administration Air Traffic Control Center at Palmdale, California. Times listed are UTC.)

Pilot’s station of a Lockheed SR-71A. (NASM)

Pilot: “Los Angeles Center, Dutch 68.” [2106:45]

L.A. Center: “Dutch 68, rog, loud and clear. How me?”

Pilot: “Roger, you’re loud and clear. I’m in a left turn flight level two six zero, requesting climb above six zero zero Route Aqua.”

L.A. Center: “Rog, your routing is approved. Climb and maintain above 600 and squawk 4400.”

Pilot: “Four four squawking.” [2107:13]

L.A. Center: “Dutch 68, Rog. Have you radar contact. Report 310 climbing.” [2107:27]

Pilot: “Roger.”

Pilot: “Okay, I’m going to light them off, Gary.” [est 2107:30]

RSO: “Rog.”

RSO: “That’s our heading.”

Pilot: “Roger.”

RSO: “What caused all that?” [est 2108:00]

Pilot: “I don’t know.”

RSO: “. . . Climbing.”

Pilot: “Let’s go.” [est 2108:15] CREW EJECTS

L.A. Center: “Dutch 68. Say your altitude.” [2110:30]

L.A. Center: “Dutch 68. Say your altitude.” [2110:50]

L.A. Center: “Dutch 68, Dutch 68, Los Angeles.” [2111:12]

L.A. Center: “Dutch 68, Dutch 68, Los Angeles.” [2111:28]

When Colonel Rogers advanced the SR-71’s throttles to go into afterburner for the climb, the compressor sections of both engines stalled. (Compressor stall is a condition that occurs when airflow through the engine intake is disrupted. Normal flow ceases, the engine stops producing thrust, and there can be violent oscillations and uncontained failure of the compressor section.) The SR-71A slowed abruptly and then violently pitched upward. Rogers said, “Let’s go,” and both men ejected from the out-of-control airplane.

Rogers and Heidelbaugh safely parachuted to the ground. 61-7953 crashed near Shoshone, California, and was totally destroyed by the crash and fire that followed.

The accident investigation determined that a small roll of 2″-wide (5.08 centimeters) duct tape was lodged inside one of the tubes of the airplane’s pitot-static system. When the new system had been installed, it required that the pitot-static tubing be modified and rerouted. A technician apparently placed the rolled duct tape inside an open section of tubing to prevent entry of dirt or foreign objects. When the tubing was reassembled, this makeshift plug was not removed. Post crash testing showed that the plug did not totally close off airflow, but that it decreased it, causing the altimeter to read too high and the airspeed indicator too fast. The normal test of the pitot-static system following the modification did not reveal the problem.

A Lockheed SR-71 Pratt & Whitney J58 turbo ramjet engine running on a test stand, in full afterburner.

When Joe Rogers advanced the throttles, he was at approximately 27,000 feet (8,230 meters) rather than the indicated 25,000 feet (7,620 meters). He was also about 30 miles per hour (48 kilometers per hour) slower than indicated.  The sudden demand for increased airflow as the throttles advanced could not be met by the thinner, slower air, and the compressors stalled.

Joe Rogers was a fighter pilot in World War II, the Korean War and the Vietnam War. He was a highly experienced test pilot with considerable experience in Mach 2+, high-altitude aircraft. He had been the commanding officer of the F-12/SR-71 Test Force at Edwards Air Force Base. Ten years and three days before this accident, he had set a World Speed Record while flying a Convair F-106A Delta Dart. (See TDiA post for 15 December 1959)

The wreck of Lockheed SR-71A 61-7953 burning near Shoshone, California, 18 December 1969.
The wreck of Lockheed SR-71A 61-7953 burning near Shoshone, California, 18 December 1969. (Check-Six.com)

© 2016, Bryan R. Swopes

Captain Sir John William Alcock, K.B.E., D.S.C. (5 November 1892 – 18 December 1919)

Sir John William Alcock, by Sir John Lavery, R.A., 1919
Sir John William Alcock, oil on canvas, by Sir John Lavery, R.A., 1919

18 December 1919: Captain Sir John William Alcock, K.B.E., D.S.C., a test pilot for Vickers Ltd., was flying the prototype Vickers Viking seaplane, G-EAOV, to the Paris Air Show–1919, at the Grand Palais, Champs Elysees. After crossing the English Channel, he attempted to land north of Rouen, in foggy conditions. A contemporary news article described the event:

THE DEATH OF SIR JOHN ALCOCK

It is with the most profound regret that we have to record the fatal accident of Sir John Alcock, which occurred on the afternoon of December 18, while he was engaged in taking a new Vickers machine to Paris in connection with the Salon. It appears that the machine when nearing Rouen had great difficulty in negotiating a strong wind. A farmer at Côte d’Evrard, about 25 miles north of Rouen, saw the machine come out of the fog, commence to fly unsteadily, and—it was then about 1 o’clock—it suddenly crashed into the ground. Sir John Alcock was taken from the wreck, but unfortunately there was considerable delay in getting medical assistance as the farmhouse near where the crash occurred is out of the way. As soon as the accident was reported, doctors rushed from No. 6 British General Hospital, Rouen, but they were too late. It is probable that an enquiry will be held by French authorities, at which  the Air Ministry and Messrs. Vickers will be represented. Arrangements are being made for the conveyance of the body of Sir John Alcock to England for burial in Manchester, his native city.

The death of Sir John Alcock is an irreparable loss to aviation. His great flight across the Atlantic is too fresh in the mind of readers of FLIGHT for further reference here, while his previous work is recorded in the pages of past volumes of this paper.

FLIGHT, The Aircraft Engineer & Airships,  No. 574 (No. 52, Vol. XI.), 25 December 25 1919, at Page 1646.

John William Alcock was born 6 November 1892, at Seymour Grove, Old Trafford, Stretford, a town near Manchester, England. He was the son of John Alcock, a coachman, and Mary Alice Whitelegg Alcock, a domestic servant.

John William Alcock with a Farman monoplane at the London-Manchester Air Race, 1912.

He took an early interest in flying. Work as a mechanic at the Ducrocq School, Brooklands Aerodrome, Surrey, led to flight training. He was awarded pilot’s certificate No. 368 by the Royal Aero Club, 26 November 1912.

Alcock competed in various air races, winning the Easter Aeroplane Handicap at Brooklands with a Farman B, 24 March 1913. The prize for first place was 50 guineas.

Captain John W. Alcock, D.S.C. (Science Museum Image Ref. 10300351)

With the onset of World War I, Alcock entered the Royal Naval Air Service, 12 November 1914, as a Warrant Officer, Second Grade (temporary). Alcock was assigned as a flight instructor at the Naval Flying School, Eastchurch, on the Isle of Sheppey, Kent, England. He was commissioned a Flight Sub-Lieutenant (tempy) 29 December 1915 and was sent to a squadron based on an island in the Aegean Sea.

Flight Sub-Lieutenant Alcock was flying a Sopwith Camel, 17 September 1917, when he shot down an enemy airplane and forced two others into the sea. For this action he was awarded the Distinguished Service Cross.

After Alcock returned to base, he took a Handley Page O/100 bomber on a mission against Constantinople. When one engine failed, he turned back, but then the second failed and the airplane went down in the Gulf of Xeros. He and his two crewmen then swam to the enemy-held Gallipoli shoreline. They were captured and held as prisoners of war.

While held as a prisoner, Alcock was promoted to Flight Lieutenant (tempy), R.N.A.S., 31 December 1917. On 1 April 1918, the Royal Flying Corps and Royal Naval Air Service were combined to establish the Royal Air Force. Flight Lieutenant Alcock, R.N.A.S., became Captain Alcock, R.A.F.

When The War to End All Wars came to an end in November 1918, Captain Alcock was repatriated to the United Kingdom, arriving at Dover 16 December 1918. He left military service in March 1919 and joined Vickers Ltd. (Aviation Department) as a test pilot.

John Alcock and Arthur Whitten-Brown, 14 June 1919. (Vickers PLC)

After the war, John Alcock and Arthur Whitten Brown flew a Vickers Vimy from St. John’s, Newfoundland, to Clifden, Ireland, becoming the very first aviators to make a non-stop crossing of the Atlantic Ocean.

Forever known as “Alcock and Brown,” the two pilots were invested as Knight Commander of the Most Excellent Order of the British Empire by King George V.

His remains were interred at the Southern Cemetery, Chorlton-cum-Hardy, Greater Manchester, England.

The airplane which Sir John Alcock was flying was the prototype Vickers Viking, registration G-EAOV. This was an amphibious 5-place single-engine, two-bay biplane. The “amphibian” was 32 feet (9.75 meters) long with a wing span of 46 feet (14.02 meters). It had an empty weight of 2,740 pounds ( kilograms), and gross weight of 4,545 pounds ( kilograms).

The initial Viking model was powered by a water-cooled 897.1-cubic-inch-displacement  (14.2 liter) Rolls-Royce Falcon 60° SOHC V-12 engine which produced 288 horsepower at 2,300 r.p.m at Sea Level. It was mounted just below the airplane’s upper wing and turned a four-bladed propeller in pusher configuration.

The Viking had cruise speed of 90 miles per hour (145 kilometers per hour). Its maximum speed was 110 miles per hour (177 kilometers per hour) at Sea Level, and 105 miles per hour (169 kilometers per hour) at 6,000 feet (1,829 meters). The Viking had a maximum range of 440 miles (708 kilometers). It could climb to 6,000 feet in 11 minutes.

Vickers Viking G-EAOV. (Imperial War Museum)
Vickers Viking G-EAOV. © IWM (Q 73276)
Vickers Viking G-EAOV. © IWM (Q 73377
Vickers Viking prototype. © IWM (Q 73377)
Vickers Viking G-EAOV at Brooklands, 1919. © IWM (Q 73286)
Vickers Viking G-EAOV at Brooklands, 1919. © IWM (Q 73286)

© 2018, Bryan R. Swopes

16 December 1960

The “empennage and fuselage aft of Fuselage Station 1490” of United Air Lines’ Douglas DC-8 N8013U at the intersection of Sterling Place and Seventh Avenue, Brooklyn, New York, 17 December 1960. (New York Daily News)

16 December 1960, 10:33:32 a.m., Eastern Standard Time: United Air Lines Flight 826, a Douglas DC-8 jet airliner, collided with Trans World Airlines Flight 266, a Lockheed L-1049 Super Constellation, at approximately 5,200 feet (1,585 meters) over Staten Island, New York. The Lockheed crashed near the point of collision, on the former Miller Army Air Field, while the DC-8 continued to the northeast before crashing at Brooklyn.

All 128 persons on board both airliners were killed, as were 6 persons on the ground. One passenger, an 11-year-old boy on board the DC-8, did survive the crash, but he died the following day as a result of having inhaled the burning jet fuel fumes.

New York City Fire Department on the scene of the United Air Lines Flight 826 crash, 16 December 1960. The destroyed building was the Pillar of Fire Church, 123 Sterling Place, at Seventh Avenue, Brooklyn..(New York City Fire Department)

The Civil Aeronautics Board investigation of the accident was the first to use data from a Flight Data Recorder from one of the involved airplanes.

A Trans World Airlines Lockheed L-1049 Super Constellation. (TWA)

TWA Flight 266 had originated at Dayton, Ohio, with an intermediate stop at Columbus, Ohio. The Super Constellation departed Port Columbus Airport at 9:00 a.m., en route to La Guardia Airport, New York. Captain David Arthur Wollam, a fifteen year veteran of TWA with 14,583 flight hours, was in command. First Officer Dean T. Bowen and Second Officer (Flight Engineer) LeRoy L. Rosenthal completed the cockpit crew. The cabin crew were Hostess Margaret Gernat and Hostess Patricia Post. The airliner carried 39 passengers.

A United Air Lines Douglas DC-8 at the Douglas Aircraft Company, Long Beach, California. (San Diego Air & Space Museum Archives)

UAL Flight 826 was a non-stop flight from O’Hare Airport, Chicago, Illinois, to New York International Airport (“Idelwild Airport,” now John F. Kennedy International Airport), New York City. The Pilot in Command was Captain Robert H. Sawyer. He had flown for United for nineteen years, and had 19,100 flight hours, with 344 hours in the new DC-8 jet airliner. The co-pilot was First Officer Robert W. Flebing and the flight engineer was Second Officer Richard E. Pruitt. There were four flight attendants in the cabin: Stewardess Mary J. Mahoney, Stewardess Augustine L. Ferrar, Stewardess Anne M. Bouthen, and Stewardess Patricia A. Keller. The flight crew had departed from Los Angeles, California, at 3:20 a.m., arrived at Chicago at 6:56 a.m., where they held over for two hours. The airliner departed Chicago at 9:11 a.m. with 76 passengers. (These times are Eastern Standard Time.)

Both airliners were flying under Instrument Flight Rules and followed a series of airways defined by a system of Very High Frequency Omnidirectional Ranges (VORs)—radio ground stations—as well as radar service provided by Air Traffic Control Centers and Approach Control facilities along their route of flight. As it approached LaGuardia, Flight 266 was controlled by New York Center and LaGuardia Approach Control. Flight 826 was also with New York Center, but the approach to Idlewild was with Idlewild Approach Control. The radar controllers of New York Center “handed off” Flight 266 to LaGuardia Approach at 10:27 a.m. Center cleared Flight 826 to the PRESTON Intersection, and advised to expect to hold at that position. It then handed off 826 to Idlewild Approach at 10:33 a.m.

PRESTON Intersection is a position defined by the 346° radial of the Colts Neck VOR (COL) and the 050° radial of Robbinsville VOR (RBV). Aircraft use VOR receivers and a visual display instrument to locate intersections and their positions along airway routes.

However, at 10:21 a.m., the crew of United 826 informed their operations department that the DC-8’s number two VOR receiver had failed. Flight 826 did not advise ATC, however.

While navigation is still possible with only one VOR receiver, it is more complicated as the operator must continuously switch radio frequencies between two VOR stations, and realign the Pictorial Deviation Indicator (“PDI”) instrument to the changing radials of the two ground stations. The higher speed of the new jet airliner gave the flight crew less time to accomplish the continuous changes required.

LaGuardia instructed Flight 266 to make a series of small right hand turns as it set up for the final approach to the airport’s runways. This placed the Super Constellation over Staten Island.

Illustration of Flight 826 Navigation to Preston Intersection (Federal Aviation Administration)

At 10:33:26 a.m., LaGuardia Approach called Flight 266, “Roger, that appears to be jet traffic off your right now 3 o’clock at one mile, northeast bound.” This transmission was not acknowledged.

At 10:33:28 a.m., Flight 826 “checked in” with Idlewild Approach Control, reporting, “Idlewild Approach Control, United 826, approaching PRESTON at 5,000.” Approach control acknowledged the report and informed the airliner that it could expect, “little or no delay at Preston.” Approach then relayed the current weather at the airfield, which was “600 scattered, 1,500 overcast, visibility one-half mile, light rain and fog.” This transmission was not acknowledged.

The crew of United Flight 826 had made a navigational error. At the time they reported that they were “approaching PRESTON,” the DC-8 had already flown approximately 11 miles (18 kilometers) beyond the clearance limit. Without having received clearance to proceed further, Flight 826 should have entered a holding pattern to the southwest of the intersection.

Air traffic controllers at LaGuardia Approach Control saw two radar targets merge. One then continued to the northwest, while the second remained stationary, then made a slow right turn before disappearing from the radar scope.

At the point of collision, the Super Constellation was in a slight left bank. The DC-8 was flying straight and level at 301 miles per hour. It struck the L-1049A from the right rear quarter, its number 4 engine penetrating the Constellation’s passenger cabin, and severing the Constellation’s right wing between the number 3 and number 4 engines. The Lockheed’s fuselage broke into three sections and caught fire. The DC-8 was heavily damaged in the collision, the outboard section of the right wing and the number 4 engine found among the Constellation’s wreckage at Miller Field. The jetliner continued for approximately 9 miles before crashing into a residential area of Brooklyn.

Scene of the DC-8 crash, Brooklyn, New York, 16 December 1960. (New York City Fire Department)

Trans World Airlines Flight 266 was a Lockheed L-1049-54 Super Constellation, serial number 1049-4021, registered N6907C. It had been delivered to TWA eight years earlier, 16 October 1952. At the time of the collision, the airliner had flown a total of 21,555 hours (TTAF). It was 3,905 hours since the last major overhaul (SMOH).

United Air Lines Flight 826 was a Douglas DC-8-11, serial number 45920, registered N8013U. It was delivered to United 22 December 1959. The airliner had flown 2,434 hours TTAF, and 42 hours since overhaul.

The DC-8 carried a Waste King Flight Recorder, from which significant data was recovered by crash investigators.

Wreckage of TWA Flight 266 at Miller Field. (New York Daily News)

© 2018, Bryan R. Swopes

14 December 1931

Sir Douglas Robert Stewart Bader, 12 May 1970,by Godfrey Argent, 12 May 1970. (© National Portrait Gallery, London)
Group Captain Sir Douglas Robert Steuart Bader, C.B.E., D.S.O. and Bar, D.F.C. and Bar, F.R.Ae.S., D.L.,  photographed by Godfrey Argent, 12 May 1970. (© National Portrait Gallery, London)

“On 14 December 1931, Douglas Bader flew to Woodley airfield near Reading. After lunch someone said, ‘I bet you won’t roll at nought feet.’ Bader did, and the graceful little Bulldog ended up in a shapeless ball of twisted metal. After hovering at death’s door Bader lost both legs. At Cranwell he remembered the Commandant had admonished him, ‘The RAF needs men, not schoolboys.’ Now he was neither, and the RAF would not need him anymore.”

Duel of Eagles by Group Captain Peter Wooldridge Townsend, CVO, DSO, DFC and Bar, RAF, Castle Books, Edison, New Jersey, 2003. Chapter 6 at Page 82.

Left to right, Pilot Officer Douglas R.S. Bader, Flight Lieutenant Harry Day and Flying Officer Geoffrey Stephenson during training for the 1932 Hendon Airshow, with a Bristol Bulldog. (RAF Museum)
Left to right, Pilot Officer Douglas R.S. Bader, Flight Lieutenant Harry Day and Flying Officer Geoffrey Stephenson during training for the 1932 Hendon Airshow, with a Gloster Gamecock. (RAF Museum)

Pilot Officer Douglas Robert Steuart Bader, Royal Air Force, caught the wingtip of his Bristol Bulldog Mk.IIA, K-1676, and crashed at Woodley Aerodrome, approximately four miles east of Reading, Berkshire, England. The airplane was damaged beyond repair.

Bader suffered major injuries requiring amputation of his right leg, followed by amputation of his left leg several days later. He was fitted with prosthetic legs with which he was soon able to walk without assistance. Pilot Officer Bader was medically retired and received a 100% disability pension.

Bristol Bulldog Mk.IIA K-1676. This is the airplane that Douglas Bader was flying when he crashed at Woodley, 14 December 1931. (Royal Air Force)
Bristol Bulldog Mk.IIA K-1675. This is a sister ship of the airplane that Douglas Bader was flying when he crashed at Woodley Aerodrome, 14 December 1931. (Royal Air Force)

In 1939, feeling that war with Germany was imminent, Bader applied to the Air Ministry for reinstatement. He was turned down, but was told that if there was a war his request might be reconsidered.

The Air Ministry did reconsider Douglas Bader’s request for reinstatement and after a medical evaluation and other tests, he was sent to refresher flight training where he was evaluated as “Exceptional,” a very rare qualification.

A page from Douglas bader's pilot log book, showing his "exceptional' evaluation. (Royal Air Force Museum)
A page from Douglas Bader’s pilot log book, showing his “Exceptional” evaluation. (Royal Air Force Museum)

Group Captain Sir Douglas R. S. Bader, Royal Air Force, C.B.E., D.S.O. and Bar, D.F.C. and Bar, F.R.Ae.S., D.L., a legendary fighter pilot of the Royal Air Force during World War II, was born at St. John’s Wood, London, England. He joined the Royal Air Force in 1928 as a cadet at the Royal Air Force College Cranwell and was commissioned as a Pilot Officer in July 1930.

Credited with more than 20 aerial victories while flying Hawker Hurricane and Supermarine Spitfire fighters, Bader was himself shot down while flying his Spitfire Mk Va, serial W3185, marked “D B”. His prosthetic legs caught in the cockpit and made it difficult for him to escape, but he finally broke free and parachuted to safety.

Bader was captured and held as a prisoner of war. He was initially held at a hospital in occupied France and it was there that he met and became a life long friend of Adolf Galland, also a legendary fighter pilot—but for the other side! After arrangements were made for replacement legs, Bader escaped. He was recaptured and taken to the notorious Offizierslager IV-C at Colditz Castle where he was held for three years.

Prisoners of War held at Colditz Castle, a maximum security prison during World War II. Squadron Leader Douglas Bader is seated, center.

Douglas Bader is the subject of Reach For The Sky, a biography by Paul Brickhill, and a movie based on that book which starred Kenneth More.

Sir Douglas was invested Knight Bachelor, 12 June 1976, for his service to the disabled. He died suddenly of a heart attack, 5 September 1982.

Douglas Bader with a Hawker Hurricane of No. 242 Squadron.
Douglas Bader with a Hawker Hurricane of No. 242 Squadron, September 1940. Photograph by F/O S. A. Devon, Royal Air Force. © IWM (CH 1406)

The Bristol Type 105 Bulldog was a single-place, single-engine biplane fighter which served with the Royal Air Force from 1928 to 1938. It was constructed of a riveted framework of rolled steel strips. The forward fuselage was covered with light weight sheet metal, while the wings and aft fuselage were covered with doped fabric. The Bulldog Mk.IIA was 25 feet, 2 inches (7.671 meters) long with a wingspan of 33 feet, 10 inches (10.312 meters) and height of 8 feet, 9 inches (2.667 meters). It had and empty weight of 2,222 pounds (1,008 kilograms) and maximum takeoff weight of 3,660 pounds (1,660 kilograms).

The Bristol Bulldog Mk.IIA was powered by an air-cooled, supercharged, 1,752.79-cubic-inch-displacement (28.72 liter) Bristol Jupiter VIIF nine-cylinder radial engine which was rated at 440 horsepower up to 12,000 feet (3,658 meters). This was a left-hand tractor engine which drove a wooden two-bladed fixed-pitch propeller through a 2:1 gear reduction.

The airplane had a maximum speed of 174 miles per hour (280 kilometers per hour) at 10,000 feet (3,048 meters) and a service ceiling of 29,300 feet (8,931 meters).

The Bristol Bulldog Mk.IIA was armed with two synchronized Vickers .303-caliber machine guns with 600 rounds of ammunition per gun.

Bristol Bulldog Mk.IIA K-2227, the same type airplane flown by Pilot Officer Bader when he crashed 14 December 1931. K-2227 is in the collection of the Royal Air Force Museum. (Unattributed)
Bristol Bulldog Mk.IIA K-2227, the same type airplane flown by Pilot Officer Bader when he crashed 14 December 1931. K-2227 is in the collection of the Royal Air Force Museum. (Royal Air Force)

© 2018, Bryan R. Swopes