Tag Archives: Apollo 13

John Leonard Swigert, Jr. (30 August 1931–27 December 1982)

John L. Swigert, Jr., Astronaut
John L. Swigert, Jr., Astronaut, Command Module Pilot, Apollo XIII. (NASA)

John L. “Jack” Swigert, Jr., was born at Denver, Colorado, 30 August 1931, the first of three children of John Leonard Swigert, a physician, and Virginia Seep Swigert. Interested in aviation from an early age, he was a licensed Private Pilot at age 16. He graduated from Denver’s East High School in 1949.

Jack Swigert, 1952.

Jack Swigert attended the University of Colorado in Boulder, Colorado. He was a member of the Air Force Reserve Officers Training Corps (AFROTC), played on the varsity football team, and was a member of the C Club. He graduated in 1953 with a Bachelor’s Degree in Mechanical Engineering. Following his graduation, Swigert was commissioned as a second lieutenant, United States Air Force Reserve.

Lieutenant Swigert flew fighters from bases in Japan and Korea, then after completing his active duty requirement, 2 October 1956, he  transferred to the Air National Guard. He served with the Massachusetts ANG and Connecticut ANG.

Swigert earned a Master of Science degree in Aerospace Engineering from Rensselaer Polytechnic Institute, Troy, New York, in 1965, as well as a Master of Business Administration degree from the University of Hartford at Hartford, Connecticut.

Captain John L. Swigert, Jr., United States Air Force, F-100 Super Sabre pilot, 118th Fighter Squadron, Connecticut Air National Guard. (U.S. Air Force via Jet Pilot Overseas)
Captain John L. Swigert, Jr., United States Air Force, F-100A Super Sabre pilot, 118th Fighter Squadron, Connecticut Air National Guard. (U.S. Air Force via Jet Pilot Overseas)

While flying with the Air Guard, Swigert also worked for North American Aviation, Inc., as an engineering test pilot, and then for Pratt & Whitney.

He became one of 19 men selected as crewmembers of NASA’s Apollo Program 1965. He requested an assignment as pilot of the Apollo Command and Service Module.

Swigert was a member of the support team for the Apollo 7 mission, and was then selected for the Command Module Pilot for the Apollo 13 backup crew, along with John Watts Young and Charles M. Duke, Jr. When the primary crew CMP, Ken Mattingly, was thought to have been exposed to measles, he was withdrawn from Apollo 13 and Jack Swigert took his place.

Apollo 13 was planned as the third lunar landing mission. The circumstances of its flight are well known. When disaster struck, all three astronauts performed an amazing feat as they had to improvise their safe return to Earth.

Swigert left NASA in 1977 and entered politics. He was elected to the U.S. House of Representatives in 1982, representing the the 6th District of Colorado.

On the night of 27 December 1982, before he could be sworn into office, John Leonard Swigert, Jr., aerospace engineer, fighter pilot, test pilot, astronaut and congressman, died from complications of cancer.

John L. Swigert, Jr. Memorial, bronze sculpture by Mark and George Lundeen, in the National Statuary Hall Collection, United States Capitol. Gift of the State of Colorado, 1997. (Architect of the Capitol)
John L. Swigert, Jr. Memorial, bronze sculpture by Mark and George Lundeen, in the National Statuary Hall Collection, United States Capitol. Gift of the State of Colorado, 1997. (Architect of the Capitol)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

17 April 1970, 18:07:41 UTC, T + 142:54:41

Apollo 13 splashes down in the Pacific Ocean, 18:07:41 UTC, 17 April 1969. (U.S. Navy)
Apollo 13 splashes down in the Pacific Ocean, 18:07:41 UTC, 17 April 1969. (NASA)

17 April 1970: Apollo 13 splashed down in the Pacific Ocean at S. 21°38’24”, W. 165°21’42”, southwest of American Samoa. The landing was just 4 miles from the recovery ship, USS Iwo Jima (LPH-2).

A Sikorsky SH-3D Sea King, Bu. No. 152711, from HS-4 hovers near the Apollo 13 command capsule, 17 April 1970. Pararescue jumpers are with the capsule. USS Iwo Jima (LPH-2) is nearby. (NASM)

With their spacecraft crippled by an internal explosion on 13 April, the planned lunar landing mission had to be aborted. Astronauts James A. Lovell, Jr., John L. Swigert, Fred W. Haise, Jr., worked continuously with engineers at Mission Control, Houston, Texas, to overcome a series of crises that threatened their lives.

The flight crew of Apollo 13 disembark the Sikorsky SH-3D Sea King helicopter, Bu. No. 152711, Number 66, aboard USS Iwo Jima (LPH-2), at approximately 18:52 UTC, 17 April 1969. In the center of the image, from left to right, are astronauts Fred Haise, Jim Lovell and Jack Swigert. (NASA)
The flight crew of Apollo 13 disembark the Sikorsky SH-3D Sea King helicopter, Bu. No. 152711, Number 66, aboard USS Iwo Jima (LPH-2), at approximately 18:52 UTC, 17 April 1970. In the center of the image, from left to right, are astronauts Fred Haise, Jim Lovell and Jack Swigert. (NASA)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

17 April 1970, 12:52:51 UTC, T plus 137:39:51.5

Omega Speedmaster Professional Chronograph worn by Jack Swigert during the Apollo 13 mission.

17 April 1970: Because of the unusual configuration of the Apollo 13 Command Module, Service Module and Lunar Module “stack” during the coast from the Moon back to Earth, an additional, unplanned, Mid-Course Correction burn, MCC-7, had to be carried out. The damage to the Service Module prevented the use of its 21,900 pounds thrust (97.42 kilonewtons) Aerojet General Service Propulsion System engine. It was necessary to use the LM’s Bell Aerosystems Ascent Propulsion System engine. The APS engine produced 3,500 pounds of thrust (15.57 kilonewtons). The maneuver had to be carried out manually by the astronauts from the LM’s cockpit.

Mission Commander Lovell visually aligned the spacecraft with the LM’s Reaction Control System thrusters, by sighting the Earth in his window of the LM. Once aligned, LM pilot Fred Haise conducted the burn, which was timed by CM pilot Jack Swigert.

Swigert timed the burn using his NASA-issued Omega Speedmaster Professional Chronograph, a very accurate manual wristwatch.

The Mid Course Correction ignition commenced at T+137:39:51.5 and the engine was cutoff at T+137:40:13.0 (12:52:51–12:53.13 UTC), for a duration of 21.5 seconds.

MCC-7 was performed at EI-5 hours (137:39 GET). The same manual piloting technique used for MCC-5 was used for control during MCC-7. This was manual crew pitch and roll control with the TTCA and automatic yaw control by the AGS. MCC-7 was performed with LM RCS using the +X translation push button. It steepened the flight path angle at EI to -6.49 degrees. After MCC-7, the crew maneuvered the spacecraft to the SM separation attitude. The CM re-entry RCS system was activated and a firing test of the thrusters was successful.

“Apollo 13 Guidance, Navigation, and Control Challenges” by John L. Goodman, United Space Alliance. American Institute of Astronautics AIAA 2009-6455 at Page 23.

Omega Speedmaster Professional “Moon Watch.” (Omega)

The Omega Speedmaster Professional Chronograph is a manual-winding analog wrist watch produced by Omega, a luxury brand of Société Suisse pour l’Industrie Horlogère, (SSIH) and now a part of the SWATCH Group. The case is made of stainless steel and has a diameter of 48 millimeters (1.89 inches). The Speedmaster Professional, which is also known as the “Moon Watch,” or “Speedy” to watch collectors, features a stop watch function and three sub dials for recording hours, minutes and seconds. The chronograph has a black dial with tritium-painted hands and hour marks. The bezel has a tachymeter for calculating speed based on time. When fully wound, the Speedmaster can run for up to 48 hours. The chronograph is water resistant to a depth of 50 meters (164 feet).

The Speedmaster’s crystal is not glass, but “hesalite,” a clear, scratch-resistant plastic. There had been concern that if a crystal broke during a space flight, glass fragments could be scattered throughout the weightless environment of the spacecraft, presenting a danger to the astronauts.

Description of the Omega Speedmaster Professional Chronograph in a NASA Manual. (NASA)

NASA provided Omega Speedmaster Professional Chronographs to Gemini and Apollo Program astronauts. Each watch was engraved with NASA’s two-digit serial number, and could be equipped with an adjustable length Velcro strap which allowed the watch to be worn on the outside of the space suit. NASA also assigned an equipment part number.

Jack Swigert’s watch, p/n SEB12100039-002, was NASA’s number 69. It is in the collection of the Smithsonian Institution National Air and Space Museum, as Catalog Number 1977-1181.000. In 2016, the watch was on display at the University of Colorado.

Astronaut Jack Swigert prepares to board the Apollo 13 Command Module. He is wearing his Omega Speedmaster Professional Chronograph on his left arm. NASA space suit technician Clyde Teague is at left. (NASA)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

15 April 1970, 01:09:40 UTC: T Plus 077:56:40.0

Impact crater of the Apollo 13/Saturn V AS-508 S-IVB third stage, photographed by the Lunar Reconnaissance Orbiter. The crater is approximately 30 meters (98 feet) across. (NASA)

15 April 1970, 01:09:40 UTC: T plus 077:56:40.0: The Apollo 13 Saturn S-IVB-508 third stage impacted the surface of The Moon north of Mare Cognitum. (S. 2° 33′ 00″, W. 27° 52′ 48″)The S-IVB hit the lunar surface at a velocity of 2.58 kilometers per second (5,771 miles per hour). The impact energy was 4.63 x 1017 ergs (1.04 kiloton).

The impact was detected by seismometers placed on the Moon by Apollo 12 astronauts Pete Conrad and Alan Bean. This was part of the Apollo Lunar Surface Experiments Package, or ALSEP.

Seismograph tracings of Apollo 13 S-IVB impact. (NASA)

The Apollo 12 seismometer was located 135 kilometers (83.9 miles) from the Apollo 13 third stage impact. The signals were used to calibrate the instrument package, which was in service from 1969 to 1977.

The Saturn V third stage was designated Saturn S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds (118,841 kilograms). The third stage had one Rocketdyne J-2 engine which used liquid hydrogen and liquid oxygen for propellant. Itproduced 232,250 pounds of thrust (1,033.10 kilonewtons). The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

A Saturn V S-IVB third stage. (NASA)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

13 April 1970, 03:07:53 UTC, T+55:54:53

Damage to Apollo 13's Service Module, photographed just after separation. (NASA)
Damage to Apollo 13’s Service Module, photographed just after separation 17 April 1970. (NASA Apollo 13 Image Library AS13-59-8500)

13 April 1970: At 10:07:53 p.m. Eastern Standard Time (mission elapsed time 55:54:53), while Apollo 13 and its crew, James A. Lovell, Jr., John L. Swigert and Fred W. Haise, were approximately 200,000 miles (322,000 kilometers) from Earth enroute to a landing at the Fra Mauro Highlands on The Moon, an internal explosion destroyed the Number 2 oxygen tank¹ in the spacecraft’s Service Module. The Number 1 tank was also damaged. Two of three fuel cells that supplied electrical power to the spacecraft failed.

Jack Swigert radioed Mission Control: “I believe we’ve had a problem here.” ²

Mission Control: “This is Houston. Say again, please.

Jim Lovell: “Houston, we’ve had a problem. Main B Bus undervolt.

With oxygen supplies depleted and power failing, the lunar landing mission had to be aborted, and the three-man crew evacuated the Command Module and took shelter in the Lunar Module.

This was a life-threatening event.

The story of Apollo 13 and its crew and their journey home is well known. The 1995 Ron Howard/Universal Pictures film, “Apollo 13,” takes some artistic license, but is generally accurate and realistic.

Mission Controller Gene Kranz is known for his statement, "Failure is not an option.) NASA Apollo 13 Image Library Image S70-35139)
Flight Director Gene Kranz (right of center, with his back to the camera) in Mission Control, Houston, Texas, a few minutes before the accident. (NASA Apollo 13 Image Library Image AP13-S70-35139)

Five years before Apollo 13 was launched, an engineering decision had been made to increase the spacecraft electrical system from 28 volts to 65 volts. This required that every electrical component on the vehicle had to be changed to accommodate the increased power. The after-accident investigation found that the team that designed the cooling fans for the oxygen tanks was never informed of the change.

During the actual flight, the wiring inside the tank heated to approximately 1,000 °F. (538 °C.), and in the pressurized pure oxygen, the insulation caught fire. The tank, originally installed on Apollo 10, had been dropped when it was removed for modification. It was repaired and later used on Apollo 13, however, it had been weakened by the damage. The extreme pressure caused by the heat of the burning electrical wiring in the containment caused the tank to rupture.

The damaged Service Module after being jettisoned from the Command Module, photographed from the Lunar Module. The Moon is visible between the two. (NASA)

¹ Serial number 10024X-TA0009

² The official mission transcript attributes this statement to Jim Lovell, however, in Lovell’s recollection, it was made by Swigert.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather