Tag Archives: Charles “Pete” Conrad Jr.

14 November 1969, 16:22:00.68 UTC, T plus 000.00.00.68

Apollo 12 Saturn V (AS-507) lifts off from Launch Complex 39A at the Kennedy Space Center, Cape Canaveral, Florida, at 16:22:00 UTC, 14 November 1969. (NASA image scanned and remastered by Dan Beaumont)

14 November 1969: At 16:22:00.68 UTC (11:22:00 a.m., Eastern Standard Time), the Apollo 12 Saturn V (AS-507) lifted off from Launch Complex 39A, Kennedy Space Center, Cape Canaveral, Florida.

This was the second manned space flight to the Moon. The flight crew were Commander Charles “Pete” Conrad, Jr., United States Navy, Mission Commander; Commander Richard F. Gordon, Jr., U.S. Navy, Command Module Pilot; Commander Alan L. Bean, U.S. Navy, Lunar Module Pilot.

Their destination was Oceanus Procellarum.

The crew of Apollo 12: Charles “Pete” Conrad, Jr., Richard F. Gordon, Jr., and Alan L. Bean. (NASA)

Two lightning strikes 36.5 seconds after liftoff caused the spacecraft’s automatic systems to shut down three fuel cells, leaving Apollo 12 operating on battery power. A third electrical disturbance at T + 52 seconds caused the “8 ball” attitude indicator in the cockpit to fail. A quick thinking ground controller, the “EECOM,” called “Try SCE to Aux.” Alan Bean recalled this from a simulation a year earlier, found the correct switch and restored the failed systems.

The lightning discharge was caused by the Apollo 12/Saturn V vehicle accelerating through rain at approximately 6,300 feet (1,950 meters). There were no thunderstorms in the area. Post-flight analysis indicates that it is probable that the lightning discharge started at the top of the Apollo 12/Saturn V vehicle. Energy of the discharge was estimated at 10⁴–10⁸ joules.

Lightning discharge near Launch Complex 39A (NASA)

Soon after passing Mach 1, the Saturn V rocket encountered the maximum dynamic pressure (“Max Q”) of 682.95 pounds per square foot (0.327 Bar) as it accelerated through the atmosphere.

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet, 0.15 inches (110.64621 meters) tall, from the tip of the escape tower to the bottom of the F-1 engines. The first and second stages were 33 feet, .2 inches (10.089 meters) in diameter. Fully loaded and fueled the rocket weighed approximately 6,200,000 pounds (2,948,350 kilograms).¹ It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust (6770.19 kilonewtons), each, for a total of 7,610,000 pounds of thrust at Sea Level (33,851 kilonewtons).² These engines were ignited 6.50 seconds prior to Range Zero and the outer four burned for 161.74 seconds. The center engine was shut down after 135.24 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust (1,022.01 kilonewtons), and combined, 1,161,250 pounds of thrust (5,165.5 kilonewtons).³

The Saturn V third stage was designated S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant. The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. Only three still exist. One, on display at the Johnson Space Center, Houston, Texas, is made up of the the S-IC first stage of SA-514, S-II second stage of SA-515, and S-IVB third stage of SA-513. It is the only one consisting of flight-certified hardware. The Apollo Command and Service Module is CSM-115, originally intended for the Apollo 19 mission.

¹ The AS-507 total vehicle mass at First Stage Ignition (T – 6.50 seconds) was 6,137,868  pounds (2,784,090 kilograms).

² Post-flight analysis gave the total thrust of AS-507’s S-IC stage as 7,594,000 pounds of thrust (33,780 kilonewtons).

³ Post-flight analysis gave the total thrust of AS-507’s S-II stage as 1,161,534 pounds of thrust (5,166.8 kilonewtons).

⁴ Post-flight analysis gave the total thrust of AS-507’s S-IVB stage as 206,956 pounds of thrust (920.6 kilonewtons) during the first burn; 207,688 pounds (923.8 kilonewtons) during the second burn.

© 2018, Bryan R. Swopes

12 September 1966, 14:42:26.546 UTC

Gemini XI lifts off from Launch Complex 19 at the Cape Canaveral Air Force Station, (Great Images of NASA, GPN-2000-001020)

12 September 1966: At 14:42:26.546 UTC (9:42:26 a.m., Eastern Standard Time), Gemini XI was launched by a Titan II GLV from Launch Complex 19, Cape Canaveral Air Force Station. On board were NASA astronauts Charles (“Pete”) Conrad, Jr., Command pilot, on his second space flight; and Richard Francis Gordon, Jr., Pilot.

Richard Francis Gordon, Jr., Pilot, and Charles (“Pete”) Conrad Jr., Command Pilot, Gemini XI. (NASA S65-58504)

Earlier that morning, at 13:05:01.725 UTC (8:05:01 EST), a Gemini Agena Target Vehicle, GATV 5006, had been launched by an Atlas Agena D rocket from Launch Complex 14 and placed in a near circular orbit. Its perigee was 156.43 nautical miles (289.70 kilometers) and apogee, 165.82 nautical miles (307.10 kilometers). It completed an orbit in 1 hour, 30 minutes, 33.6 seconds.

Agena Target Vehicle 11 is launched by an Atlas Agena D from Launch Complex 14, Cape Canaveral Air Force Station. (NASA S66-50784)

Gemini XI made a direct first orbit rendezvous with the Agena Target Vehicle. Five maneuvers were required to match orbits, and rendezvous occurred at 11:07 a.m., and docking at 11:16 a.m. Each astronaut practiced two docking exercises. At 2:14:14 p.m., a maneuver placed the combined spacecraft into a 178.02 mile (154.70 nautical mile/286.50 kilometer) × 189.08 mile (164.31 nautical mile/304.30 kilometer)  orbit with a period of 1 hour, 30 minutes, 25.2 seconds.

At 9:51 a.m.,13 September, Gordon exited the Gemini capsule to begin a Extra Vehicluar Activity (“EVA”). He recovered a micrometeorite detector and was to detach one end of a 30 meter (98.43 feet) tether from the Agena and attach it to the Gemini. The effort proved exhausting and Gordon’s space suit life support system was unable to control the heat. Perspiration fogged Gordon’s faceplate and obscured his vision. He stopped to rest. Conrad ordered him to return to the Gemini, which he did at 10:12 a.m.

On 14 September at 2:12:41 EST, the Agena engine was fired to raise the combined vehicles into a 853.8 mile (741.9 nautical mile/1,374.10 kilometer) × 180.01 mile (156.43 nautical mile/289.70 kilometer) elliptical orbit. The orbital period increased to 101.52 minutes. After two orbits, the Agena engine was fired again to lower the spacecraft back down to a 178.02 mile × 178.02 mile (154.70 nautical mile/286.50 kilometer) × 189.08 (164.31 nautical mile/304.30 kilometer) orbit.

Dick Gordon standing in the open hatch of Gemini XI. (NASA S66-54653)

Gordon opened his hatch to begin a “standup” EVA at 7:49 a.m., 14 September. He took photographs and conducted various experiments. This EVA period lasted 2 hours, 8 minutes.

The Gemini Agena Target Vehicle photographed by Dick Gordon from Gemini XI. The tether connecting the two spacecraft is visible. (NASA)

The two spacecraft separated and Gemini XI moved to the end of the tether. Conrad began a slow rotation around the Agena, keeping the tether taut. The circular motion created “artificial gravity.” After about three hours, the tether was released. The spacecraft moved apart, and another rendezvous was performed.

Gemini XI’s retrorockets were fired at 8:24:03 a.m. EST, 15 September, and reentry began. It splashed down in the western Atlantic Ocean at N. 24.25, W. 70.00, at 8:59:35 EST, just 3.04 miles (4.9 kilometers) from the target point. Gemini XI had completed 44 orbits. Total duration of the mission was 2 days, 23 hours, 17 minutes, 9 seconds. The recovery vessel was the Iwo Jima-class amphibious assault ship USS Guam (LPH-9).

USS Guam (LPH-9), February 1965. (U.S. Navy)

GATV 11 decayed 30 September 1966.

Artist’s concept of Gemini spacecraft, 3 January 1962. (NASA-S-65-893)

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, Missouri, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a reentry module and an adapter section. It had an overall length of 19 feet (5.791 meters) and a diameter of 10 feet (3.048 meters) at the base of the adapter section. The reentry module was 11 feet (3.353 meters) long with a diameter of 7.5 feet (2.347 meters). The weight of the Gemini varied from ship to ship.

Titan II GLV, (NASA Gemini V Mission Report, Figure 3.1-1, at Page 3–11)

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 63 feet (19.202 meters) long with a diameter of 10 feet (3.048 meters). The second stage was 27 feet (8.230 meters) long, with the same diameter. The 1st stage was powered by an Aerojet Engineering Corporation LR-87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by a hypergolic combination of hydrazine and nitrogen tetroxide. Ignition occurred spontaneously as the two components were combined in the combustion chambers. The LR-87-7 produced 430,000 pounds of thrust. It was not throttled and could not be shut down and restarted. The 2nd stage used an Aerojet LR-91 engine which produced 100,000 pounds of thrust.

© 2024, Bryan R. Swopes