Tag Archives: Aircraft Accident

30 October 1991

Sikorsky HH-60G Pave Hawk 88-26118 of the 12th Rescue Wing—a sister ship of Jolly 110—recovers pararescue jumpers during a training mission outside of San Francisco's Golden Gate. (TSGT Lance Cheung, U.S. Air Force)
Sikorsky HH-60G Pave Hawk 88-26118 of the 129th Rescue Wing, California Air National Guard, recovers pararescue jumpers during a training mission outside of San Francisco’s Golden Gate. (Technical Sergeant Lance Cheung, U.S. Air Force)

30 October 1991: United States Air Force Sikorsky HH-60G Pave Hawk, 88-26110, call sign “Jolly 110,” assigned to the 106th Rescue Wing, New York Air National Guard, headed out into a hurricane that would become known as “The Perfect Storm.” Aboard were Major C. David Ruvola, pilot; Captain Graham Buschor, co-pilot; Staff Sergeant James R. Mioli, flight engineer; and pararescue jumpers Technical Sergeant John Spillane and Technical Sergeant Arden Rick Smith. Their mission was to attempt a rescue 250 miles (400 kilometers) out to sea.

Due to the severity of the storm—a weather buoy located 264 miles (425 kilometers) south of Halifax, Nova Scotia, reported a wave height of 100.7 feet (30.7 meters) on 30 October, the highest ever recorded in that part of the Atlantic Ocean—the Pave Hawk crew was unable to make the rescue and had to return to their base.

Having already refueled from the Lockheed HC-130 Hercules tanker three times during the mission, and with low fuel, a fourth refueling was needed for the helicopter to make it back to the mainland. Because of the the extreme turbulence and lack of visibility, Jolly 110 could not make contact with the refueling drogue trailing behind the airplane.

Major Ruvola made more than 30 attempts, but finally both drogues had been damaged by the severe conditions. With just twenty minutes of fuel remaining, Jolly 110 would have to ditch in the middle of “The Perfect Storm.”

Sikorsky HH-60G Pave Hawk 88-26109, sistership of "Jolly 110", ready for refueling from a C-130. (U.S. Air Force)
Sikorsky HH-60G Pave Hawk 88-26109, a sistership of “Jolly 110,” ready for refueling from a Lockheed MC-130P Combat Shadow, 69-5828. This helicopter was destroyed 7 January 2014, when it crashed off the coast of England following multiple bird strikes at 130 knots. The four-man crew was killed. (TSGT Justin D. Pyle, U.S. Air Force)
Technical Sergeant Arden R. Smith, Pararescue Jumper, 106th Rescue Wing, New York Air National Guard. (U.S. Air Force)
Technical Sergeant Arden R. Smith, Pararescue Jumper, 106th Rescue Wing, New York Air National Guard. (U.S. Air Force)

Unable to refuel, Major Ruvola made the decision to ditch the helicopter into the sea while the engines were still running. At 9:30 p.m., the Sikorsky’s number one engine flamed out from fuel starvation. With one engine still operating, Ruvola held the Pave Hawk in a hover over the raging ocean while Buschor, Mioli, Spillane and Smith jumped.

When the number two engine flamed out, Ruvola put the Pave Hawk into a hovering autorotation. Its blades came to a sudden stop when they hit the face of an oncoming wave. Ruvola was about 15 feet (4.6 meters) under water by the time he was able to escape from the sinking helicopter.

The Pave Hawk had gone down 90 miles (145 kilometers) south of Montauk Point in 100-knot (185 kilometers per hour) winds and 80-foot (25 meter) waves. After five hours in the water, four airmen were rescued by USCGC Tamaroa (WMEC-166), a 48-year-old former U.S. Navy fleet tug, operated by the Coast Guard since the end of World War II as a medium endurance cutter.

The search for Rick Smith continued for a week. He was never found.

USCGC Tamaroa (WMEC-166). (U.S. Coast Guard)
USCGC Tamaroa (WMEC-166). (U.S. Coast Guard)
USCGC Tamaroa (WHEC-166) pitches and rolls in heavy seas during the rescue of Satori, during "The Perfect Storm". (U.S. Coast Guard)
USCGC Tamaroa (WMEC-166) pitches and rolls in heavy seas during the rescue of Satori, a 32-foot sail boat, 29 October 1991. (U.S. Coast Guard)

The U.S. Air Force HH-60G Pave Hawk is medium-sized twin-engine combat search-and-rescue (CSAR) helicopter, developed from the Army UH-60A Black Hawk transport. These helicopters were upgraded with an extendable probe for air-to-air refueling and additional fuel tanks in the cabin. They were given the project name Credible Hawk.

The Credible Hawks were further upgraded to the MH-60G Pave Hawk standard, which incorporated an inertial navigation system, GPS, and Doppler radar for precision navigation. Low-light television, infrared cameras and night vision systems allowed the MH-60G to operate at night and very low altitude. The Pave Hawk is equipped with an Automatic Flight Control System (AFCS), a very sophisticated autopilot which incorporates automatic hover capability.

Some of the MH-60G Pave Hawks received further upgrades for the special operations mission. Helicopters dedicated to CSAR were redesignated HH-60G. A rescue hoist capable of lifting 600 pounds (272 kilograms) from a 200-foot (60.7 meter) hover is incorporated on the upper right side of the fuselage.

Sikorsky HH-60G Pave Hawk, 88-26107, sister ship of 88-26110, which was lost in "The Perfect Storm".
Sikorsky HH-60G Pave Hawk, 88-26107, sister ship of 88-26110, which was lost in “The Perfect Storm.” (U.S. Air Force)

The HH-60G is operated by a crew of two pilots, a flight engineer and gunner. For rescue operations, pararescue jumpers, the famous “P.J.s,” are added to the crew. The helicopter has an overall length of 64 feet, 11 inches (19.787 meters) with rotors turning. The fuselage is 49 feet, 10 inches (15.189 meters) long and 7 feet, 9 inches (2.362 meters) wide. Overall height (rotors turning) is 16 feet, 11 inches (5.156 meters).

The HH-60G has a four-bladed fully-articulated main rotor with elastomeric bearings. It has a diameter of  53 feet, 8 inches (16.358 meters) and turns counterclockwise as seen from above. (The advancing blade is on the helicopter’s right.) The main rotor turns 258 r.p.m., resulting in a blade tip speed of 728 feet per second (222 meters per second). The blades were built with titanium spars and used two different airfoils and a non-linear twist (resulting in a net -16.4°). The outer 20 inches (0.508 meters) were swept aft 20°.

The four-blade bearingless tail rotor assembly is mounted on the right side of a pylon in a tractor configuration. The tail rotor turns clockwise as seen from the helicopter’s left side. (The advancing blade is below the axis of rotation.) The tail rotor has a diameter of 11 feet (3.353 meters) and each blade has a chord of 0.81 feet (0.247 meters) and -18° twist. The tail rotor turns 1,214 r.p.m. and has a tip speed of 699 feet per second (213 meters per second). Because the Black Hawk’s engines are behind the transmission, the aircraft’s center of gravity (c.g.) is also aft. The tail rotor plane is inclined 20° to the left to provide approximately 400 pounds of lift (1.78 kilonewtons) to offset the rearward c.g.

Sikorsky HH-60G Pave Hawk 88-26106, sister ship of Jolly 110, at William J. Fox Field, Lancaster, California. (Alan Radecki)
Sikorsky HH-60G Pave Hawk 88-26106 at William J. Fox Field, Lancaster, California. (Alan Radecki)

Power is supplied by two General Electric T700-GE-701C turboshaft engines which are mounted on top of the fuselage on either side of the transmission and main rotor mast. They have a Maximum Continuous Power rating of 1,662 shaft horsepower, each, at Sea Level on a Standard Day. Maximum Power (10 minute limit) is 1,890 shaft horsepower, and the One Engine Inoperative (OEI) rating is 1,940 shaft horsepower (2½ minute limit.) The -701C is 3 feet, 10 inches (1.684 meters) long), 1 foot, 3.6 inches (0.396 meters) in diameter and weighs 458 pounds (208 kilograms). The helicopter’s main transmission is rated for a maximum 3,400 horsepower.

Sikorsky HH-60G Pave Hawk 91-26403, 33rd Rescue Squadron, Kadena Air Base, Japan, 2001. (MSgt Val Gempis, United States Air Force)

The HH-60G has a cruise speed of 184 miles per hour (296 kilometers per hour) and its maximum speed is 224 miles per hour (361 kilometers per hour). The service ceiling is 14,000 feet (4,267 meters) and maximum range is 373 miles (600 kilometers). The hover ceiling, in ground effect (HIGE) is approximately 10,000 feet (3,048 meters), and out of ground effect (HOGE) is about 6,000 feet (1,830 meters).

Defensive armament consists of two GAU-18A .50-caliber machine guns.

Sikorsky HH-60G Pave Hawk 89-26212. (U.S. Air Force)
Captain Marisa Catlin, 83rd Expeditionary Rescue Squadron, flies a Sikorsky HH-60G Pave Hawk, 89-26212, over the Kunar Province, Afghanistan, 9 February 2011. (Captain Erick Saks, U.S. Air Force)

The U.S. Air Force initially purchased 112 HH-60G Pave Hawk helicopters, though as of May 2016, 96 remain in service. Most of these are approaching their design airframe lifetime limit of 7,000 flight hours. Several have passed 10,000 hours. The Air Force will replace them with a new HH-60W, a combat rescue helicopter based on the Sikorsky UH-60M Black Hawk. 21 U.S. Army UH-60Ls were modified to replace HH-60G losses.

Sikorsky HH-60W 14-4483. (Sikorsky, a Lockheed Martin Company)

The next CSAR helicopter, the HH-60W, based on the Sikorsky UH-60M, made its first flight 17 May 2019. Low-rate production of 10 new Combat Rescue Helicopters was authorized 24 September 2019. The Air Force plans to purchase 113 “Whiskeys.”

On 5 November 2020, the first two HH-60Ws were delivered to Moody AFB, near Valdosta, Georgia.

A Sikorsky HH-60W, 14-1482, at the Sikorsky Development Flight Test Center, Jupiter, Florida, 7 October 2019. (Sikorsky, a Lockheed Martin Company)

© 2019, Bryan R. Swopes

30 October 1935

The Boeing Model 299 X13372 (XB-17), prototype four-engine heavy bomber. (U.S. Air Force)
Major Ployer P. Hill, U.S. Army Air Corps (1894–1935)
Major Ployer P. Hill, U.S. Army Air Corps (1894–1935)

30 October 1935: While undergoing evaluation by the U.S. Army Air Corps at Wright Field, northeast of Dayton, Ohio, the Boeing Model 299 Flying Fortress, X13372 ¹—the most technologically sophisticated airplane of its time—took off with Major Ployer P. Hill as pilot.

The largest land airplane built up to that time, the XB-17 “seemed to have defensive machine guns aimed in every direction.” A Seattle Times newspaper reporter, Roland Smith, wrote that it was a “flying fortress.” Boeing copyrighted the name.

Major Hill was the Chief of the Flying Branch, Material Division, at Wright Field. This was his first flight in the airplane. The co-pilot was the Air Corps’ project pilot, Lieutenant Donald Leander Putt. Boeing’s Chief Test Pilot Leslie R. Tower and company mechanic C.W. Benton were also on board, as was Henry Igo of the Pratt & Whitney Aircraft Company.

Immediately after takeoff, the 299 suddenly pitched up, stalled and crashed, then caught fire. Three men, Igo, Benton and Putt, were able to escape from the wreck despite injuries.

The wreck of the Boeing Model 299, NX13372, burns after the fatal crash at Wright Field, 30 October 1935. (U.S. Air Force)
The wreck of the Boeing Model 299, NX13372, burns after the fatal crash at Wright Field, 30 October 1935. (U.S. Air Force)

First Lieutenant Robert K. Giovannoli, a test pilot assigned to the Material Division at Wright Field, saw the crash and immediately went to help. He made two trips into the burning wreck to rescue Hill and Tower, though later they both died of their injuries.

On October 30, 1935, a Boeing plane known as the “flying fortress” crashed during a military demonstration in Ohio — shocking the aviation industry and prompting questions about the future of flight
Lt. R.K. Giovannoli
Lt. Robert K. Giovannoli

Lieutenant Giovannoli was awarded the Soldier’s Medal and the Cheney Award for his heroic rescue of two men from the burning wreck of the Boeing Model 299. His citation reads:

The President of the United States of America, authorized by Act of Congress, July 2, 1926, takes pleasure in presenting the Soldier’s Medal to First Lieutenant Robert K. Giovannoli, United States Army Air Corps, for heroism, not involving actual conflict with an enemy, displayed at Wright Field, Dayton, Ohio, 30 October 1935. When a Boeing experimental bomber crashed and burst into flames, Lieutenant Giovannoli, who was an onlooker, forced his way upon the fuselage and into the front cockpit of the burning plane and extricated one of the passengers. Then upon learning that the pilot was still in the cockpit, Lieutenant Giovannoli, realizing that his own life was in constant peril from fire, smoke, and fuel explosions, rushed back into the flames and after repeated and determined efforts, being badly burned in the attempt, succeeded in extricating the pilot from an entrapped position and assisted him to a place of safety.

General Orders: War Department, General Orders No. 4 (1936)

Burned-out wreck of the Boeing Model 299, NX13372, still smoldering after the crash at Wright Field, Ohio, 30 October 1935. (U.S. Air Force)

The Cheney Award is a bronze medal awarded annually to honor acts of valor, extreme fortitude or self-sacrifice in a humanitarian interest performed in connection with aircraft (not necessarily military). It memorializes U.S. Army Air Service Lieutenant Bill Cheney, who was killed in action on 20 January 1918. The award was initiated by his family. It has been called the “Peacetime Medal of Honor.”

The official investigation of the crash determined that the prototype bomber’s flight crew had neglected to release the flight control gust locks which are intended to prevent damage to the control surfaces while on the ground. Test Pilot Tower recognized the mistake and tried to release the control locks, but could not reach them from his position in the cockpit.

Cockpit of the Boeing Model 299. (U.S. Air Force)
Cockpit of the Boeing Model 299. (Boeing)

Experts wondered if the Flying Fortress was too complex an airplane to fly safely. As a direct result of this accident, the “check list” was developed, now required in all aircraft.

Only one page of the Model 299’s logbook was filled in. (Museum of Flight)

After several years of testing, the Model 299 went into production as the B-17 Flying Fortress. By the end of World War II, 12,731 B-17s had been built by Boeing, Douglas and Lockheed Vega.

Hill Air Force Base, north of Salt Lake City, Utah, was named in honor of Major Ployer Peter Hill, U.S. Army Air Corps. The co-pilot, Lieutenant Putt, remained in the service and eventually achieved the rank of Lieutenant General, U.S. Air Force. He died in 1988.

Robert Giovannoli, 1925. (The Kentuckian)

Robert Kinnaird Giovannoli was born at Washington, D.C., 13 March 1904, the second of two sons of Harry Giovannoli, a newspaper editor, and Carrie Kinnaird Giovanolli. His mother died when he was six years old.

Giovannoli graduated from Lexington High School at Lexington, Kentucky, in 1920 and then attended the University of Kentucky, where, in 1925, he earned a Bachelor of Science degree in Mechanical Engineering (B.S.M.E.). He was a member of the Phi Delta Theta (ΦΔΘ) and Tau Beta Phi (ΤΒΦ) fraternities, treasurer of the sophomore class, and president of the American Institute of Electrical Engineers. He was employed by the General Electric Company at Schenectady, New York.

Giovannoli enlisted in the United States Army in 1927. After completing the Air Corps Primary Flying School at Brooks Field, and the Advanced Flying School at Kelly Field, both in San Antonio, Texas, he was commissioned as a second lieutenant in the Air Corps Reserve, 20 October 1928. Lieutenant Giovannoli was called to active duty 8 May 1930. In 1933, he was assigned to a one year Engineering School at Wright Field. He then was assigned to observe naval aircraft operations aboard USS Ranger (CV-4) in the Pacific Ocean.

On 8 March 1936, just a few days after returning from his temporary assignment with the Navy, Lieutenant Giovannoli was killed when the right wing of his Boeing P-26 pursuit, serial number 32-414, came off in flight over Logan Field, near Baltimore, Maryland.

At the time of his death, Lieutenant Giovannoli had not yet been presented his medals.

First Lieutenant Robert Kinnaird Giovannoli, Air Corps, United States Army, was buried at the Bellevue Cemetery, Danville, Kentucky. In 1985, the Robert Kinnaird Giovannoli Scholarship was established to provide scholarships for students in mechanical engineering at the University of Kentucky College of Engineering.

A formation of Boeing B-17 Flying Fortresses during World War II. (U.S. Air Force)

¹ At that time, experimental and restricted category aircraft were prohibited from displaying the letter “N” at the beginning of their registration mark.

© 2018, Bryan R. Swopes

21 October 1959

Gerald Huelsbeck
Gerald Huelsbeck

21 October 1959: McDonnell Aircraft Corporation test pilot Gerald (“Zeke”) Huelsbeck was killed while test flying the first prototype YF4H-1 Phantom II, Bureau of Aeronautics serial number (“Bu. No.”) 142259.

The McDonnell YF4H-1 Phantom II, Bu. No. 142259, takes off at Edwards Air Force Base during preparations for Operation Top Flight. (McDonnell Aircraft Corporation)
McDonnell YF4H-1 Phantom II Bu. No. 142259 takes off at Edwards Air Force Base during preparations for Operation Top Flight. (McDonnell Aircraft Corporation)

In October 1959 the Navy tried, a bit prematurely, for its first world record with the F4H. McDonnell test pilot Gerald “Zeke” Huelsbeck, flying near Edwards AFB, was testing various flight plans for a high-altitude zoom, looking for one to recommend to the Navy test pilot who would fly the record attempt. Huelsbeck was flying the very first F4H prototype when an engine access door blew loose, flames shot through the engine compartment, and the F4H crashed, killing Huelsbeck. (Over the next three years of the F4H-1 test program three aircraft were destroyed and three crew members died, all preparing for record flights.)

Engineering the F-4 Phantom II: Parts Into Systems by Glenn E. Bugos, Naval Institute Press, Annapolis, Maryland, 1996, Chapter 5 at Page 101.

Gerald Huelsbeck
Test Pilot Gerald Huelsbeck with a prototype McDonnell YF4H-1 Phantom II. Huelsbeck is wearing a Goodyear Mk. IV full-pressure suit. (McDonnell Aircraft Corporation)

The flight control system of the YF4H-1 was damaged by the fire and went it out of control at high speed and into a spin. Zeke Huelsbeck did eject but was too low. His parachute did not open. The prototype crashed in an open area near Mt. Pinos in the Los Padres National Forest,  Ventura County, California, about 70 miles (113 kilometers) southwest of Edwards.

McDonnell YF4H-1 Bu. No. 142259 was the first prototype Phantom II. It had first been flown by Robert C. Little at Lambert Field, St. Louis, Missouri, 27 May 1958. The Phantom II was designed as a supersonic, high-altitude fleet defense interceptor for the United States Navy. It was a two-place twin engine jet fighter armed with radar- and infrared-homing air-to-air missiles.

Gerald Huelsbeck was born in Wisconsin, 16 April 1928, the third child of Walter Andrew Huelsbeck, a farmer, and Irene M. Voigt Huelsbeck. He attended Carroll College (now, Carroll University) in Waukesha, before joining the United States Navy as a midshipman. He completed flight training at NAS Whiting Field, Florida, and was commissioned as an ensign, 2 June 1950.

In 1950, Ensign Gerald Huelsbeck married Miss Mary Jean Hillary, who had also attended Carroll College. They would have two children.

Huelsbeck was promoted to lieutenant (junior grade), 2 June 1952. Assigned as a fighter pilot during the Korean War, he flew 54 combat missions in the McDonnell F2H Banshee.

While flying in the Navy, Huelsbeck experimented with helmet-mounted cine cameras:

. . . He took a standard gun camera, added a couple of gadgets, and attached it to his helmet, The camera is electrically driven and able to take about two minutes of film with a 50-foot magazine. . . “I spent some time doing ‘hand camera’ work in Korea,” he recalls. “You know, after 54 combat missions, you don’t like to think about crashing while trying to take a picture.”

The Indianapolis Star, Vol. 53, No. 116, Tuesday, 29 September 1955, Page 4 at Columns 2–4

Lt. (j.g.) Huelsbeck in teh cocpit of a Grumman F9F. A small motion picture camera is attached to his flight helmet (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Lt. (j.g.) Huelsbeck in the cockpit of a U.S. Navy fighter. A small motion picture camera is attached to his flight helmet. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

He was serving with VF-11 at NAS Jacksonville, Florida, when he was selected for the United States Naval Test Pilot School at NAS Patuxent River, Maryland, in July 1953.

“Zeke” Huelsbeck left the Navy in 1955 to accept a position as a test pilot with the McDonnell Aircraft Corporation, St. Louis, Missouri. After several months, he was assigned as an experimental test pilot and project pilot of the F4H program.

At the time of the accident, Zeke Huelsbeck was the most experienced pilot flying the F4H.

Gerald Huelsbeck was 31 years old when he died. He is buried in New Berlin, Wisconsin.

McDonnell YF4H-1 Phantom II, Bu. No. 142259, at Lambert Field, St. Louis. (McDonnell Aircraft Corporations)
McDonnell YF4H-1 Phantom II, Bu. No. 142259, at Lambert Field, St. Louis. (McDonnell Aircraft Corporations)

© 2016, Bryan R. Swopes

20 October 1922

1st Lieutenant Harold Ross Harris, Air Service United States Army. (San Diego Air and Space Museum Archives)

20 October 1922: 1st Lieutenant Harold Ross Harris, Air Service, United States Army, the Chief, Flight Test Branch, Engineering Division, at McCook Field, Dayton, Ohio, was test flying a Loening Aeronautical Engineering Company PW-2A monoplane, a single-engine, single-seat fighter. The PW-2A, serial number A.S. 64388, had experimental balance-type ailerons. During this flight, Lieutenant Harris engaged in simulated air combat with Lieutenant Muir Fairchild (future Vice Chief of Staff, United States Air Force) who was flying a Thomas-Morse MB-3.

While banking the PW-2A into a right turn, Harris’ control stick began to vibrate violently from side to side and the airplane’s wings were “torn apart.” With the Loening diving uncontrollably, Harris jumped from the cockpit at approximately 2,500 feet (762 meters). After free-falling about 2,000 feet (610 meters), he pulled the lanyard on his parachute which immediately deployed. Harris then descended with his parachute providing aerodynamic deceleration, coming safely to earth in the back yard of a home at 335 Troy Street. He suffered minor bruises when he landed on a trellis in the garden.

Loening Aeronautical Engineering Company PW-2A, A.S. 64388. This is the airplane from which Lieutenant Harold R. Harris “bailed out” over Dayton, Ohio, 20 October 1922. (San Diego Air and Space Museum)

Harris’ PW-2A crashed into a yard at 403 Valley Street, three blocks away. It was completely destroyed.

This was the very first time a free-fall parachute had been used in an actual inflight emergency. Lieutenant Harris became the first member of the Irvin Air Chute Company’s “Caterpillar Club.”

Crash scene at 403 Valley Street, Dayton, Ohio, 20 October 1922. (U.S. Air Force)

The Pittsburgh Post reported:

Flyer Quits Plane in Parachute, Saves Life; Unique Case

     Dayton, O., Oct. 20.—Leaping from his Loenig [sic] monoplace in a parachute when the plane became uncontrollable over North Dayton today, Lieutenant Harold R. Harris, chief of the flying section of McCook Field, escaped death when his plane crashed to earth.

     Technical data, officials at McCook Field said, show that Lieutenant Harris’ escape is the first time an air pilot has ever actually saved himself by use of a parachute. A mail plane flyer leaped in a parachute over Chicago several years ago, but the necessity of his leaving the plane was questioned.

     Harris won the commercial plane event in the Pulitzer races in Detroit last week, flying the “Honeymoon Express” plane.

The Pittsburgh Post, Saturday, 21 October 1922, Vol. 80, No. 303, Page 1, Column 1

Harold R. Harris was born at Chicago, Illinois, 20 December 1895, the first of four children of Ross Allen Harris, M.D., and Mae Ermine Plumb Harris. He enlisted as a private in the Aviation Section, Signal Enlisted Reserve Corps (E.R.C.), 2 May 1917. He was commissioned as a 2nd Lieutenant, Aviation Section, Signal Officers Reserve Corps (O.R.C.) on 15 December 1917. Harris was promoted to the rank of 1st Lieutenant on 19 January 1918. His commission was vacated 18 September 1920 and commissioned as a 1st Lieutenant, Air Service, United States Army, effective 1 July 1920.

Married Grace C. Harris, circa 1920. They had two children.

Ross attended the Air Service Engineering School, graduating in 1922. He also earned a Bachelor of Science degree (B.S.) from the California Institute of Technology, Pasadena, California (“Caltech”).

Harris left the Air Service in 1926. He founded the world’s first aerial crop dusting business, the Huff Daland Company. Next he became a vice president and chief of operations for Grace Airways, a joint venture of Grace Shipping and Pan American World Airways, providing passenger service between South America and the West Coast of the United States.

Brigadier General Harold R. Harris, U.S. Army Air Corps.

During World War II, Harris, using his airline experience, helped to establish the Air Transport Command. In 1942, he was commissioned as a colonel in the U.S. Army Air Corps. By 1945, he was Chief, Air Transport Command, with the rank of Brigadier General.

Following World War II, Harris joined American Overseas Airlines, which soon was absorbed by Pan American. Harris was once again a vice president for Pan Am.

In 1955, Harris became president of Northwest Airlines.

Brigadier General Harold Ross Harris, United States Army Air Corps (Retired) died 28 July 1988 at the age of 92 years.

Harold Ross Harris, circa 1950. (San Diego Air and Space Museum Archives)
Harold Ross Harris, circa 1950. (San Diego Air and Space Museum Archives)

© 2016, Bryan R. Swopes

17 October 1913

Zeppelin L2 LZ 18 (© Ullstein Bild)
Zeppelin L2 (LZ 18). The smoke is coming from the forward engine car. (© Ullstein Bild)

17 October 1913: On the morning of a scheduled test flight at Flugplatz Johannisthal-Adlershof, an airfield south east of Berlin, Germany, Marine-Luftschiffes L2, the second rigid airship built for the Kaiserliche Marine (Imperial German Navy) by Luftschiffbau Zeppelin at Friedrichshafen, was delayed by problems with the engines. The morning sun heated the hydrogen contained in the airship’s gas bags, causing the gas to expand and increasing the airship’s buoyancy.

L2 New York Times 18 October 1913
L2 at altitude. This photograph was published in the New York Times, 18 October 1913. (George Grantham Bain Collection, Library of Congress)

Once released, L2 rapidly rose to approximately 2,000 feet (610 meters). The hydrogen expanded even more due to the decreasing atmospheric pressure. To prevent the gas bags from rupturing, the crew vented hydrogen through relief valves located along the bottom of the hull.

L2 leaves a trail of smoke as it crashes to the ground, 17 October 1913. (Zeppelin-Luftschiffe.com)

In this early design, the builders had placed the relief valves too close to the engine cars. Hydrogen was sucked into the engines’ intakes and detonated. L2 caught fire and a series of explosions took place as it fell to the ground.

All 28 persons on board were either killed immediately, or died of their injuries shortly thereafter.

At the time of the accident, L2 had made ten flights, for a total of 34 hours, 16 minutes.

The flight crew of Marine-Luftschiffes L2 (via LZDEAM.NET)
The flight crew of Marine-Luftschiffes L2

A contemporary news article described the accident:

AIRSHIP AND BALLOON NEWS.

The Wreck of the Zeppelin.

ELSEWHERE in this issue we comment upon the terrible catastrophe which befell the German Navy’s new Zeppelin L2, on Friday last week, just outside the Johannisthal aerodrome, near Berlin. From the following official account it appears that the airship was making a trial voyage:—

“She started this morning for a high flight, with twenty-eight persons on board. After three minutes she had attained a height of two hundred metres (over 600 feet) when flames burst forth between the fore engine-car and the envelope. In two or three seconds the whole ship was on fire and an explosion occurred. At the same time the airship fell slowly head downwards, until she was forty metres (130 feet) from the earth. Here a second explosion took place, presumably of benzine. When the vessel struck the earth a third explosion occurred, and the framework collapsed. A company of pioneers and guide-rope men hastened to the scene, and doctors were immediately in attendance. Two of the crew were picked up outside the ship still alive, but they died shortly afterwards. Lieut. Bleuel, who was severely injured, was taken to hospital. The remaining 25 of the crew had been killed during the fall of the airship or by the impact with the earth. The cause of the disaster appears to have been, so far as is at present known, an outbreak of fire in or over the fore engine-car.”

The commanding officer was Lieut. Freyer, and he was assisted by Lieuts. A. Trenck, Hansmann, and Busch, with thirteen warrant and petty officers. There were also on board as representing the German Navy, Commander Behnisch, Naval Construtors Neumann, and Pretzker, and three secretaries, named Lehmann, Priess, and Eisele. The Zeppelin Co. were represented by Capt. Glund and three mechanics, and Lieut. Baron von Bleuel was a passenger. The last mentioned was the only one rescued alive, and he died from his injuries a few hours later.

One of the first messages of sympathy was addressed by President Poincare’ to the German Emperor.

Extraordinary scenes, showing the way in which the calamity was regarded in Germany, were witnessed at the funeral service of 23 of the victims, held on Tuesday at the Garrison Church. Upon each of the coffins Prince Adalbert placed a wreath from the German Emperor and Empress, who with the Crown Prince and princess, and Princes Eitel Friedrich, Adalbert, August Wilhelm,  Oscar and Joachim attended in person, while the Government was represented by the Chancellor, Admiral Tirpitz, the Chief of the General Staff, Field Marshall von Moltke, and many other officers. Count Zeppelin was also present.

FLIGHT, First Aero Weekly in the World. No. 252. (No. 43, Vol. V.), 25 October 1913 at Page 1179

Wreckage of the L2 at Flugplatz Johannisthal-Adlershof, Germany, 17 October 1913. (Photo Gebr. Haeckel, Berlin # 3227/2)
Wreckage of the L2 at Flugplatz Johannisthal-Adlershof, Germany, 17 October 1913. (Gebrüder Haeckel, Berlin  3227/2)

The Marine-Luftschiffes L2 had been designated LZ 18 by the builders. Both identifications are commonly used (sometimes, L.II). Technical data for L2 is limited and contradictory. One source describes it as having a length of 158 meters (518 feet, 4½ inches), with a diameter of 16.6 meters (54 feet, 5½ inches). Another states 492 feet.

Eighteen hydrogen-filled gas bags were placed inside the rigid framework and covered with an aerodynamic envelope. The airship had a volume of 27,000 cubic meters (953,496 cubic feet), and a lift capacity of 11.1 tons (24,471 pounds).

Four water-cooled, normally-aspirated, 22.921 liter (1,398.725 cubic inches) Maybach C-X six-cylinder inline engines were carried in two cars beneath the hull. They produced 207 horsepower at 1,250 r.p.m., burning bensin (gasoline). Each engine drove a four-blade propeller through a drive shaft and gear arrangement. These engines weighed 414 kilograms (913 pounds), each.

L2 had a maximum speed of approximately 60 miles per hour (97 kilometers per hour). At reduced speed, L2 had a 70 hour radius of action.

The Kaiser and Imperial princes lead the funeral procession.
The Imperial Princes lead the funeral procession. Left to right, Prince Oskar, Prince August Wilhelm, Prince Adalbert, Crown Prince Wilhelm, Prince Eitel Friederich, Prince Joachim.

© 2016, Bryan R. Swopes