Tag Archives: Command and Service Module

22 May 1969, 21:30:43 UTC, T + 100:41:43

After descending to within 8.2 miles of the Moon's surface, Lunar Module Snoopy rendezvous with Command Module Charlie Brown in Lunar Orbit, 22 May 1969. (NASA)
After descending to within 8.2 miles (14.4 kilometers) of the Moon’s surface, Lunar Module Snoopy rendezvouses with Command and Service Module Charlie Brown in Lunar Orbit, 22 May 1969. (NASA)

22 May 1969, 21:30:43 UTC: Just over 100 hours after launch from Kennedy Space Center, Snoopy, the Lunar Module for the Apollo 10 mission came within 47,400 feet (14,447.5 meters) of the Lunar surface during a full dress rehearsal for the upcoming Apollo 11 landing. Mission Commander Thomas P. Stafford and Lunar Module Pilot Eugene A. Cernan rode Snoopy toward the surface and back, while John W. Young remained in orbit around the Moon aboard the Command and Service Module, Charlie Brown.

Thomas P. Stafford had flown two previous missions in the Gemini Program, Gemini 6 and Gemini 9. Apollo 10 was his third space flight.

John Watts Young flew six space missions: Gemini 3 and Gemini 10, Apollo 10 and Apollo 16, and Space Shuttle missions STS-1 and STS-9. He was to command STS-61J when the space shuttle fleet was grounded following the loss of Challenger. Young has flown 34 days, 19 hours, 39 seconds in space. He made 3 EVAs with a total of 20 hours, 14 minutes, 14 seconds outside his spacecraft.

Eugene A. Cernan had flown Gemini 9 with Stafford. He would later fly Apollo 17 back to the Moon. On 13 December 1972, Gene Cernan was the last man to stand on the surface of the Moon.

Charlie Brown, the Apollo 10 Command and Service Module in lunar orbit, 22 May 1969. (NASA)
Charlie Brown, the Apollo 10 Command and Service Module in lunar orbit, 22 May 1969. (NASA)

© 2015, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

13 April 1970, 03:07:53 UTC, T+55:54:53

Damage to Apollo 13's Service Module, photographed just after separation. (NASA)
Damage to Apollo 13’s Service Module, photographed just after separation 17 April 1970. (NASA Apollo 13 Image Library AS13-59-8500)

13 April 1970: At 10:07:53 p.m. Eastern Standard Time (mission elapsed time 55:54:53), while Apollo 13 and its crew, James A. Lovell, Jr., John L. Swigert and Fred W. Haise, were approximately 200,000 miles (322,000 kilometers) from Earth enroute to a landing at the Fra Mauro Highlands on The Moon, an internal explosion destroyed the Number 2 oxygen tank¹ in the spacecraft’s Service Module. The Number 1 tank was also damaged. Two of three fuel cells that supplied electrical power to the spacecraft failed.

Jack Swigert radioed Mission Control: “I believe we’ve had a problem here.” ²

Mission Control: “This is Houston. Say again, please.

Jim Lovell: “Houston, we’ve had a problem. Main B Bus undervolt.

With oxygen supplies depleted and power failing, the lunar landing mission had to be aborted, and the three-man crew evacuated the Command Module and took shelter in the Lunar Module.

This was a life-threatening event.

The story of Apollo 13 and its crew and their journey home is well known. The 1995 Ron Howard/Universal Pictures film, “Apollo 13,” takes some artistic license, but is generally accurate and realistic.

Mission Controller Gene Kranz is known for his statement, "Failure is not an option.) NASA Apollo 13 Image Library Image S70-35139)
Flight Director Gene Kranz (right of center, with his back to the camera) in Mission Control, Houston, Texas, a few minutes before the accident. (NASA Apollo 13 Image Library Image AP13-S70-35139)

Five years before Apollo 13 was launched, an engineering decision had been made to increase the spacecraft electrical system from 28 volts to 65 volts. This required that every electrical component on the vehicle had to be changed to accommodate the increased power. The after-accident investigation found that the team that designed the cooling fans for the oxygen tanks was never informed of the change.

During the actual flight, the wiring inside the tank heated to approximately 1,000 °F. (538 °C.), and in the pressurized pure oxygen, the insulation caught fire. The tank, originally installed on Apollo 10, had been dropped when it was removed for modification. It was repaired and later used on Apollo 13, however, it had been weakened by the damage. The extreme pressure caused by the heat of the burning electrical wiring in the containment caused the tank to rupture.

The damaged Service Module after being jettisoned from the Command Module, photographed from the Lunar Module. The Moon is visible between the two. (NASA)

¹ Serial number 10024X-TA0009

² The official mission transcript attributes this statement to Jim Lovell, however, in Lovell’s recollection, it was made by Swigert.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

4 April 1968: 12:00:01.38 UTC, T plus 00:00:00.38

Apollo 6 (AS-502) launch, 07:00:01 EST, 4 April 1968 (NASA)
Apollo 6 (AS-502) launch, 07:00:01 EST, 4 April 1968 (NASA)

4 April 1968: At 07:00:01.38 EST, Apollo 6 (AS-502), the second and last unmanned Apollo mission, lifted off from Launch Complex 39A, Kennedy Space Center, Cape Canaveral, Florida. First motion was detected at Range Time 00:00:00.38. The purpose of the flight was to determine that an all-up Saturn V could attain Trans Lunar Injection. Because of engine difficulties, it did not do so, but data from the test gave mission planners confidence to go ahead with manned flights.

At T+2:05 the Saturn V experienced a severe “pogo” oscillation, but no structural damage occurred. Next, several structural panels from the lunar module adaptor section were lost due to a manufacturing defect. Finally, during the second stage burn, two of the five Rocketdyne J-2 engines shut down prematurely. Because of this, the planned circular orbit at 175 kilometers altitude was not achieved, instead, the spacecraft entered a 106.9 × 138.6 miles (172.1 × 223.1 kilometers) orbit, circling Earth in 89.8 minutes.

After two orbits, it was planned to send Apollo 6 to the Trans Lunar Injection point, but the third stage engine would not fire. The Service Module engine was used to boost the spacecraft to a peak altitude of 13,810.2 miles (22,225.4 kilometers) and a planned lunar re-entry simulation was carried out. Apollo 6 reached 22,385 miles per hour (36,025 kilometers per hour) as it reentered the atmosphere. 9 hours, 57 minutes, 20 seconds after launch, Apollo 6 splashed down in the Pacific Ocean north of Hawaii and was recovered by USS Okinawa (LPH-3).

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet (110.642 meters) tall. The first and second stages were 33 feet (10.058 meters) in diameter. Fully loaded and fueled the rocket weighed 6,200,000 pounds (2,948,350 kilograms). It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust (6770.19 kilonewtons), each, for a total of 7,610,000 pounds of thrust at Sea Level (33,850.97 kilonewtons).¹ These engines were ignited seven seconds prior to lift off and the outer four burned for 168 seconds. The center engine was shut down after 142 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust (1,022.01 kilonewtons), and combined, 1,161,250 pounds of thrust (717.28 kilonewtons).

The Saturn V third stage was designated S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant. The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. They were the most powerful machines ever built by man.

¹ The five Rocketdyne F-1 engines of the AS-502 S-IC first stage produced a combined thrust of 7,567,000 pounds (33,660 kilonewtons), 15,000 pounds (67 kilonewtons) less than predicted.

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

26 February 1966, 16:12:01 UTC, T plus 00:00:00.37

Apollo-Saturn IB AS-201 launch from Pad 34, Kennedy Space Center, 26 February 1966. (NASA)

26 February 1966: AS-201, a Saturn IB launch vehicle, carried the first complete Block 1 Apollo Command and Service Module on a 37 minute, 19.7 second unmanned suborbital test flight. Liftoff was at 11:12:01 a.m., EST, from Launch Complex 34 at the Kennedy Space Center, Cape Canaveral, Florida.

saturn-ib-config
Department of Special Collections, M. Louis Salmon Library, University of Alabama, via heroicrelics.org

This flight was a demonstration of the combined Apollo Command Module and the Service Module. The second production Apollo capsule, CM-009, and the first production service module, SM-009, were launched by the first Saturn IB, SA-201.

The Apollo capsule reached a maximum altitude of 305.8 miles (492.1 kilometers) and landed near Ascension Island in the South Atlantic Ocean, 5,267 miles (8,477 kilometers) from Cape Canaveral. (S. 8.18°, W 11.15°) Total duration of the flight was 37 minutes, 19.7 seconds.

The Apollo spacecraft was recovered by USS Boxer (LPH- 4).

The flight was successful, though several problems occurred. These were identified and corrected on the following production vehicles.

The Apollo command module of AS-201 was Spacecraft 009. It was a Block I capsule. The Apollo was a conical space capsule designed and built by North American Aviation to carry a crew of three on space missions of two weeks or longer.

The Saturn IB consisted of an S-IB first stage and an S-IVB second stage. The S-IB was built by Chrysler Corporation Space Division at the New Orleans Michoud Assembly Facility. It was powered by eight Rocketdyne H-1 engines, burning RP-1 and liquid oxygen. Eight Redstone rocket fuel tanks containing the RP-1 fuel surrounded a Jupiter rocket tank containing the liquid oxygen. The S-IB stage is 80 feet, 2 inches (24.435 meters) long, with a diameter of 21 feet, 5 inches (6.528 meters). The empty weight of this stage was 85,000 pounds (38,555 kilograms). Fully fueled, it weighed 498,099 pounds (225,934 kilograms). Total thrust of the S-IB stage was 1,600,000 pounds (7,117,155 Newtons) and it carried sufficient propellant for 2 minutes, 35 seconds burn time. This would lift the vehicle to an altitude of  37 nautical miles (69 kilometers).

The Douglas Aircraft Company-built S-IVB second stage was assembled at Huntington Beach, California. It was powered by one Rocketdyne J-2 engine, also fueled by liquid hydrogen and liquid oxygen. The S-IVB is 60 feet, 1 inch (18.313 meters) long with a diameter of 21 feet, 8 inches (6.604 meters). The second stage had an empty weight of 28,400 pounds (12,882 kilograms) and gross weight was 261,900 pounds (118,796 kilograms). The single engine produced 232,250 pounds of thrust (1,033,100 Newtons) and and its burn time was 7 minutes, 55 seconds.

The AS-201 223 feet, 6 inches (68.123 meters). The total vehicle weight was 1,320,220 pounds (598,842 kilograms). It was capable of launching a 46,000 pound (20,865 kilogram) payload to Earth orbit.

After being recovered, the AS-201 Apollo command module was used for drop tests. It is at the Strategic Air and Space Museum, Ashland, Nebraska.

Apollo Command Module CM-009. (HrAtsuo)
Apollo Command Module CM-009. (HrAtsuo)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

7 December 1972, 10:39 UTC, T + 05:06

"View of the Earth as seen by the Apollo 17 crew traveling toward the moon. This translunar coast photograph extends from the Mediterranean Sea area to the Antarctica south polar ice cap. This is the first time the Apollo trajectory made it possible to photograph the south polar ice cap. Note the heavy cloud cover in the Southern Hemisphere. Almost the entire coastline of Africa is clearly visible. The Arabian Peninsula can be seen at the northeastern edge of Africa. The large island off the coast of Africa is Madagascar. The Asian mainland is on the horizon toward the northeast." (Harrison H. Schmitt/NASA)
“View of the Earth as seen by the Apollo 17 crew traveling toward the moon. This translunar coast photograph extends from the Mediterranean Sea area to the Antarctica south polar ice cap. This is the first time the Apollo trajectory made it possible to photograph the south polar ice cap. Note the heavy cloud cover in the Southern Hemisphere. Almost the entire coastline of Africa is clearly visible. The Arabian Peninsula can be seen at the northeastern edge of Africa. The large island off the coast of Africa is Madagascar. The Asian mainland is on the horizon toward the northeast.” (Harrison H. Schmitt/NASA)
Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather