Tag Archives: Boeing NB-52A Stratofortress

24 October 1968

William Harvey Dana, NASA Research Pilot. (National Aeronautics and Space Administration E-5327)

24 October 1968: William Harvey Dana takes the first North America Aviation X-15 hypersonic research rocketplane, 56-6670, for the 199th and final flight of the X-15 program.

Carried aloft by NASA’s Boeing NB-52A Stratofortress mothership, 52-003, the first X-15A was launched over Smith Ranch Dry Lake, about half-way between the city of Reno and the NASA High Range Tracking Station at Ely, Nevada, at 10:02:47.3 a.m., Pacific Daylight Time (17:02:47.3 UTC). Bill Dana started the Reaction Motors XLR99-RM-1 rocket engine for a planned 84 second burn. The flight plan called for the X-15 to reach Mach 5.45 and 250,000 feet (76,200 meters).

The rocketplane’s performance was very close to plan, a tribute to Dana’s piloting skill. The engine burned out after 83.8 seconds. The maximum speed was slightly lower than planned at Mach 5.38, while the peak altitude was a little higher, at 255,000 feet (77,724 meters).

Dana glided back to Edwards Air Force Base. The total duration of the flight was 11 minutes, 28.3 seconds.

Dana made his first flight in the North American Aviation X-15 hypersonic research rocketplane on 4 November 1965. He reached a maximum speed of Mach 4.22, and a peak altitude of 80,200 feet (24,445 meters). He made a total of sixteen flights in the X-15s. Dana’s highest speed was Mach 5.38, and his highest altitude, 306,900 feet, (93,543 meters), on 1 November 1966.

This had been 56-6670’s 81st flight, and the 141st time it had been carried aloft aboard a B-52.

A. Scott Crossfield, wearing a David Clark Co. XMC-2 full-pressure suit, which he helped to design and test, with the first of three North American X-15s, 56-6670. (North American Aviation, Inc.)

56-6670 is the first of three X-15s built by North American Aviation’s Los Angeles Division for NASA, the United States Air Force, and the United States Navy, to investigate the effects of hypersonic flight (Mach 5+). On 8 June 1959, North American Aviation Chief Engineering Test Pilot, and former NACA research test pilot, Albert Scott Crossfield, had made the first glide flight of 56-6670, also launched by 52-003.

NASA Research Pilot William H. Dana with North American X-15A 56-6672 on Rogers Dry Lake. (NASA)

From 8 June 1959 to 24 October 1968, the three X-15s were flown by twelve test pilots, three of whom would qualify as astronauts in the X-15. Two would go on to the Apollo Program, and one, Neil Alden Armstrong, would be the first human to set foot on the surface of the Moon, 20 July 1969. Joe Engle would fly the space shuttle. Four of the test pilots, Petersen, White, Rushworth, and Knight, flew in combat during the Vietnam War, with Bob White being awarded the Air Force Cross. Petersen, Rushworth and White reached flag rank.

Overhead view of X-15A-1 56-6670 shows the rocketplane’s overall fineness ratio and short wings. (North American Aviation, Inc.)

Flown by a single pilot/astronaut, the X-15 is a mid-wing monoplane with dorsal and ventral fin/rudders and stabilators. The wing had no dihedral, while the stabilators had a pronounced 15° anhedral. The short wings have an area of 200 square feet (18.58 square meters) and a maximum thickness of just 5%. The leading edges are swept to 25.64°. There are two small flaps but no ailerons. The entire vertical fin pivots for yaw control.

Above 100,000 feet (30,840 meters) altitude, conventional aircraft flight control surfaces are ineffective. The X-15 is equipped with a system of reaction control jets for pitch, roll and yaw control. Hydrogen peroxide was passed through a catalyst to produce steam, which supplied the control thrusters.

The forward landing gear consists of a retractable oleo strut with steerable dual wheels and there are two strut/skids at the rear of the fuselage. The gear is retracted after the X-15 is mounted on the NB-52 and is extended for landing by its own weight.

The rocketplane’s cockpit featured both a conventional control stick as well as side-controllers. It was pressurized with nitrogen gas to prevent fires. The pilot wore an MC-2 full-pressure suit manufactured by the David Clark Company of Worcester, Massachusetts, with an MA-3 helmet. The suit was pressurized below the neck seal with nitrogen, while the helmet was supplied with 100% oxygen. This pressure suit was later changed to the Air Force-standardized A/P22S.

North American Aviation, Inc. X-15A 56-6670 on Rogers Dry Lake, Edwards Air Force Base, California. (NASA)

The X-15 is 50.75 feet (15.469 meters) long with a wing span of 22.36 feet (6.815 meters). The height—the distance between the tips of the dorsal and ventral fins—is 13.5 feet (4.115 meters). The stabilator span is 18.08 feet (5.511 meters). The fuselage is 4.67 feet (1.423 meters) deep and has a maximum width of 7.33 feet (2.234 meters).

The X-15s were built primarily of a nickel/chromium/iron alloy named Inconel X, along with corrosion-resistant steel, titanium and aluminum. Inconel X is both very hard and also able to maintain its strength at the very high temperatures the X-15s were subjected to by aerodynamic heating. It was extremely difficult to machine and special fabrication techniques had to be developed.

X-15 56-6670 with NB-52A 52-003, 13 April 1960. (NASA)

Since the X-15 was built of steel rather than light-weight aluminum, as are most aircraft, it is a heavy machine, weighing approximately 14,600 pounds (6,623 kilograms) empty and 34,000 pounds (15,422 kilograms) when loaded with a pilot and propellants. The X-15s carried as much as 1,300 pounds (590 kilograms) of research instrumentation, and the equipment varied from flight to flight. The minimum flight weight (for high-speed missions): was 31,292 pounds (14,194 kilograms) The maximum weight was 52,117 pounds (23,640 kilograms) at drop (modified X-15A-2 with external propellant tanks).

Initial flights were flown with a 5 foot, 11 inch (1.803 meters)-long air data boom at the nose, but this would later be replaced by the “ball nose” air sensor system. The data boom contained a standard pitot-static system along with angle-of-attack and sideslip vanes. The boom and ball nose were interchangeable.

Delays in the production of the planned Reaction Motors XLR99 rocket engine forced engineers to adapt two vertically-stacked Reaction Motors XLR11-RM-5 four-chamber rocket engines to the X-15 for early flights. This was a well-known engine which was used on the previous rocketplanes. The XLR11 burned a mixture of ethyl alcohol and water with liquid oxygen. Each of the engines’ four chambers could be ignited individually. Each engine was rated at 11,800 pounds of thrust (58.49 kilonewtons) at Sea Level.

Thiokol Reaction Motors Division XLR99-RM-1 rocket engine. (U.S. Air Force)

The Reaction Motors XLR99-RM-1 rocket engine was throttleable by the pilot from 28,500 to 60,000 pounds of thrust. The engine was rated at 50,000 pounds of thrust (222.41 kilonewtons) at Sea Level; 57,000 pounds (253.55 kilonewtons) at 45,000 feet (13,716 meters), the typical drop altitude; and 57,850 pounds (257.33 kilonewtons) of thrust at 100,000 feet (30,480 meters). Individual engines varied slightly. A few produced as much as 61,000 pounds of thrust (271.34 kilonewtons).

The XLR99 burned anhydrous ammonia and liquid oxygen. The flame temperature was approximately 5,000 °F. (2,760 °C.) The engine was cooled with circulating liquid oxygen. To protect the exhaust nozzle, it was flame-sprayed with ceramic coating of zirconium dioxide. The engine is 6 feet, 10 inches (2.083 meters) long and 3 feet, 3.3 inches (0.998 meters) in diameter. It weighs 910 pounds (413 kilograms). The Time Between Overhauls (TBO) is 1 hour of operation, or 100 starts.

The XLR99 proved to be very reliable. 169 X-15 flights were made using the XLR99. 165 of these had successful engine operation. It started on the first attempt 159 times.

The highest speed achieved during the program was with the modified number two ship, X-15A-2 56-6671, flown by Pete Knight to Mach 6.70 (6,620 feet per second/4,520 miles per hour/ kilometers per hour) at 102,700 feet (31,303 meters). On this flight, the rocketplane exceeded its maximum design speed of 6,600 feet per second (2,012 meters per second).

The maximum altitude was reached by Joe Walker, 22 August 1963, when he flew 56-6672 to 354,200 feet (107,960 meters).

The longest flight was flown by Neil Armstrong, 20 April 1962, with a duration of 12 minutes, 28.7 seconds.

The North American Aviation, Inc., X-15A-1, 56-6670, being brought into the Arts and Industries building, June 1969. (Smithsonian Institution Archives SI-A-4145-23-A)

North American Aviation X-15A-1 56-6670 is on display at the Smithsonian Institution National Air and Space Museum. X-15A-2 56-6671 is at the National Museum of the United States Air Force.

North American Aviation Inc./U.S. Air Force/NASA X-15A 56-6670, hypersonic research rocketplane on display at the National Air and Space Museum. (NASM)

© 2023, Bryan R. Swopes

17 September 1959

X-15 56-6670 is carried under the right wing of NB-52A 52-003. Scott Crossfield is in the cockpit of the rocket plane. (NASA)

17 September 1959: After previously making one glide flight, North American Aviation Chief Engineering Test Pilot Albert Scott Crossfield made the first powered flight of an X-15 hypersonic research rocket plane.

Carried aloft under the right wing of an eight-engine Boeing NB-52A Stratofortress bomber, USAF serial number 52-003, the first of three North American Aviation X-15s, 56-6670, was airdropped from 35,000 feet (10,668 meters) over Rosamond Dry Lake, west of Edwards Air Force Base. Launch time was 08:08:48.0 a.m., Pacific Daylight Savings Time (15:08.48.0 UTC).

Scott Crossfiled prepares for a flight in the North American Aviation X-15A
Scott Crossfield prepares for a flight in the North American Aviation X-15A. Crossfield is wearing a conformal (face seal) helmet with his David Clark Co. MC-2 full-pressure suit. (NASA/North American Aviation, Inc.)

The X-15 was designed to use the Reaction Motors XLR-99 rocket engine, but early in the test program that engine was not yet available so two smaller XLR-11 engines were used. This was engine the same type used in the earlier Bell X-1 rocket plane that first broke the sound barrier in 1948. Though producing just one-fourth the thrust of the XLR-99, it allowed the functional testing of the X-15 to proceed.

The X-15’s two Reaction Motors XLR11 engines. (NASA)

Scott Crossfield wrote:

Two minutes after launch I reached 50,000 feet and pushed over in level flight. Then I dropped the nose slightly for a speed run, meanwhile maneuvering the ship through a series of turns and rolls, conscious of a deep rumbling noise of the rocket and a great rush of wind on the fuselage. It was obvious the black bird was in her element at supersonic speeds. She responded beautifully. I stared in fascination at the Mach meter which climbed from 1.5 Mach to 1.8 Mach and then effortlessly to my top speed for this flight of 2.3 Mach or about 1,500 miles and hour. Then, because I was under orders not to take the X-15 wide open, I shut off three of the rocket barrels. As I slowed down, I recalled the agony at Edwards many years before when we had worked for months pushing, calculating, polishing and who knows what else to achieve Mach 2 in the Skyrocket. Now with the X-15 we had reached that speed in three minutes on our first powered flight and I had to throttle back.

Always Another Dawn, The Story Of A Rocket Test Pilot, by A. Scott Crossfield with Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960. Chapter 39 at Pages 362.

X-15A 56-6670 drops from the wing of the B-52 mothership. The vapor trail is from hydrogen peroxide that powers the aircraft power systems. Note the roll to the right as the X-15 drops from the pylon. (NASA)

The X-15 dropped 2,000 feet (610 meters) while Scott Crossfield ignited the two XLR-11 engines and then started “going uphill.” During the 224.3 seconds burn duration, the X-15 reached Mach 2.11 (1,393 miles per hour/2,242 kilometers per hour) and climbed to 52,300 feet (15,941 meters), both slightly higher than planned.

Problems developed when the rocket engine’s turbo pump case failed, and fire broke out in the hydrogen peroxide compartment, engine compartment and in the ventral fin. Crossfield safely landed on Rogers Dry Lake at Edwards Air Force Base. The duration of the flight was 9 minutes, 11.1 seconds. Damage to the rocket plane was extensive but was quickly repaired. 56-6670 flew again 17 October 1959.

Chief Engineering Test Pilot A. Scott Crossfield climbs out of the cockpt of a North American Aviation X-15A hypersonic research rocketplane. (Der Spiegel)

Over the next nine years the three X-15s would make 199 flights, setting speed and altitude records nearly every time they flew, and expanding NASA’s understanding of flight in the hypersonic range. The first two X-15s, 56-6670 and 56-6671, survived the program. 670 is at the Smithsonian Institution National Air and Space museum and 671 is at the National Museum of the United States Air Force.

Test pilot Albert Scott Crossfield with X-15 56-6670 attached to the right wing pylon of NB-52A 52-003 at Edwards Air force Base. (North American Aviation Inc.)
Test pilot Albert Scott Crossfield with X-15 56-6670 attached to the right wing pylon of NB-52A 52-003 at Edwards Air force Base. (North American Aviation Inc.)

© 2018, Bryan R. Swopes

22 August 1963

Joe Walker and the X-15 on Rogers Dry Lake at the end of a flight. Walker is wearing a David Clark Co. MC-2 full-pressure suit. (U.S. Air Force)

22 August 1963: On his twenty-fifth and last flight with the X-15 program, NASA Chief Research Test Pilot Joseph Albert Walker would attempt a flight to Maximum Altitude. Engineers had predicted that the X-15 was capable of reaching 400,000 feet (121,920 meters) but simulations had shown that a safe reentry from that altitude was risky. For this flight, Flight 91, the flight plan called for 360,000 feet (109,728 meters) to give Walker a safety margin. Experience had shown that slight variations in engine thrust and climb angle could cause large overshoots in peak altitude, so this was not considered an excessive safety margin.

For this flight, Joe Walker flew the Number 3 X-15, 56-6672. It was the only one of the three North American Aviation X-15s equipped with the Honeywell MH-96 flight control system, which had been developed to improve control of the rocketplane outside Earth’s atmosphere. This flight was the twenty-second for Number 3.

North American Aviation X-15 56-6672 immediately after being dropped by the Boeing NB-52 Stratofortress. (NASA)
North American Aviation X-15A 56-6672 immediately after being dropped by the Boeing NB-52 Stratofortress. (NASA)

Walker and the X-15 were airdropped from the Boeing NB-52A Stratofortress 52-003, The High and Mighty One, at 45,000 feet (13,716 meters) above Smith Ranch Dry Lake, Nevada, about half-way between the city of Reno and the NASA High Range Tracking Station at Ely. Launch time was 10:05:57.0 a.m., PDT. Walker ignited the Reaction Motors XLR99-RM-1 rocket engine. This engine was rated at 57,000 pounds of thrust. Experience had shown that different engines varied from flight to flight and that atmospheric conditions were a factor. Thrust beyond 60,000 pounds was often seen, but this could not be predicted in advance. The flight plan called for the duration of burn to be 84.5 seconds on this flight. The X-15 climbed at a 45° angle.

As Walker was about to shut down the engine according to plan, it ran out of fuel. The total burn time was 85.8 seconds, just slightly longer than planned.

“At burnout, Joe was passing 176,000 feet [53,645 meters] and traveling at 5,600 feet per second [1,707 meters per second]. He then began the long coast to peak altitude. It would take almost 2 minutes to reach peak altitude after burn out. Two minutes does not seem like a lot of time, but try timing it. Just sit back in your easy chair and count off the seconds. It is almost impossible to believe that you can continue to coast up in altitude for that length of time after the engine burns out. It gives you some feel for how much energy is involved at those speeds. For comparison, when you throw a ball up in the air as hard as you can, it only coasts upward a maximum of 4 or 5 seconds. The X-15 coasted up for 120 seconds.

“The airplane would coast up another 178,000 feet [54,254 meters] during that time to peak out at 354,200 feet. . . .” [107,960 meters]

At The Edge of Space: The X-15 Flight Program, by Milton O. Thompson, Smithsonian Institution Press, Washington, 1992, Chapter 5 at Page 125.

Joe Walker and the X-15 reached the peak of their ballistic trajectory at 354,200 feet (67.083 miles, 107,960 meters). Walker pitched the nose down to be in the proper attitude for atmospheric reentry. The X-15 decelerated as it hit the atmosphere and Walker experienced as much as 7 Gs. The rocketplane’s aerodynamic control surfaces again became operational as it descended through 95,000 feet (28,956 meters) and Walker leveled at 70,000 feet (21,336 meters). He then glided to a landing on Rogers Dry Lake at Edwards Air Force Base, California, after 11 minutes, 8.6 seconds of flight.

Flight 91 was the highest flight achieved by any of the X-15s. It was Joe Walker’s second flight into space. His record would stand for the next 41 years.

© 2016, Bryan R. Swopes

4 August 1960

4 August 1960: NASA research test pilot Joseph Albert Walker set an unofficial world speed record when he flew the number one North American Aviation X-15, 56-6670, to 2,195 miles per hour (3,532.5 kilometers per hour). This was the 18th flight of the X-15 Program. It was 56-6670’s eighth flight and Walker’s fourth X-15 flight. The purpose of this test was to gradually increase the rocket plane’s speed toward its design limit.

Airdropped from the Boeing NB-52A Stratofortress mothership, 52-003, over Silver Lake, near the California-Nevada border, at 08:59:13.0 a.m., PDT, Walker fired the X-15’s two Reaction Motors XLR11-RM-13 rocket engines for 264.2 seconds. The X-15 accelerated to Mach 3.31 and climbed to a peak altitude of 78,112 feet (23,810 meters). [The two XLR11s were used as an interim powerplant until the Reaction Motors XLR99 was ready. The combined thrust of both LR11s was only slightly more than the idle thrust of the XLR99.]

Walker touched down on Rogers Dry Lake at Edwards Air Force Base, California, after a flight of 10 minutes, 22.6 seconds.

Joe Walker with X-15 56-6670 on Rogers Dry Lake. (NASA)

© 2016, Bryan R. Swopes

17 July 1962

With the X-15 under its right wing, the Boeing NB-52A, 52-003, takes of from Edwards Air Force Base, 17 July 1962. The rocketplane's belly is covered with frost from the cryogenic propellants. (U.S. Air Force)
With Major Robert M. White and the X-15 under its right wing, the Boeing NB-52A Stratofortress, 52-003, takes of from Edwards Air Force Base, 17 July 1962. The rocketplane’s belly is covered with frost from the cryogenic propellants. (U.S. Air Force)

17 July 1962: At 9:31:10.0 a.m., the Number 3 North American Aviation X-15, 56-6672, was airdropped from a Boeing NB-52A Stratofortress, 52-003, over Delamar Dry Lake, Nevada. Air Force project test pilot Major Robert M. (“Bob”) White was in the cockpit. This was the 62nd flight of the X-15 Program, and Bob White was making his 15th flight in an X-15 hypersonic research rocketplane. The purpose of this flight was to verify the performance of the Honeywell MH-96 flight control system which had been installed in the Number 3 ship. Just one minute before drop, the MH-96 failed, but White reset his circuit breakers and it came back on line.

North American Aviation X-15 56-6672 immediately after being dropped by the Boeing NB-52 Stratofortress. (NASA)
North American Aviation X-15 56-6672 immediately after being dropped by the Boeing NB-52 Stratofortress. (NASA)

After dropping from the B-52’s wing, White fired the X-15’s Reaction Motors XLR-99 rocket engine and began to accelerate and climb. The planned burn time for the 57,000-pound-thrust engine was 80.0 seconds. It shut down 2 seconds late, driving the X-15 well beyond the planned peak altitude for this flight. Instead of reaching 280,000 feet (85,344 meters), Robert White reached 314,750 feet (95,936 meters). This was an altitude gain of 82,190 meters (269,652 feet), which was a new Fédération Aéronautique Internationale (FAI) World Record for Altitude Gain, Aeroplane Launched from a Carrier Aircraft.¹ (The B-52 typically launched the X-15 from an altitude of about 45,000 feet (13,716 meters.) The rocketplane reached Mach 5.45, 3,832 miles per hour (6,167 kilometers per hour).

Because of the increased speed and altitude, White was in danger of overshooting his landing at Edwards Air Force Base in California. He passed over the north end of Rogers Dry Lake and crossed the “high key”—the point where the X-15 landing maneuver begins—too high and too fast at Mach 3.5 at 80,000 feet (24,384 meters). Without power, White made a wide 360° turn over Rosamond Dry Lake then came back over the high key at a more normal 28,000 feet (8,534.4 meters) and subsonic speed. He glided to a perfect touch down, 10 minutes, 20.7 seconds after being dropped from the B-52.
A North American Aviation X-15 rocketplane just before touchdown on Rogers dry Lake. A Lockheed F-104 Starfighter chase plane escorts it. The green smoke helps the pilots judge wind direction and speed. (NASA)
North American Aviation X-15 56-6672 just before touchdown on Rogers Dry Lake. A Lockheed F-104 Starfighter chase plane escorts it. The green smoke helps the pilots judge wind direction and speed. (NASA)

This was the first time that a manned aircraft had gone higher than 300,000 feet (91,440 meters). It was also the first flight above 50 miles. For that achievement, Bob White became the first X-15 pilot to be awarded U.S. Air Force astronaut wings.

Command Pilot Astronaut insignia, United States Air Force
Command Pilot Astronaut insignia, United States Air Force

Major White had been the first pilot to fly faster than Mach 4, Mach 5 and Mach 6. He was the first to fly over 200,000 feet, then over 300,000 feet. He was a graduate of the Air Force Experimental Test Pilot School and flew tests of many aircraft at Edwards before entering the X-15 program. He made at total of sixteen X-15 flights.

A P-51 Mustang fighter pilot with the 355th Fighter Group in World War II, he was shot down by ground fire on his fifty-third combat mission, 23 February 1945, and captured. He was held as a prisoner of war until the war in Europe came to an end in April 1945.

After the war, White accepted a reserve commission while he attended college to earn a degree in engineering. He was recalled to active duty during the Korean War, and assigned to a P-51 fighter squadron in South Korea. Later, he commanded the 22nd Tactical Fighter Squadron (flying the Republic F-105 Thunderchief supersonic fighter bomber) based in Germany, and later, the 53rd TFS. During the Vietnam War, Lieutenant Colonel White, as the deputy commander for operations of the 355th Tactical Fighter Wing, flew seventy combat missions over North Vietnam in the F-105D, including leading the attack against the Paul Doumer Bridge at Hanoi, 11 August 1967, for which he was awarded the Air Force Cross.

He next went to Wright-Patterson AFB where he was director of the F-15 Eagle fighter program. In 1970 he returned to Edwards AFB as commander of the Air Force Flight Test Center. White was promoted to Major General in 1975.

General White retired from the U.S. Air Force in 1981. He died 10 March 2010.

Major Robert M. White, U.S. Air Force, with a North American Aviation X-15 on Rogers Dry Lake, 1961. (NASA)
Major Robert M. White, U.S. Air Force, with a North American Aviation X-15 on Rogers Dry Lake, 1961. (NASA)

¹ FAI Record File Number 9604

© 2017, Bryan R. Swopes