Tag Archives: Astronauts

21 December 1968 12:51:00.7 UTC

Apollo 8 (AS-503) launches from LC-39A at 12:51:00 UTC, 21 December 1968. (NASA)
Apollo 8 (AS-503) launches from LC-39A at 12:51:00 UTC, 21 December 1968. (NASA)

21 December 1968: At 12:51:00.7 UTC, Apollo 8 lifted off from Launch Complex 39A at the Kennedy Space Center, Cape Canaveral, Florida. Aboard were Mission Commander, Colonel Frank Frederick Borman II, United States Air Force; Command Module Pilot, Captain James Arthur Lovell, Jr., United States Navy; and Lunar Module Pilot, Major William A. Anders, U.S. Air Force.

Apollo 8 crew is photographed posing on a Kennedy Space Center (KSC) simulator in their full-pressure suits, 22 November 1968. From left to right are: James A. Lovell Jr., William A. Anders, and Frank Borman. (NASA)

The center engine of the S-IC first stage shut down at 00:02.05.9, and the remaining four F-1 engines shut down at 00:02:33.8. First stage separation took place at 00:02:34.5.

The five Rocketdyne J-2 engines of the S-II second stage fired at 00:02.35.2. The launch escape tower was jettisoned at 00:03:08.6. The engine shut down at 00:08:44.0.and the second stage was jettisoned at 00:08:44.9.

The single J-2 of the S-IVB third stage ignited at 00:08:45.0, and cut off at 11:25.0. At 00:11:35.0, the Apollo 8 Command and Service Module, the Lunar Module test article, and the S-IVB third stage was injected into a nearly-circular 98 nautical miles × 103 nautical miles (113 statute miles × 119 statute miles/181 × 191 kilometers) Earth orbit.

Apollo 8 Trans Lunar Injection burn, 21 December 1968. (David Le Conte, Joe Coldwell, Bill Perry/Smithsonian Astrophysical Observatory)

The S-IVB’s J-2 engine was restarted for Trans Lunar Injection (TLI) at 02:50:37.1, and cut off at 02:55:55.5. Apollo 8 was on its way to The Moon.

Apollo 8 was the second manned mission of the Apollo program. It was the first manned spacecraft to leave Earth orbit, travel to and orbit the Moon, then return to Earth.

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet, 0.15 inches (110.64621 meters) tall, from the tip of the escape tower to the bottom of the F-1 engines. The first and second stages were 33 feet, 0.2 inches (10.089 meters) in diameter. Fully loaded and fueled the rocket weighed approximately 6,200,000 pounds (2,948,350 kilograms).¹ It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

AS-503, the Apollo 8/Saturn V, 17 December 1968. (NASA)

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust (6770.19 kilonewtons), each, for a total of 7,610,000 pounds of thrust at Sea Level (33,851 kilonewtons).² These engines were ignited 6.50 seconds prior to Range Zero and the outer four burned for 161.74 seconds. The center engine was shut down after 135.24 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

Apollo 8/AS-503. The Saturn V’s five Rocketdyne F-1 engines build thrust just prior to hold down release. (NASA)

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust (1,022.01 kilonewtons), and combined, 1,161,250 pounds of thrust (5,165.5 kilonewtons).³

The Saturn V third stage was designated S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant. The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. They were the most powerful machines ever built by man.

AS-503 clearing the gantry, 21 December 1968. “A yaw motion is discernible by the leaning of the stack away from the tower. The vehicle is programmed to fly this 1.25° yaw maneuver, beginning one second into the flight, in case a gust of wind comes up that might gust the vehicle into the umbilical tower, or an access arm fails to retract.” (NASA)

¹ The AS-503 total vehicle mass at First Stage Ignition (T –6.585 seconds) was 6,221,823 pounds (2,833,171 kilograms).

² Post-flight analysis gave the total average thrust of AS-503’s S-IC stage as 7,726,936 pounds of thrust (34,371,122 Newtons).

³ Post-flight analysis gave the total average thrust of AS-503’s S-II stage as 1,143,578 pounds of thrust (5,086,888 Newtons).

⁴ Post-flight analysis gave the average total thrust of AS-503’s S-IVB stage as 203,053 pounds of thrust (903,225 Newtons) during the first burn; 201,530 pounds (896,450 Newtons) during the second burn.

Apollo 8 takes off for The Moon. (NASA)

© 2018, Bryan R. Swopes

19 December 1972 19:24:59 UTC, T plus 301:51:59

The Apollo 17 command module America (CM-112) descends to the South Pacific under three parachutes. (NASA)
The Apollo 17 command module America descends toward the surface of the South Pacific Ocean under three parachutes. (NASA)

19 December 1972: At 2:25 p.m. EST—12 days, 13 hours, 51 minutes, 59 seconds after departing the Kennedy Space Center at Cape Canaveral, Florida—the Apollo 17 command module America (CM-112) returned to Earth, splashing down in the South Pacific Ocean, approximately 350 miles (563 kilometers) southeast of Samoa. The three 83 foot, 6 inch diameter (25.451 meters) ring sail main parachutes had deployed at an altitude of 10,500 feet (3,200 meters) and slowed the capsule to 22 miles per hour (35.4 kilometers per hour) before it hit the ocean’s surface.

USS Ticonderoga (CVS-14) slowly approaches the Apollo 17 command module. Rescue swimmers have attached a flotation collar as a safety measure. (NASA)
USS Ticonderoga (CVS-14) slowly approaches the Apollo 17 command module. Rescue swimmers have attached a flotation collar as a safety measure. (NASA)

The landing had a high degree of accuracy, coming within 4.0 miles (6.44 kilometers) of the recovery ship, the aircraft carrier USS Ticonderoga (CVS-14).

The flight crew was picked up by a Sikorsky SH-3G Sea King helicopter, Bu. No. 149930, of HC-1, and transported to Ticonderoga. The three astronauts, Eugene A. Cernan, Ronald A. Evans and Harrison H. Schmitt, stepped aboard the aircraft carrier 52 minutes after splashdown.

The splashdown of Apollo 17 brought to an end the era of manned exploration of the Moon which had begun just 3 years, 3 days, 5 hours, 52 minutes, 59 seconds earlier with the launch of Apollo 11.

Only 12 men have set foot on The Moon. In 49 years, no human has returned.

An Apollo 17 astronaut is hoisted aboard the hovering Sikorsky SH-3G Sea King, Bu. No. 149930. USS Ticonderoga stands by. (NASA)
An Apollo 17 astronaut is hoisted aboard the hovering Sikorsky SH-3G Sea King, Bu. No. 149930. USS Ticonderoga stands by. (NASA)

© 2015, Bryan R. Swopes

14 December 1972 22:54:36 UTC, T plus 188:01:36

Apollo 17 lunar lander and lunar rover on the surface of the moon. (NASA)

14 December 1972: At 4:54:36 p.m., CST (Houston time), the Ascent Stage of the Apollo 17 Lunar Module Challenger lifted off from the landing site in the Taurus-Littrow Valley, The Moon. On board were Mission Commander Eugene A. Cernan and the LM Pilot, Harrison H. Schmitt.

The two Astronauts had been on the surface of the Moon for 3 days, 2 hours, 59 minutes, 40 seconds. During that time they made three excursions outside the lunar lander, totaling 22 hours, 3 minutes 57 seconds.

Apollo 17 was the last manned mission to the Moon in the Twentieth Century. Gene Cernan was the last man to stand on the surface of the Moon.

The Apollo 17 ascent stage lifts off from the Taurus-Littrow Valley at 2254 UTC, 14 December 1972. The takeoff was captured by a television camera which had been left on the surface of the Moon. (NASA)

© 2016, Bryan R. Swopes

13 December 1972

Eugene A. Cernan at the Taurus-Littrow Valley during the third EVA of the Apollo 17 mission. (Harrison H. Schmitt/NASA)
Eugene A. Cernan at the Taurus-Littrow Valley during the third EVA of the Apollo 17 mission. (Harrison H. Schmitt/NASA)

13 December 1972: At approximately 22:26 UTC, NASA Astronauts Eugene A. Cernan and Harrison H. Schmitt began the last of three moon walks, or EVAs, on the surface of the Moon at the Taurus-Littrow Valley.

“Bob, [Robert A.P. Parker, Astronaut, Houston Mission Control Cap Com]  this is Gene, and I’m on the surface; and, as I take man’s last step from the surface, back home for some time to come — but we believe not too long into the future — I’d like to just [say] what I believe history will record. That America’s challenge of today has forged man’s destiny of tomorrow. And, as we leave the Moon at Taurus-Littrow, we leave as we came and, God willing, as we shall return: with peace and hope for all mankind. Godspeed the crew of Apollo 17.”

— Astronaut Eugene Andrew Cernan, Captain, USN, at the Taurus Littrow Valley, The Moon, at Mission Time 170:40:00

Eugene A. Cernan, Mission Commander, inside the Lunar Module Challenger after the third EVA, 13 December 1972. (Harrison H. Schmitt/NASA)
Eugene A. Cernan, Mission Commander, inside the Lunar Module Challenger after the third EVA, 13 December 1972. (Harrison H. Schmitt/NASA)

This was the final EVA of the Apollo Program, lasting approximately 7 hours, 15 minutes. Then Harrison H. Schmitt and Gene Cernan climbed up into the Lunar Module Challenger to prepare to lift off the following day.

Gene Cernan was the last man to stand on the surface of the Moon.

Harrison H. Schmitt, Lunar Module Pilot, inside the LM after the final EVA of teh Apollo Program, 13 December 1972. (Eugene A. Cernan/NASA)
Harrison H. Schmitt, Lunar Module Pilot, inside the LM after the final EVA of the Apollo Program, 13 December 1972. (Eugene A. Cernan/NASA)

© 2016, Bryan R. Swopes

7 December 1972, 10:39 UTC, T + 05:06

"View of the Earth as seen by the Apollo 17 crew traveling toward the moon. This translunar coast photograph extends from the Mediterranean Sea area to the Antarctica south polar ice cap. This is the first time the Apollo trajectory made it possible to photograph the south polar ice cap. Note the heavy cloud cover in the Southern Hemisphere. Almost the entire coastline of Africa is clearly visible. The Arabian Peninsula can be seen at the northeastern edge of Africa. The large island off the coast of Africa is Madagascar. The Asian mainland is on the horizon toward the northeast." (Harrison H. Schmitt/NASA)
“View of the Earth as seen by the Apollo 17 crew traveling toward the moon. This translunar coast photograph extends from the Mediterranean Sea area to the Antarctica south polar ice cap. This is the first time the Apollo trajectory made it possible to photograph the south polar ice cap. Note the heavy cloud cover in the Southern Hemisphere. Almost the entire coastline of Africa is clearly visible. The Arabian Peninsula can be seen at the northeastern edge of Africa. The large island off the coast of Africa is Madagascar. The Asian mainland is on the horizon toward the northeast.” (Harrison H. Schmitt/NASA)