Tag Archives: Aircraft Accident

15 August 1939

Junkers Ju 87 B-1 Sturzkampfflugzeug (“Stuka”) photographed before World War II. Note the extended dive brake under the wing. (Unattributed)

15 August 1939: As Nazi Germany prepared for a war now just weeks away, the Luftwaffe gave a demonstration of its Junkers Ju 87 B-1 Stuka dive bombers for a group of generals at a test range near Neuhammer-am-Queis, Silesia:

. . . scores of generals were assembled at the training area at Neuhammer to watch a dive-bombing demonstration. Already, said Rudolf Braun, who took part with his unit (I St. G 3) there was a feeling of war in the air.

Hauptmann Rudolf Braun, Knight’s Cross of the Iron Cross

Normally the order of attack was the Kommandeur’s Stab Kette (Staff Flight) first, followed by Staffels 1, 2, and 3. For some unknown reason Staffel I, led by Oberleutnant Peltz, was this time ordered to attack last. It would save Rudolf Braun’s life.

The Met. reported cloud from 6,000 feet down to 2,500 with clear visibility below. At 6.00 a.m. Hauptmann Sigel led his Gruppe into attack at 12,000 feet. Half-rolling his Ju. 87 he plunged nearly vertically earthwards, with Oberleutnants Eppen and Mueller on each side.

On the ground below, the generals (including Wolfram von Richthofen, the Stuka’s chief) listened to the whining crescendo of the dive-bombers as they plummeted towards the ground. Horrified, they knew that nothing could avert disaster. The Met. report was wrong. Cloud base was at three hundred feet.

Hauptmann Sigel, yelling into his microphone, “Pull out!” managed to do so himself a few feet above the trees. But Eppen went in, Mueller went in, and both burst into flames. The nine Ju. 87s of Staffel 2 and two of Staffel 3 all went in.

Rudolf Braun and his comrades of Staffel I had heard Sigel’s warning and remained circling above the cloud layer through which columns of black smoke were now rising from the wreckage of thirteen dive bombers. I St. G 3 lost twenty-six young aircrew that day.

— Duel of Eagles, Group Captain Peter Wooldridge Townsend, C.V.O., D.S.O., D.F.C. and Bar, Royal Air Force. Castle Books, Edison, New Jersey, 2003, Chapter 14 at Pages 171–172.

Two Junkers Ju 87 Stuka dive bombers.

The Junkers Flugzeug-und-Motorenwerke AG Ju 87 B-1 Sturzkampfflugzeug (“diving combat aircraft”) was a two-place, single-engine, low-wing monoplane with fixed landing gear, designed as a dive bomber. The airplane, commonly known as the “Stuka,” has a blocky, unstreamlined appearance. Its most identifiable feature is its sharply-tapered, inverted “gull wing.” ¹

The Ju 87 made its first flight 17 September 1935. Among the tests pilots who flew it during pre-production testing were Hanna Reitsch and aeronautical engineer Gräfin Melitta Schenk von Stauffenberg.

The Stuka was used in the murderous attack on Wieluń, Poland, 1 September 1939, just 18 days after the accident at Neuhammer-am-Queis. This was the very first combat action of World War II. In just over one hour, 75% of the town was destroyed and more than 1,200 people were killed. The death rate was twice that of the infamous attack on the Spanish town of Guernica by the Nazi Condor Legion during the Spanish Civil War.

The Ju 87 B-1 was the first variant to be produced in large numbers and was in service at the beginning of World War II. The airplane is 11.000 meters (36.089 feet) long with a wingspan of 13.800 meters (45.276 feet) and height of 3.770 meters (12.369 feet). The total wing area is 31.9 square meters (343.4 square feet). The B-1 variant had an empty weight of 2,745 kilograms (6,052 pounds), and gross weight of 4,235 kilograms (9,337 pounds).

Two-view illustration of the Junkers Ju 87 B-1, with dimensions in millimeters. (Junkers Ju 87 B-1 Betriebsanleitung, at Page 0 05)

The Ju 87 B-1 was powered by a liquid-cooled, supercharged 34.989 liter (2,135.190 cubic-inch-displacement) Junkers Jumo 211 A inverted 60° V-12 engine. The 211 A had direct fuel-injected and the cylinder heads were machined for four spark plugs per cylinder. The compression ratio was 6.57:1, requiring 88-octane gasoline. It was rated at a maximum 900 Pferdestärke at 2,200 r.p.m. at 5,500 meters (18,045 feet). The engine turned a three-blade Junkers-Verstelluftschraube propeller with a diameter of 3.4 meters (11.2 feet) through a 1.55:1 gear reduction. The Jumo 211 A weighed 660 kilograms (1,455 pounds).

The Stuka B-1 had a maximum dive speed of 600 kilometers per hour (373 miles per hour). The Ju 87 B-1 had a service ceiling of 8,000 meters (26,247 feet), and range of 550 kilometers (342 miles).

The B-1 was armed with two fixed 7.92 mm Rheinmetall-Borsig MG17 machine guns with 1,000 rounds of ammunition per gun, and one MG 15 machine gun on a flexible mount with 900 rounds of ammunition. It could carry a single 500 kilogram (1,102 pound) bomb under the fuselage.

Junkers Ju 87 V-4 prototype, D-UBIP, WNr 4924, circa 1936.

An interesting feature the the Stuka was its automatic pull-out system. Once the bomb had been dropped, the airplane automatically began a 5–6 g recovery. This could save the airplane if the pilot became target-fixated, or blacked out.

The Ju 87 was equipped with a Zeiss gyro-stabilized bomb sight. According to an article in Air Force Times, the Stuka was a very accurate dive bomber. “. . . even the worst drops typically landed within 100 feet [30.5 meters] of the target. Good hits were either on target or no more than 15 feet [4.6 meters]off-center.”

In the same article, the legendary Royal Navy test pilot, Captain Eric Melrose Brown, C.B.E., D.S.C., A.F.C., K.C.V.S.A., Ph.D., Hon. F.R.Ae.S., R.N., is quoted:

A dive angle of 90 degrees is a pretty palpitating experience, for it always feels as if the aircraft is over the vertical and is bunting, and all this while terra firma is rushing closer with apparent suicidal rapidity. In fact I have rarely seen a specialist dive bomber put over 70 degrees in a dive, but the Ju 87 was a genuine 90-degree screamer. . . the Ju 87 felt right standing on its nose, and the acceleration to 335 mph [539 km/h] was reached in about 4,500 feet [1,372 meters], speed thereafter creeping up to the absolute permitted limit of 375 mph [604 km/h], so that the feeling of being on a runaway roller coaster experienced with most dive bombers was missing. I must confess that I had a more enjoyable hour’s dive-bombing practice than I had ever experienced with any other aircraft of this specialist type. Somehow the Ju 87D did not appear to find its natural element until it was diving steeply. Obviously the fixed undercarriage and large-span dive brakes of the Junkers were a highly effective drag combination.”

Only two Stukas still exist, one, a Ju 87 G-2, at the RAF Museum at Hendon, and the other, a Ju 87 R-2, is at the Museum of Science and Industry, Chicago, Illinois.

¹ TDiA has not found any source that provides the details of the Ju 87’s most characteristic feature: the angles of anhedral and dihedral of its wings. TDiA estimates that the wings’ inner section has -12° anhedral, while the outer wing panels have approximately 8° dihedral.

© 2018, Bryan R. Swopes

15 August 1935

Will Rogers and Wiley Post with the Lockheed Model 9E Orion hybrid at Renton, Washington. The pontoons have just been installed on the airplane in place of its fixed landing gear. (Unattributed)
Will Rogers and Wiley Post with the Lockheed Model 9E Orion hybrid at Renton, Washington. The pontoons have just been installed on the airplane in place of its fixed landing gear. (Seattle Post Intelligencer Collection/Museum of History & Industry)

15 August 1935: Two of the most famous men of their time, Wiley Hardeman Post and William Penn Adair (“Will”) Rogers, were killed in an airplane crash near Point Barrow, Alaska.

Post, a pioneering aviator who had twice flown around the world—once, solo—and helped develop the pressure suit for high altitude flight, was exploring a possible air mail route from the United States to Russia. His friend, world famous humorist Will Rogers, was along for the trip.

Transcontinental and Western Airlines' Lockheed Model 9E special, NC12283. This airplane would be modified by Pacific Airmotive, Burbank, California, for Wiley Hardeman post. (Ed Coates Collection)
Transcontinental & Western Air Incorporated’s Lockheed Model 9E Special, NC12283. This airplane would be modified by Pacific Airmotive, Burbank, California, for Wiley Hardeman Post. (Ed Coates Collection)

Post’s airplane was a hybrid, built from the fuselage of a former Transcontinental & Western Air, Inc., Lockheed Model 9E Orion Special, NC12283, combined with a wing from a Lockheed Model 7 Explorer. T&WA operated the Orion for two years before selling it to Charles Babb, Glendale, California. Babb installed the salvaged wing from a modified Lockheed Model 7 Explorer, Blue Flash, NR101W, which had crashed in Panama in 1930.

The Orion’s standard 450 horsepower Pratt & Whitney Wasp SC1 engine was replaced with an air-cooled, supercharged, 1,343.8-cubic-inch-displacement (22.021 liter) Pratt & Whitney Wasp S3H1 nine-cylinder radial engine (serial number 5778), rated at 550 horsepower at 2,200 r.p.m. to 5,000 feet (1,524 meters), and 600 horsepower at 2,250 r.p.m. for takeoff. A three-bladed Hamilton Standard variable-pitch propeller was used. Both the SC1 and S3H1 were direct drive engines. The S3H1 was 3 feet, 7.01 inches (1.093 meters) long and 4 feet, 3.60 inches (1.311 meters) in diameter. It weighed 865 pounds (392 kilograms).

Post also wanted to replace the retractable landing gear with pontoons for water landings.

Lockheed engineers were of the opinion that the hybrid aircraft and the other modifications which were requested by Post were dangerous and refused to do the work. Pacific Airmotive, also located in Burbank, California, however, agreed to modify the airplane. Several names were used to describe the hybrid airplane, such as “Lockheed Aurora,” as well as others perhaps less polite. It was given the restricted registration NR12283.

NR12283 was 27 feet, 6 inches (8.382 meters) long with a wingspan of 48 feet, 6 inches (14.783 meters). The wing area was 313 square feet (29.079 square meters).

Wiley Post’s red Lockheed Orion/Explorer hybrid, NR12283, at Renton, Washington.

Post had the pontoons installed at Renton, Washington. The floats that he had ordered did not arrive on time so he installed a larger set intended for another aircraft.

NR12283, Wiley Post's hybrid Lockheed Orion/Explorer float plane, at Fairbanks, Alaska. (PBS)
NR12283, Wiley Post’s red hybrid Lockheed Orion/Explorer float plane, at Fairbanks, Alaska. (PBS)

After several days of flying from Seattle and through Alaska, Post and Rogers were nearing Point Barrow on the northern coast of the continent. They encountered dense fog and landed on Walakpa Bay, about 13 miles (21 kilometers) southwest of the village of Barrow.

“August 15, 1935 2:00 p.m. — Harding Lake, Alaska. Wiley Post and Will Rogers taxi for take-off. Last photo before their 6:30 p.m. crash near Barrow. Patton Collection #13 ” (Harding Lake Association)

After talking with a local resident, Clair Okpheah, they taxied back on the lagoon and took off to the north. Post banked to the right, but at about 50 feet (15 meters) the engine stopped. NR12283 pitched down, rolled to the right, and then its right wing struck the mud. The right wing and pontoon were torn off and the airplane crashed upside down. Post and Rogers died.

Clair Okpheah ran to Barrow for help. When a rescue party arrived 16 hours after the crash, the men recovered the bodies of Post and Rogers. It was noted that Wiley Post’s wristwatch had stopped at 8:18 p.m.

Wiley Post's hybrid airplane, NR12283, after the crash, 15 August 1935. (UPI)
The wreckage of Wiley Post’s Lockheed Model 9E Orion hybrid airplane, NR12283, after the crash at Walakpa Lagoon, Alaska, 15 August 1935. (UPI)

© 2018, Bryan R. Swopes

14 August 1968

Sikorsky S-61L N300Y, Los Angeles Airways, at Disneyland Heliport, Anaheim, California. (Robert Boser)
Sikorsky S-61L N300Y, Los Angeles Airways, at Disneyland Heliport, Anaheim, California. (Robert Boser)

14 August 1968: At 10:28:15 a.m., Pacific Daylight Time, Los Angeles Airways Flight 417, a Sikorsky S-61L helicopter, departed Los Angeles International Airport (LAX) on a regularly-scheduled passenger flight to Disneyland, Anaheim, California. On board were a crew of three and eighteen passengers. The aircraft commander, Captain Kenneth L. Waggoner, held an Airline Transport Pilot certificate and was type-rated in the Sikorsky S-55, S-58 and S-61L. He had a total of 5,877:23 flight hours, with 4,300:27 hours in the S-61L. Co-pilot F. Charles Fracker, Jr. had 1,661:18 flight hours, of which 634:18 were in the S-61L. Flight Attendant James A. Black had been employed with LAA for nearly ten years.

At approximately 10:35 a.m., while flying at an estimated altitude of 1,200–1,500 feet (370–460 meters) above the ground, one of the helicopter’s five main rotor blades separated from the aircraft which immediately went out of control, started to break up, and crashed in a recreational park in Compton. All twenty-one persons on board, including the 13-year-old grandson of the airlines’ founder and CEO, were killed.

The Sikorsky S-61 was registered N300Y.  It had been the prototype S-61L, serial number 61031. Los Angeles Airways was the first civil operator of the S-61, purchasing them at a cost of $650,000 each. As of the morning of 14 August 1968, 61031 had accumulated a total of 11,863.64 hours flight time on the airframe (TTAF). It flew an estimated 3.17 hours on the morning of the accident.

Los Angeles Airways’ Sikorsky S-61L N300Y. Los Angeles City Hall is at the bottom of the image, just left of center. (AirHistory.net)

The Sikorsky S-61L was a civil variant of the United States Navy HSS-2 Sea King, and was the first helicopter specifically built for airline use. The prototype, N300Y, first flew 2 November 1961. It is a large twin-engine helicopter with a single main rotor/tail rotor configuration. Although HSS-2 fuselage is designed to allow landing on water, the S-61L is not amphibious, having standard fixed landing gear rather than the sponsons of the HSS-2 (and civil S-61N). The S-61L fuselage is 4 feet, 2 inches (1.270 meters) longer than that of the HSS-2. The S-61L is 72 feet, 7 inches (22.123 meters) long and 16 feet, 10 inches (5.131 meters) high, with rotors turning.

The main rotor has five blades and a diameter of 62 feet (18.898 meters). Each blade has a chord of 1 foot, 6.25 inches (0.464 meters). The tail rotor also has five blades and a diameter of 10 feet, 4 inches (3.149 meters). They each have a chord of 7–11/32 inches (0.187 meters). At 100% r.p.m., the main rotor turns 203 r.p.m. and the tail rotor, 1,244 r.p.m. The main rotor turns counter-clockwise, as seen from above. (The advancing blade is on the helicopter’s right side.) The tail rotor turns clockwise, as seen from the left side. (The advancing blade is below.)

The S-61L was powered by two General Electric CT58-140-1 turboshaft engines, each of which was rated for 1,400 shaft horsepower for takeoff and maximum power of 1,500 shaft horsepower for 2½ minutes. The main transmission was rated for 2,300 horsepower, maximum.

The S-61 has a cruise speed of  166 miles per hour (267 kilometers per hour).  The service ceiling is 12,500 feet (3,810 meters). 61031 had a maximum takeoff weight (MTOW) of 19,000 pounds (8,618.3 kilograms).

Between 1958 and 1980, Sikorsky built 794 S-61 series helicopters. 13 were S-61Ls.

Crash scene of Los Angeles Airways’ Sikorsky S-61L N300Y. (Benjamin John Olender/Los Angeles Times, Vol. LXXXVII,Thursday, 15 August 1968, Page 3, Columns 1–4)

The National Transportation Safety Board investigation found that most of the helicopter was contained with a small area of Leuders Park. One main rotor blade, however, was located approximately 0.25 miles (0.40 kilometers) west of the main wreckage. This blade is referred to as the “yellow” blade. (The main rotor blades marked with colored paint for simplicity, red, black, white, yellow, and blue.) Analysis found that this blade’s spindle, where it attached to the main rotor hub assembly, had failed due to a fatigue fracture. It was believed that the fracture began in an area of substandard hardness which was present in the original ingot from which the part was forged, and that inadequate shot-peening of the part during the overhaul process further weakened the spindle.

Diagram of fractured main rotor spindle. (NTSB)
Diagram of fractured main rotor spindle. (NTSB)

Los Angeles Airways had experienced a similar accident only three months earlier which had resulted in the deaths of all 23 persons on board. (Flight 841, 22 May 1968). L.A. Airways never recovered from these accidents and ceased all operations by 1971.

© 2016, Bryan R. Swopes

12 August 1985

Japan Air Lines’ Boeing 747-146SR, JA8119. (Robin787)

12 August 1985: The worst accident involving a single aircraft occurred when a Boeing 747 operated by Japan Air Lines crashed into a mountain in the Gunma Prefecture, killing 520 persons. There were just 4 survivors.

JAL Flight 123 was a Boeing 747-146SR, registration JA8119. It departed Tokyo International Airport enroute Osaka International Airport. There were 15 crewmembers, led by Captain Masami Takahama, with First Officer Yutaka Sasaki and Second Officer Hiroshi Fukuda. There were 509 passengers aboard.

Flight 123 lifted off at 6:12 p.m., 12 minutes behind schedule. 12 minutes after takeoff, as the 747 was at its cruising altitude, the fuselage rear pressure bulkhead suddenly failed, causing explosive decompression of the cabin. Cabin air then rushed into the unpressurized tail section. The resulting overpressure caused a failure of the APU bulkhead and the support structure for the vertical fin. The airliner’s vertical fin separated from the fuselage. All four of the 747’s hydraulic systems were ruptured. The hydraulic system was quickly depleted, leaving the crew unable to move any flight control surfaces.

JAL 123 following loss of its vertical fin.

Control of the airplane began to quickly deteriorate and the only control left was to vary the thrust on the four turbofan engines. The flight crew began an emergency descent and declared an emergency.

For the next 32 minutes, JA8119 flew in large uncontrolled arcs. The 747 rolled into banks as steep as 60°, and at one point, the nose pitched down into a dive reaching 18,000 feet per minute (91 meters per second). The crew was able to bring the 747 back to a nose-high attitude at about 5,000 feet (1,524 meters), but again lost control. At 6:56 p.m., JAL 123 disappeared from air traffic control radar.

Mount Takamagahara, 1,978.6 meters above Sea Level. (Σ64, via Wikipedia)

The airliner struck a ridge on 1,978.6 meter (6,491.5 feet) Mount Takamagahara at 340 knots (391 miles per hour, or 630 kilometers per hour), then impacted a second time at an elevation of 5,135 feet (1,565 meters). The aircraft was totally destroyed.

The four survivors had been seated in the last three rows of the airliner, though their exact seat assignments have not been determined. Several others actually survived the impact but died from their injuries and exposure before they could be rescued.

Investigation of the accident determined that the 747 had previously been damaged when its tail struck the runway during a landing, 2 June 1978. The rear pressure bulkhead had cracked as a result of the tail strike, but was repaired by a team of Boeing technicians. After the crash, it was discovered that the repair had not been correctly performed. Boeing engineers calculated that it could be expected to fail after 10,000 cycles. It was on the 12,219th cycle when the bulkhead failed.

Boeing 747-146SR JA8119 had accumulated a total of 25,030 flight hours by the time of the accident, on 18,835 flights.

Computer-generated image depicting the damage to JAL Flight 123. (Anynobody via Wikipedia)

© 2017, Bryan R. Swopes

9 August 1896

Karl Wilhelm Otto Lilienthal. (NASM)

9 August 1896: Pioneering aviator Karl Wilhelm Otto Lilienthal was fatally injured when his glider stalled on his fourth flight of the day.

Flying at the Rhinow Hills, near Stölln in what is now northern Germany, he had been gliding as far as 820 feet (250 meters). The weather was windy. As he sailed off the slope, his glider suddenly pitched up. Lilienthal tried to correct the attitude by swinging back and fourth, but he had lost lift and the glider fell about 50 feet (15 meters) to the ground.

Seriously injured, he was taken to a doctor who determined that he had fractured the third cervical vertebra. He was then transported by train to Berlin where a very successful surgeon, Professor Ernst von Bergman, had a clinic.

Lilienthal died about 36 hours after his injury, 10 August 1896. Among his last words were, “Sacrifices must be made.”

His discoveries in controlled flight inspired the Wright Brothers to pursue aviation.  He is considered to be one of the most influential of the early pioneers of flight, and is known as The Father of Flight.

Otto Lilienthal flying one of his gliders.

© 2017, Bryan R. Swopes