Tag Archives: Balls 8

5 December 1963

RUSHWORTH, Robert H., Major General, USAF5 December 1963: On Flight 97 of the X-15 Program, Major Robert A. Rushworth flew the number one aircraft, Air Force serial number 56-6670, to an altitude of 101,000 feet 30,785 meters) and reached Mach 6.06 (4,018 miles per hour/6,466 kilometers per hour).

The rocketplane was dropped from the Boeing NB-52B Stratofortress “mother ship” 52-008, Balls 8, flying at 450 knots (833.4 kilometers per hour) at 45,000 feet (13,716 meters) over Delamar Dry Lake, Nevada. Rushworth ignited the Reaction Motors XLR-99-RM-1 rocket engine, which burned for 81.2 seconds before shutting down.

The flight plan had called for an altitude of 104,000 feet (31,699 meters), a 78 second burn and a maximum speed of Mach 5.70. With the difficulties of flying such a powerful rocketplane, Rushworth’s flight was actually fairly close to plan. During the flight the right inner windshield cracked.

Bob Rushworth landed the X-15 on Rogers Dry Lake at Edwards Air Force Base, California, after a flight of 9 minutes, 34.0 seconds.

Mach 6.06 was the highest Mach number reached for an unmodified X-15.

56-6670 flew 81 of the 199 flights of the X-15 Program. It is in the collection of the Smithsonian Institution National Air and Space Museum.

From 1960 to 1966, Bob Rushworth made 34 flights in the three X-15s, more than any other pilot.

North American Aviation Inc./U.S. Air Force/NASA X-15A 56-6670 hypersonic research rocketplane on display at the National Air and Space Museum. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)
North American Aviation Inc./U.S. Air Force/NASA X-15A 56-6670 hypersonic research rocketplane on display at the National Air and Space Museum. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

18 November 1966

Major William J. Knight, U.S. Air Force, with the modified X-15A-2, 56-6671, at Edwards Air Force Base, California. Knight is wearing a David Clark Co. MC-2 full-pressure suit with an MA-3 helmet. (U.S. Air Force)
Major William J. Knight, U.S. Air Force, with the modified X-15A-2, 56-6671, at Edwards Air Force Base, California. Knight is wearing a David Clark Co. MC-2 full-pressure suit with an MA-3 helmet. (U.S. Air Force)

18 November 1966: On Flight 175 of the research program, Major William J. (“Pete”) Knight, U.S. Air Force, flew the newly-modified North American Aviation X-15A-2, 56-6671, to Mach 6.33 (4,261 miles per hour/6,857 kilometers per hour) at 98,900 feet (30,245 meters). This is just 11 years, to the day, since Pete Everest made the first powered flight in the Bell Aircraft Corporation X-2 rocketplane, with more than 6 times an increase in speed.

On this date, NASA made an attempt to launch two X-15s, -671 and -672, using the NB-52A 52-003 and NB-52B 52-008. However -672, the number three ship, had to abort the mission.

At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)
At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)

Balls 8, the NB-52B, flown by NASA test pilot Fitz Fulton and Colonel Joe Cotton, USAF, carried 56-6671 to the launch point over Mud Lake, Nevada, approximately 200 miles to the north of Edwards AFB. (This was the lake where -671 was severely damaged in an emergency landing, 9 November 1962. It was returned to North American to be rebuilt to the X-15A-2 configuration and returned to flight operation 19 months later.)

At 1:24:07.2 p.m. local time, Pete Knight and the X-15 were dropped from the pylon under the right wing of the B-52. He ignited the Reaction Motors XLR99-RM-1 and began to accelerate with its 57,000 pounds of thrust (253.549 kilonewtons).

Since this was to be a high temperature test flight, it was planned to fly no higher than 100,000 feet (30,480 meters). The denser atmosphere would result in greater aerodynamic heating of the rocketplane.

With the two external propellant tanks carrying an additional 1,800 gallons (6,814 liters) of liquid ammonia and liquid oxygen, the engine ran for 2 minutes, 16.4 seconds. The rocketplane had accelerated to Mach 2. The external tanks emptied in about 60 seconds and were jettisoned. The tanks were equipped with parachutes. They were recovered to be reused on later flights.

The X-15, now about 25,000 pounds (11,340 kilograms) lighter and without the aerodynamic drag of the tanks, continued to accelerate. At its highest speed, the rocketplane was travelling approximately 6,500 feet per second (1,981 meters per second), more than twice as fast as a high-powered rifle bullet. Its surface temperatures exceeded 1,200 °F. (649 °C.)

Knight landed the X-15 on Rogers Dry Lake at Edwards Air Force Base. The duration of this flight had been 8 minutes, 26.8 seconds.

The modified North American Aviation X-15A-2, 56-6671, with external propellant tanks mounted. (NASA)
The modified North American Aviation X-15A-2, 56-6671, with external propellant tanks mounted. (NASA)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

16 November 2004

Boeing NB-52B Stratofortress 52-008, Balls 8, escorted by two NASA F-18 chase planes, performs a farewell flyover during its final flight, 16 November 2004. (NASA)
Boeing NB-52B Stratofortress 52-008, Balls 8, escorted by two NASA F-18 chase planes, performs a farewell flyover during its final flight, 16 November 2004. (NASA)

16 November 2004: Balls 8, the Boeing NB-52B “mothership” at the NASA Dryden Flight Research Center (located at Edwards Air Force Base, California) performs a farewell flyover during its final flight. 52-008 was both the oldest airplane in the U.S. Air Force inventory and the lowest time B-52 Stratofortress still operational.

Boeing RB-52B-10-BO Stratofortress 52-008 was built at Seattle, Washington and made its first flight 11 June 1955. It was turned over to NASA 8 June 1959 for use as a air launch vehicle for the X-15 rocketplane. North American Aviation modified the bomber for its new role at Air Force Plant 42, Palmdale, California. It was redesignated NB-52B.

NASA 008, known as “Balls 8”, a modified Boeing RB-52-10-BO Stratofortress, 52-008, with NASA 824, a Lockheed TF-104G Starfighter, N824NA. (NASA)

52-008 carried an X-15 for the first time 23 January 1960. Sharing the mothership responsibilities with the earlier NB-52A 52-003, Balls 8 carried the X-15s aloft on 159 flights, dropping them 106 times.

Balls 8 lands on a runway marked on Rogers Dry Lake at Edwards Air Force Base, California. The drogue parachute helps to slow the airplane. (NASA)
A visual reminder of the missions flown by “mothership” Balls 8. (NASA)
A visual reminder of the missions flown by “mothership” Balls 8. (NASA)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

15 November 1967

Major Michael J. Adams, United States Air Force, with an X-15 hypersonic research rocketplane on Rogers Dry Lake. (NASA)
Major Michael J. Adams, United States Air Force, with a North American Aviation X-15 hypersonic research rocketplane, 56-6670, on Rogers Dry Lake, after his third flight in the program, 22 March 1967. (NASA)

15 November 1967: Major Michael James Adams, United States Air Force, was killed in the crash of the number three North American Aviation X-15 hypersonic research rocketplane, 56-6672.

Flight 191 of the X-15 program was Mike Adams’ seventh flight in the rocketplane. It was the 56-6672’s 65th flight. The flight plan called for 79 seconds of engine burn, accelerating the X-15 to Mach 5.10 while climbing to 250,000 feet (76,200 meters). Adams’ wife, Freida, and his mother, Georgia Adams, were visiting in the NASA control room at Edwards Air Force Base.

Balls 8, the Boeing NB-52B Stratofortress, 52-008, flown by Colonel Joe Cotton, took off from Edwards at 9:12 a.m., carrying -672 on a pylon under its right wing, and headed north toward the drop point over Delamar Dry Lake in Nevada. The drop ship climbed to the launch altitude of 45,000 feet (13,716 meters).

The X-15 launch was delayed while waiting for the Lockheed C-130 Hercules rescue aircraft to arrive on station. This required Adams to reset the Honeywell MH-96 Automatic Flight Control System to compensate for the changing position of the sun in the sky.

X-15A-3
North American Aviation X-15A-3 56-6672 immediately after launch over Delamar Lake, Nevada. Date unknown. (U.S. Air Force)

56-6672 was launched by Balls 8 at 10:30:07.4 a.m., Pacific Standard Time. As it dropped clear of the bomber, the rocketplane rolled 20° to the right, a normal reaction. Within one second, Mike Adams had started the XLR99-RM-1 rocket engine while bringing the wings level. The engine ignited within one-half second and was up to its full 57,000 pounds of thrust (253.549 kilonewtons) one second later. The engine ran for 82.3 seconds, 3.3 seconds longer than planned, causing the X-15 to reach Mach 5.20 (3,617 miles per hour/5,821 kilometers per hour) and to overshoot the planned altitude to peak at 266,000 feet (81,077 meters).

A North American Aviation X-15 hypersonic research rocketplane leaves a contrail as it climbs toward the edge of space. (NASA)
A North American Aviation X-15 hypersonic research rocketplane leaves a contrail as it climbs toward the edge of space. (NASA)

With the X-15 climbing through 140,000 feet (42,672 meters), the Inertial Flight Data System computer malfunctioned. Adams radioed ground controllers that the system’s malfunction lights had come on.

The flight plan called for a wing-rocking maneuver at peak altitude so that a camera on board could scan from horizon to horizon. During this maneuver, the Reaction Control System thrusters did not respond properly to Adams’ control inputs. The X-15 began to yaw to the right.

As it reached its peak altitude, 56-6672 yawed 15° to the left. Going over the top, the nose yawed right, then went to the left again. By the time the aircraft has descended to 230,000 feet (70,104 meters), it had pitched 40° nose up and yawed 90° to the right its flight path. The X-15 was also rolling at 20° per second. The rocketplane went into a spin at Mach 5.

10:33:37 Chase 1: “Dampers still on, Mike?”

10:33:39 Adams: “Yeah, and it seems squirrelly.”

10:34:02 Adams: “I’m in a spin, Pete.” [Major William J. “Pete” Knight, another X-15 pilot, was the flight controller, NASA 1]

10:34:05 NASA 1: “Let’s get your experiment in and the cameras on.”

10:34:13 NASA 1: “Let’s watch your theta, Mike.”

10:34:16 Adams: “I’m in a spin.”

10:34:18 NASA 1: “Say again.”

10:34:19 Adams: “I’m in a spin.”

Adams fought to recover, and at 118,000 feet (35,967 meters) came out of the spin, but he was in an inverted 45° dive at Mach 4.7. The X-15’s MH-96 Automatic Flight Control System entered a series of diverging oscillations in the pitch and roll axes, with accelerations up to 15 gs. Dynamic pressures on the airframe rapidly increased from 200 pounds per square foot (9.576 kilopascals) to 1,300 pounds per square foot (62.244 kilopascals).

At 62,000 feet (18,898 meters), still at Mach 3.93, the aircraft structure failed and it broke apart.

10:34:59 X-15 telemetry failed. Last data indicated it was oscillating +/- 13 g. Radar altitude was 62,000 feet (18,898 meters). The aircraft was descending at 2,500 feet per second (762 meters per second) and broke into many pieces at this time.

10:35:42 NASA 1: “Chase 4, do you have anything on him?”

10:35:44 Chase 4: “Chase 4, negative.”

10:35:47 NASA 1: “OK, Mike, do you read?”

10:35:52 Chase 4: “Pete, I got dust on the lake down there.”

North American Aviation X-15A-3 56-6672 crashed in a remote area, approximately 5½ miles (9 kilometers) north-northeast of Randsburg, California, a small village along U.S. Highway 395.

Major Michael James Adams was killed. This was the only pilot fatality of the entire 199-flight X-15 program.

North American Aviation X-15A 56-6672 on Rogers Dry Lake after a flight. (NASA)
North American Aviation X-15A-3 56-6672 on Rogers Dry Lake. (NASA)

An investigation by NASA’s Engineering and Safety Center determined that,

“. . . the root cause of the accident was an electrical disturbance originating from an experiment package using a commercial-off-the-shelf (COTS) component that had not been properly qualified for the X-15 environment. . .” and that there is “. . . no conclusive evidence to support the hypothesis that SD [spatial disorientation] was a causal factor. On the contrary, the evidence suggests that poor design of the pilot-aircraft interface and ineffective operational procedures prevented the pilot and ground control from recognizing and isolating the numerous failures before the aircraft’s departure from controlled flight was inevitable.”

A Comprehensive Analysis of the X-15 Flight 3-65 Accident, NASA/TM—2014-218538 (Corrected Copy)

Crushed forward fuseleage of X-15 56-6672. (NASA)
Crushed forward fuselage of North American Aviation X-15A-3 56-6672. (NASA)

Michael James Adams was born at Sacramento, California, 5 May 1930. He was the first of two sons of Michael Louis Adams, a telephone company technician, and Georgia E. Domingos Adams.

Michael Adams throws a javelin at Sacramento J.C. (1949 Pioneer)

After high school, Mike Adams attended Sacramento Junior College, graduating in 1949. He was an outfielder for the college baseball team, and threw the javelin in track & field.

Adams enlisted in the United States Air Force in 1950. He completed basic training at Lackland Air Force Base, San Antonio, Texas. In  October 1951, he was selected as an aviation cadet and sent to Spence Air Force Base, near Moultrie, Georgia, for primary flight training. Cadet Adams completed flight training at Webb Air Force Base, Big Spring, Texas. He graduated 25 October 1952. Adams was one of two distinguished graduates in his class and received a commission as an officer in the regular Air Force.

Second Lieutenant Adams was assigned to advanced flight training at Nellis Air Force Base, where he flew the Lockheed F-80 Shooting Star and North American Aviation F-86 Sabre.

In April 1953, lieutenant Adams joined the 80th Fighter-Bomber Squadron at K-13, Suwon, Republic of Korea. He flew 49 combat missions.

Mr. and Mrs. Michael J. Adams, 15 January 1955. (Freida Adams Collection)

Following the Korean War, Lieutenant Adams was assigned to the 613th Fighter Bomber Squadron, 401st Fighter-Bomber Group, at England Air Force Base, Alexandria, Louisiana. The Squadron initially flew the F-86F Sabre and then transitioned to the Republic F-84F Thunderstreak. Adams deployed to Chaumont Air Base, France, for a six-month temporary assignment.

While stationed at England AFB, Lieutenant Adams met Miss Freida Beard. They were married in a ceremony at the Homewood Baptist Church in Alexandria, 15 January 1955. They would have three children, Michael James, Jr., Brent, and Liese Faye Adams.

Michael J. Adams, 1958

In 1958, Adams graduated from the University of Oklahoma at Norman, with a bachelor’s degree in aeronautical engineering. He was a member of the university’s Institute of Aeronautical Sciences. Adams was next assigned to the Massachusetts Institute of Technology, Cambridge, Massachusetts, where he studied astronautics.

Adams’ next military assignment was as a maintenance officer course instructor at Chanute Air Force Base, Rantoul, Illinois.

In 1962, Captain Adams entered an eight-month training program at the Air Force Test Pilot School, Class 62C, at Edwards Air Force Base in the high desert of southern California. He was awarded the A.B. Honts Trophy as the class’s outstanding graduate.

On 17 June 1963, Captain Adams entered the Aerospace Research Pilots School, which was also at Edwards. This was a seven-month course that taught flying skills in advanced vehicles, with an aim to prepare the graduates for space flight, and to create a pool of qualified military test pilots to be selected as astronauts. The Air Force estimated a need for 20 pilots a year for the upcoming X-20 Dyna-Soar and Manned Orbiting Laboratory (M.O.L.) programs. Adams graduated with the second of the four ARPS classes.

Captain Michael J. Adams with a Lockheed F-104 Starfighter.

Adams then became an operation test pilot, conducting stability and control tests for the Northrop F-5A Freedom Fighter. That was followed by an assignment as a project pilot for the Cornell Aeronautical laboratory.

On 13 November 1963, it was announced that Michael Adams was on of the selectees for the M.O.L. program. As a designated Air Force astronaut, Adams was involved in lunar landing simulations during the development of the Apollo Program lunar lander.

Artists conception of the U.S. Air Force Manned Orbiting Laboratory (M.O.L.)

Major Adams was selected as a pilot of the NASA/Air Force X-15 Hypersonic Research Flight Program. (He was the twelfth and final pilot to be accepted into the project.) He made his first X-15 flight on 6 October 1966. He flew the first X-15, 56-6770. A ruptured fuel tank forced him to make an emergency landing at Cuddeback Dry Lake, one of several pre-selected emergency landing sites, about 40 miles (64 kilometers) northeast of Edwards. The duration of the flight was 8 minutes, 26.4 seconds. The X-15 had only reached an altitude of 75,400 feet (22,982 meters) and Mach 3.00.

A North American Aviation X-15 at Cuddeback Lake after an emergency landing. A Piasceki HH-21C is standing by. (U.S. Air Force)

His second flight took place on 29 November 1966. On this flight, he took the # 3 ship, 56-6672, to 92,100 feet (28,072 meters) and Mach 4.65. The flight lasted 7 minutes, 55.9 seconds.

For his third flight, Mike Adams was back in 56-6670, which had been repaired. He flew to an altitude of 133,100 feet (40,569 meters) and reached Mach 5.59 (3,822 miles per hour/6,151 kilometers per hour). This was Adams fastest flight. He landed at Edwards after 9 minutes, 27.9 seconds.

Flight number four for Adams took place on 28 April 1967. Again he flew the # 1 X-15. On this flight, he reached 167,200 feet (50,963 meters) and Mach 5.44. Elapsed time was 9 minutes, 16.0 seconds.

On 15 June 1967, Adams flew # 1 to 229,300 feet (69,891 meters) and Mach 5.14. Duration 9 minutes, 11.0 seconds.

On 25 August 1967, Adams made his sixth flight, his second in the third X-15, 56-6672. The rocket engine shut down after sixteen seconds and had to be restarted. The maximum altitude was 84,400 feet (25,725 meters) and Mach 4.63. The duration of this flight was 7 minutes. 37.0 seconds.

Mike Adams’ seventh flight in an X-15 took place 15 November 1967. This was the 191st X-15 flight, and the 65th for X-15 56-6672. Tests to be conducted were an ultraviolet study of the rocketplane’s exhaust plume; solar spectrum measurements; micrometeorite collection, and a test of ablative material for the Saturn rocket.

Adams reached 266,000 feet (81,077 meters) and Mach 5.20.

Having met the U.S. Air Force qualification for flight in excess of 50 miles (80.47 kilometers), Michael Adams was posthumously awarded the wings of an astronaut.

Major Michael James Adams, United States Air Force, was buried at Mulhearn Memorial Park, in Monroe, Louisiana.

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

9 November 1962

McKAY, John B. (Jack) with X-15 56-6672, 13 March 19649 November 1962: Flight 74 of the X-15 Program was the Number Two aircraft’s 31st flight. X-15 56-6671 was carried aloft by Balls 8, the Boeing NB-52B Stratofortress, 53-008, for launch over Mud Lake, Nevada. NASA test pilot John Barron (“Jack”) McKay was to take the rocketplane to 125,000 feet at Mach 5.5 to investigate the stability and handling of the X-15 with the lower half of the ventral fin removed, and to investigate aerodynamic boundary layer phenomena.

North American Aviation X-15 56-6671 under the right wing of a B-52 Stratofortress at 45,000 feet. (NASA)
North American Aviation X-15 56-6671 under the right wing of a B-52 Stratofortress at 45,000 feet. (NASA)

The B-52 mothership dropped Jack McKay and the X-15 right on schedule at 10:23:07.0 a.m., local time, from an altitude of 45,000 feet (13,716 meters) and speed of approximately 450 knots (833 kilometers per hour). McKay advanced the throttle to ignite the Reaction Motors XLR99-RM-1 rocket engine. It fired immediately but when McKay advanced the throttle for the full 57,000 pounds of thrust, the engine remained at just 30%.

The X-15 could have flown back to Edwards Air Force Base, about 200 miles (320 kilometers) to the south, but with the engine not responding to the throttle, it was uncertain that it would continue running. The decision was made to make an emergency landing at Mud Lake.

Having reached a peak altitude of 53,950 feet (16,444 meters) and Mach 1.49 (1,109 miles per hour/1,785 kilometers per hour), Jack McKay continued to circle the lake burning off propellants as he lost altitude. The engine was shut down at 70.5 seconds. McKay positioned the aircraft for landing as he continued to dump unused propellant and liquid oxygen, but a considerable amount remained on board.

As he neared touchdown, he tried to lower the flaps but they did not deploy. The X-15 touched down on the dry lake bed at 296 miles per hour (476.4 kilometers per hour), 66 miles per hour (106 kilometers per hour) faster than normal.

Duration of the flight from air launch to touchdown was 6 minutes, 31.1 seconds.

The high speed and extra weight caused the X-15’s rear skids to hit harder than normal. When the nose wheels hit, a rebound effect placed even higher loads on the rear struts. At the same time, with the elevators in an extreme nose-up position, the higher aerodynamic loads pushed the skids deeper into the lake bed. This higher loading caused the left rear strut to collapse. The X-15 rolled to the left and the left elevator dug into the lake bed. This caused the aircraft to start sliding to the left. Jack McKay jettisoned the canopy and as the right wing tip dug into the surface, the X-15 flipped over and came to rest upside down.

A Piasecki H-21 rescue helicopter lands near the overturned X-15 at Mud Lake, 9 November 1961. (NASA)
A Piasecki H-21 rescue helicopter lands near the overturned X-15 at Mud Lake, 9 November 1961. (NASA)
The X-15 rolled over when the left landing skid collapsed because of the high-speed, overweight emergency landing at Mud Lake, Nevada. Jack McKay was trapped in the cockpit and suffered serious spinal injuries. (NASA)
The X-15 rolled over when the left landing skid collapsed because of the high-speed, overweight emergency landing at Mud Lake, Nevada. Jack McKay was trapped in the cockpit and suffered serious spinal injuries. (NASA)
The Number Two X-15, 56-6671, lies upside down and severely damaged at Mud Lake, Nevada, 9 November 1962. (NASA)
The Number Two X-15, 56-6671, lies upside down and severely damaged at Mud Lake, Nevada, 9 November 1962. (NASA)

McKay was seriously injured. He was trapped in the upside down X-15 and was in danger from the vapors of the ammonia propellants and liquid oxygen. An H-21 rescue helicopter hovered overhead to blow the vapor away.

Prior to the flight, an Air Force C-130 had brought a fire engine and crew to standby at Mud Lake, returned to Edwards and picked up a second fire engine and its crew, then remained airborne should an emergency landing be made at another intermediate dry lake.

These propositioned emergency assets were able to rescue McKay and to transport him to the hospital back at Edwards.

McKay eventually recovered sufficiently to return to flight status, but ultimately his injuries forced him to retire.

The Number Two X-15 was severely damaged. It was taken back to North American and was rebuilt into the X-15A-2, intended to reach speeds up to Mach 8. It would be more than a year and a half before it flew again.

North American Aviation X-15A-2 56-6671, after a 19-month repair, redesign and modification program. The fuselage was lengthened, additional propellant and reaction control tanks installed internally, the nose wheel and rear landing skid struts lengthened, and external tanks installed. (NASA)
North American Aviation X-15A-2 56-6671, after a 19-month repair, redesign and modification program. The fuselage was lengthened, additional propellant and reaction control tanks installed internally, the nose wheel and rear landing skid struts lengthened, and external tanks installed. (NASA)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather