Tag Archives: Army Ballistic Missile Agency

Wernher von Braun: 23 March 1912–16 June 1977

Wernher von Braun, Director, Marshall Space Flight Center (NASA)
Dr. Wernher von Braun, Director, Marshall Space Flight Center, 1 May 1964. (NASA)

23 March 1912: Wernher Magnus Maximilian Freiherr von Braun, rocket engineer, was born at Wyrzysk, Province of Posen, in the German Empire, in what is now Poland. He was the second of three children of Magnus Alexander Maximillian von Braun, head of the Posen provincial government, and Emmy Melitta Cécile von Quistorp.

Wernher von Braun, at center, with his brothers, Magnus (left) and Sigismund (right). (NASA)

Wernher von Braun originally wanted to be a musician and composer, having learned to play the cello and piano at an early age. After reading a speculative book on space flight, though, his interests shifted.

In 1929, the 17-year-old von Braun joined Verein für Raumschiffahrt, the German rocketry association. He worked with Hermann Oberth in testing liquid-fueled rockets, based on successful rockets designed by Dr. Robert H. Goddard in the United States.

Rudolf Nebel (left) and Wernher von Braun with small liquid-fueled rockets, circa 1930. (Unattributed)
Rudolf Nebel (left) and Wernher von Braun with small liquid-fueled rockets, circa 1930. (Unattributed)

Von Braun graduated from Technische Hochschule Berlin in 1932, with a degree in mechanical engineering (Diplom-Ingenieur). Two years later, he received a doctorate in physics (Dr. phil.) at Friederich-Wilhelm University of Berlin. He also studied at ETH Zürich.

In Germany before World War II, Dr.-Ing. von Braun worked on the problems of liquid-fueled rockets and developed the Aggregat series of rockets, including the A4, which would become known as the V-2 (Vergeltungswaffe 2) military rocket. The German Army’s Ordnance Department gave von Braun a grant to further study liquid-fueled rockets, which he pursued at an artillery range at Kummersdorf, just south of Berlin

As rocketry work expanded, the tests were eventually moved to the Peenemünde Military Test Site on the island of Usedom on the Baltic coast, where von Braun was technical director under Colonel Dr. Ing. Walter R. Dornberger.

Wernher von Braun with a number of German officers at Peenemunde, March 1941. (Left to right) Oberst Dr. Walter Dornberger, General Friederich Olbricht, Major Heinz Brandt, von Braun; others not identified. (Bundesarchiv, Bild 146-1978-Anh.024-03/CC-BY-SA 3.0)
Prof. Dr.-Ing. Wernher von Braun with a number of German officers at Peenemünde, March 1941. (Left to right) Colonel Dr. Ing. Walter Dornberger (partially out of frame), General der Infanterie Friederich Olbricht*, Major Heinz Brandt, Prof. Dr. von Braun; others not identified. (Bundesarchiv, Bild 146-1978-Anh.024-03/CC-BY-SA 3.0) [*General Olbricht developed Operation Valkyrie, the plot to assassinate Hitler and overthrow the Nazi regime.]
Aggregat 4 prototype (probably V-3) ready for launch at Prüfstand VII, August 1942. (Bundesarchiv)

The first successful launch of the A4 took place 3 October 1942. By the end of World War II, Nazi Germany had launched more than 3,200 V-2 rockets against Belgium, England, France and The Netherlands.

V-2 rocket launch at Peenemünde, on the island of Usedom in the Baltic Sea. (Bundesarchiv)

As World War II in Europe came to a close and the collapse of Nazi Germany was imminent, von Braun had to choose between being captured by the Soviet Red Army or by the Allies. He surrendered to the 324th Infantry Regiment, 44th Infantry Division, United States Army in the Bavarian Alps, 2 May 1945.

Dornberger, Herber Axter, von Braun and Hans Lindenberg, 3 May 1945. (U.S. Army)
Major-General Dr. Ing. Walter R. Dornberger; Lieutenant-Colonel Herbert Axster, Dornberger’s chief of staff; Prof. Dr.-Ing. Wernher von Braun (with left arm in cast); and Hans Lindenberg, chief propulsion engineer; at Reutte, Austria, 3 May 1945. (Technician 5th Class Louis Weintraub, U.S. Army)

Under Operation Paperclip, Wernher von Braun and many other scientists, engineers and technicians were brought to the United States to work with the U.S. Army’s ballistic missile program at Fort Bliss, Texas, White Sands Proving Grounds, New Mexico, and the Redstone Arsenal, Huntsville, Alabama.

A-4 Number 3 is prepared for launch at White Sands Proving Grounds, New Mexico, 10 May 1946. With a burn time of 59 seconds, the rocket reached an altitude of 70.9 miles (114.1 kilometers) and traveled 31 miles (49.9 kilometers) down range. (The Space Race – Rockets)

Sufficient parts and materiel and been transferred from Germany to construct more than one hundred V-2 rockets for testing at White Sands. Over a five year period, there were 67 successful launches, but it is considered that as much knowledge was gained from failures as successes.

Dr. von Braun with V-2 rocket compnents in Texas, circa 1945. (Unattributed)
Dr. von Braun with V-2 rocket components at White Sands Proving Grounds, New Mexico, 1 November 1946. (Thomas D. McAvoy)

In 1950, von Braun and his team were sent to Redstone Arsenal, Huntsville, Alabama, where they worked on more advanced rockets. The first production rocket was the short-range ballistic missile, the SSM-A-14 Redstone, which was later designated PGM-11. This rocket was capable of carrying a 3.8 megaton W39 warhead approximately 200 miles (322 kilometers) The first Redstone was launched at Cape Canaveral Air Force Station, 20 August 1953.

Compare the military Redstone SSM-A-14 in this photograph to the Mercury-Redstone rocket in the photograph below. This rocket, CC-1002, was the first Block 1 tactical rocket. (MSFC-580069)

Modified Redstone MRLV rockets were used to launch the first Mercury spacecraft with NASA astronauts Alan Shepherd and Gus Grissom. Von Braun later worked on the U.S. Army’s Jupiter-A intermediate range ballistic missile. A modified Jupiter-C was used to launch Explorer 1, the United States’ first satellite.

Explorer 1 launch, Launch Complex 26A, Cape Canaveral Air Force Station, 1 February 1958, 03:48:00 UTC. (NASA)
Explorer VII/Juno II launch, from LC-5, Capa Canaveral Air Force Station, 13 October 1959. (NASA MSFC-5900711)
Mercury-Redstone 4 (Liberty Bell 7) launch at Pad 5, Cape Canaveral Air Force Station, 12 20 36 UTC, 21 July 1961. (NASA)

Wernher von Braun traveled to Germany in 1947 to marry his cousin, Maria Irmengard Emmy Luise Gisela von Quistorp, and then returned to the United States. He became a naturalized citizen of the United States of America in 1955.

The von Braun family, circa 1955 (U.S. Army)
Prof. Dr. von Braun with his family, circa 1957. Left to right, Maria Luise von Braun, Margrit Cécile von Braun, Dr. von Braun and Iris Careen von Braun. (U.S. Army)

In 1960 von Braun and his team were transferred from the Army Ballistic Missile Agency to NASA’s new Marshall Space Flight Center at Redstone Arsenal. He was now able to pursue his original interest, manned flight into space. Work proceeded on the Saturn rocket series, which were intended to lift heavy payloads into Earth orbit. This resulted in the Saturn A, Saturn B and the Saturn C series, ultimately becoming the Saturn V moon rocket.

Saturn SA-1 accelerates after liftoff, 27 October 1962. (NASA)
Apollo-Saturn IB AS-201 launch from Pad 34, Kennedy Space Center, 26 February 1966. (NASA)

With the Apollo Program coming to an end, Dr. von Braun left NASA in 1972. A year later, he was diagnosed with kidney cancer. Wernher von Braun died of pancreatic cancer, 17 June 1977 at the age of 65 years.

Apollo 4 Saturn V (AS-501) on the launch pad at sunset, the evening before launch, 8 November 1967. (NASA)
Saturn V first stage F-1 engines running, producing 7.5 million pounds of thrust. Ice falls from the rocket. The hold-down arms have not yet been released. (NASA)
Dr. von Braun pauses in front of the Apollo 11/Saturn V at the Kennedy Space Center (KSC). (NASA MSFC-6901046)

© 2019 Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

31 January 1958, 03:48:00 UTC

Explorer 1 launch, Launch Complex 26A, Cape Canaveral Air Force Station. (NASA)

31 January 1958, 10:48 p.m., Eastern Standard Time (1 February 1958, 03:48:00 UTC): The United States of America launched its first successful satellite, Explorer 1, from Launch Complex 26A at the Cape Canaveral Air Force Station, Cape Canaveral, Florida. The satellite entered an orbit with a perigee of 224 miles (360 kilometers) and apogee of 1,575 miles (2,535 kilometers). It completed one orbit every 1 hour, 54.9 minutes.

Explorer 1 was designed and built by the Jet Propulsion Laboratory (JPL) at the California Institute of Technology, Pasadena, California. The satellite carried a cosmic ray detector, internal and external temperature sensors, and a micrometeorite detector. Powered by batteries, it transmitted data for 105 days.

Cutaway illustration of Explorer 1 satellite and booster. (NASA)

The satellite was launched aboard a Juno-1 four-stage liquid-fueled rocket, produced by the U.S. Army Ballistic Missile Agency (ABMA). The Juno satellite launch vehicle was developed from the Jupiter-C intermediate range ballistic missile, and externally appears virtually identical. The complete Explorer 1/Juno-1 was 71.25 feet (21.72 meters) tall and weighed 64,080 pounds (29,066 kilograms) at launch.

The Juno-1 first stage was 69 feet, 8 inches (21.234 meters) long and 5 feet, 10 inches (1.778 meters) in diameter. Four stabilizing fins had a maximum span of 12 feet, 8 inches (3.861 meters). The engine was a Rocketdyne A-7, which burned a combination of Hydyne and liquid oxygen. The A-7 was rated at 83,000 pounds of thrust (369.20 kilonewtons) and burned for 2 minutes, 35 seconds.

The second stage consisted of a cluster of 11 JPL “Baby Sergeant” solid-rocket boosters, producing a total of 16,500 pounds of thrust (73.40 kilonewtons) and burned for 6.5 seconds. These were scaled-down version of the Thiokol XM100 Sergeant booster. They were 3 feet, 10 inches (1.168 meters) long and 6.00 inches (15.24 centimeters) in diameter. Each booster contained 50 pounds ( kilograms) of solid fuel. The second stage weighed 1,020 pounds (463 kilograms).

Juno-1 satellite launch vehicle number RS-29, marked UE, ready for launch, 31 January 1958. (NASA)

The third stage was powered by three Baby Sergeant boosters, producing 4,500 pounds of thrust (20.02 kilonewtons). These were clustered inside the second stage boosters, and both the second and third stage were covered by a fiberglass “tub” which could be spun up to 750 r.p.m. to stabilize the rocket after launch. The third stage weighed 280 pounds (127 kilograms).

The fourth stage consisted of the Explorer satellite and a single Baby Sergeant booster. The booster remained attached to the satellite in orbit. The Explorer 1 satellite was 2 feet, 6.75 inches (0.781 meters) long, and 6.50 inches (16.51 centimeters) in diameter. It weighed 30.66 pounds (13.91 kilograms). Including its booster, the fourth stage was 6 feet, 8.75 inches (2.051 meters) long and weighed 80 pounds (36 kilograms). The fourth stage booster produced 1,500 pounds of thrust (6.67 kilonewtons) for 6.5 seconds. This gave the Explorer 1 an orbital velocity of approximately 18,000 miles per hour (28,968 kilometers per hour).

Explorer 1 remained in orbit for 12 years, 2 months and 1 day. On 31 March 1970, its orbit decayed and the satellite re-entered Earth’s atmosphere over the Pacific Ocean and was destroyed.

Explorer 1 artificial satellite. (NASA)

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather