Tag Archives: Distinguished Flying Cross

16 October 1963

Convair B-58A-20-CF Hustler 61-2059, Greased Lightning. (U.S. Air Force)
Major Sidney Kubesch with his wife, Joanna Alice Cole Kubesch, 16 October 1963. (Kokomo Tribune)
Major Sidney J. Kubesch, U.S. Air Force, with his wife, Joanna Alice Cole Kubesch, at RAF Greenham Common, 16 October 1963. (Kokomo Tribune)

16 October 1963: Operation Greased Lightning. Major Sidney J. Kubesch, Major John Barrett and Captain Gerard Williamson flew from Tokyo, Japan, to London England, non-stop, in 8 hours, 35 minutes, 20.4 seconds. Their airplane was a Convair B-58A-20-CF Hustler, serial number 61-2059, named Greased Lightning. It was assigned to the 305th Bombardment Wing, 19th Air Division, at Bunker Hill Air Force Base, Indiana.

Five inflight refuelings were required to complete the flight. The bomber had to slow from its supersonic cruise to rendezvous with the tankers. The B-58’s average speed was 692.71 miles per hour (1,114.81 kilometers per hour). The time from Tokyo to Anchorage, Alaska was 3 hours, 9 minutes, 42 seconds at an average speed of 1,093.4 miles per hour (1,759.7 kilometers per hour); and Anchorage to London, 5 hours, 24 minutes, 54 seconds at 826.9 miles per hour (1.330.8 kilometers per hour).

Greased Lightning‘s speed record still stands.

Screen Shot 2015-10-15 at 08.56.36The three crewmen were awarded the Distinguished Flying Cross.

Major Sidney Kubesch, Aircraft Commander, John Barrett, Navigator and Gerard Williamson. (Kokomo Tribune)
Major Sidney J. Kubesch, Aircraft Commander, Major John Barrett, Navigator and Captain Gerard Williamson. (Kokomo Tribune)

The B-58 Hustler was a high-altitude Mach 2 strategic bomber which served with the United States Air Force from 1960 to 1970. It was crewed by a pilot, navigator/bombardier and a defensive systems operator located in individual cockpits. The aircraft is a delta-winged configuration similar to the Convair F-102A Delta Dagger and F-106 Delta Dart supersonic interceptors.

The Hustler is 96 feet, 10 inches (29.515 meters) long, with a wing span of 56 feet, 10 inches (17.323 meters) and an overall height of 31 feet 5 inches (9.576 meters). The wing’s leading edge is swept back at a 60° angle and the fuselage incorporates the “area rule” which resulted in a “wasp waist” or “Coke bottle” shape for a significant reduction in aerodynamic drag. The airplane’s only control surfaces are two “elevons” and a rudder, and there are no flaps.

The B-58A was powered by four General Electric J79-GE-5 axial-flow afterburning turbojet engines, suspended under the wings from pylons. This was a single-shaft engine with a 17-stage compressor and 3-stage turbine, rated at 10,300 pounds of thrust (45.82 kilonewtons), and 15,600 pounds (69.39 kilonewtons) with afterburner. The J79-GE-5 was 16 feet, 10.2 inches (5.136 meters) long and 3 feet, 2.0 inches (0.965 meters) in diameter.

The bomber had a cruise speed of 610 miles per hour (981.7 kilometers per hour) and a maximum speed of 1,325 miles per hour (2,132.4 kilometers per hour). The service ceiling is 64,800 feet (19,751 meters). Unrefueled range is 4,400 miles (7,081 kilometers). Maximum weight is 168,000 pounds (76,203.5 kilograms).

The B-58 weapons load was a combination of a W-39 warhead, and/or Mk.43 or B61 nuclear bombs. The W-39 warhead, the same used with the Redstone IRBM or Snark cruise missile, was carried in a jettisonable centerline pod, which also carried fuel for the aircraft. The smaller bombs were carried on underwing hardpoints. For defense, there was a General Electric M61 Vulcan 20×102 mm six-barreled rotary cannon mounted in the tail, with 1,200 rounds of linked ammunition, controlled by the Defensive Systems Officer.

Convair B-58A-20 CF 61-2059 is in the collection of the Strategic Air and Space Museum, Ashland, Nebraska.

Convair B-58A-20-CF 61-2059, “Greased Lightning,” at the Strategic Air and Space Museum, Ashland, Nebraska. (SASM)

© 2017, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

14–15 October 1927

Costes and Le Brix flew this Breguet XIX GR, No. 1685, named Nungesser-Coli, across the South Atlantic Ocean 14–15 October 1927.
Dieudonné Costes

14–15 October 1927: Dieudonné Costes and Joseph Le Brix flew a Breguet XIX GR, serial number 1685, across the South Atlantic Ocean from Saint-Louis, Senegal, to Port Natal, Brazil.

This was the first non-stop South Atlantic crossing by an airplane. The 2,100-mile (3,380 kilometer) flight took just over 18 hours.

The two aviators were on an around-the-world flight that began 10 October 1927 at Paris, France, and would be completed 14 April 1928, after traveling 34,418 miles (57,000 kilometers).

Costes had been a test pilot for Breguet since 1925. He served as a fighter pilot during World War I and was credited with six aerial victories. He had been appointed Commandeur Ordre national de la Légion d’honneur and awarded the Croix de Guerre with seven palms, and the Médaille militaire.

Following the around-the-world flight, the Congress of the United States, by special act, awarded him the Distinguished Flying Cross.

In 1929, the Fédération Aéronautique Internationale awarded him its Gold Air Medal, and the International League of Aviators awarded him the Harmon Trophy “for the most outstanding international achievement in the arts and/or science of aeronautics for the preceding year, with the art of flying receiving first consideration.”

Joseph Le Brix (1899–1931)
Joseph Le Brix

Capitain de Corvette Joseph Le Brix was a French naval officer. He had trained as a navigator, aerial observer and pilot. For his service in the Second Moroccan War, he was appointed to the Ordre national de la Légion d’honneur and awarded the Croix de Guerre. Like Costes, Le Brix was also awarded the Distinguished Flying Cross by the U.S. Congress.

The Breguet XIX GR (“GR” stands for Grand Raid) had been named Nungesser-Coli in honor of the two pilots who disappeared while attempting a crossing the Atlantic Ocean in the White Bird, 8 May 1927. It was developed from the Type XIX light bomber and reconnaissance airplane, which entered production in 1924. A single-engine, two-place biplane with tandem controls, it was primarily constructed of aluminum tubing, covered with sheet aluminum and fabric. The biplane was a “sesquiplane,” meaning that the lower of the two wings was significantly smaller than the upper. Approximately 2,400 Breguet XIXs were built.

Dieudonné Costes and Joseph Le Brix in their Breguet XIX, photographed in Panama, 1 january 1928, by Lt. C. Tuma, U.S. Army Air Corps. (National Air and Space Museum, Smithsonian Institution)
Dieudonné Costes and Joseph Le Brix in their Breguet XIX, photographed in Panama, 1 January 1928, by Lt. C. Tuma, U.S. Army Air Corps. (National Air and Space Museum, Smithsonian Institution)

No. 1685 was a special long-distance variant, with a 2,900–3,000 liter fuel capacity (766–792 gallons). It was further modified to add 1 meter to the standard 14.83 meter (48 feet, 7.9 inches) wingspan, and the maximum fuel load was increased to 3,500 liters (925 gallons).

The original 590 horsepower Hispano-Suiza 12Hb engine was replaced with a more powerful Hispano-Suiza 12Lb. This was a water-cooled, normally-aspirated, 31.403-liter (1,916.33-cubic-inch-displacement) overhead valve 60° V-12 engine, with 2 valves per cylinder and a compression ratio of 6.2:1. The 12Lb produced 630 horsepower at 2,000 r.p.m., burning 85 octane gasoline. The engine was 1.850 meters (6 feet, 0.8 inches) long, 0.750 meters (2 feet, 5.5 inches) wide and 1.020 meters (3 feet, 4.2 inches) high. It weighed 440 kilograms (970 pounds).

The Breguet XIX had a speed of 214 kilometers per hour (133 miles per hour). Its service ceiling was 7,200 meters (23,620 feet).

The Breguet XIX GR No. 1685, Nungesser-Coli, at le musée de l'air et de l'espace (MAE) du Bourget.
The Breguet XIX GR No. 1685, Nungesser-Coli, at le musée de l’air et de l’espace (MAE) du Bourget.

© 2017, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

8 October 1958

The Project MANHIGH III balloon and gondola, shortly after launch at Holloman AFB, 1151 UTC, 8 October 1958. (Al Fenn/LIFE Magazine)
The Project MANHIGH III balloon and gondola, shortly after launch at Holloman AFB, 6:51 a.m., 8 October 1958. (Al Fenn/LIFE Magazine)

8 October 1958: At Holloman Air Force Base, southeast of Alamogordo, New Mexico, the Project MANHIGH III balloon was launched at 6:51 a.m., Mountain Standard Time (13:51  UTC). The helium balloon lifted a 1,648 pound (748 kilogram) pressurized gondola. Inside was Lieutenant Clifton Moody McClure III, U.S. Air Force.

Over the next three hours, the balloon ascended to an altitude of 99,700 feet (30,389 meters)¹ over the Tularosa Basin.

From this altitude, “Demi” McClure radioed to Dr. David G. Simon, who had flown a previous MANHIGH mission, “I see the most fantastic thing, the sky that you described. It’s blacker than black, but it’s saturated with blue like you said. . . I’m looking at it, but it seems more like I’m feeling it. . . I have the feeling that I should be able to see stars in this darkness, but I can’t find them, either—I have the feeling that this black is so black it has put the stars out.”

The purpose of the MANHIGH flights was to conduct scientific research through the direct observations of the pilot while in contact with ground-based scientists and engineers, and to gather physiological data about the stresses imposed on a human body during extreme high altitude flight.

Lieutenant Clifton M. McClure, U.S. Air Force (1932–2001)
1st Lieutenant Clifton Moody McClure III, United States Air Force

Lieutenant McClure was born at Anderson, South Carolina, 8 November 1932, the son of Clfton M. McClure, Jr., a bookkeeper (who would serve as a U.S. Marine Corps officer during World War II) and Frances Melaney Allen McClure. He attended the Anderson High School, graduating in 1950. He earned a bachelor’s degree in materials engineering and a master’s degree in ceramic engineering from Clemson University. He had been an instructor pilot, flying the Lockheed T-33A Shooting Star jet trainer, at air bases in Texas, but was then assigned to the Solar Furnace Project at Holloman AFB.

Prior high-altitude balloon flights had shown the need for extreme physiological fitness, and McClure was selected through a series of medical and physical evaluations similar to those that would later be used to select astronaut candidates for Project Mercury. He was considered to be physiologically and psychologically the best candidate for MANHIGH flights.

The MANHIGH III balloon was manufactured by Winzen Research, Inc., Minneapolis, Minnesota. It had a capacity of approximately 3,000,000 cubic feet (84,950 cubic meters) and was filled with helium.

The gondola was built of three cast aluminum cylindrical sections with hemispherical caps at each end. It was 9 feet (2.743 meters) high with a diameter of 3 feet (0.914 meters). Inside were cooling and pressurization equipment ,and equipment for various scientific experiments.

Lieutenant McClure wore a modified David Clark Company MC-3A capstan-type partial-pressure suit with an International Latex Corporation MA-2 helmet for protection. He breathed a mixture of 60% oxygen, 20% nitrogen and 20% helium.

During the flight, Lieutenant McClure became dehydrated. Later, temperatures inside the gondola rose to 118 °F. (47.8 °C.). The cooling system was unable to dissipate heat from McClure’s body, and his body core temperature rose to 108.6 °F. (42.6 °C.). After twelve hours, it was decidede to end the flight. MANHIGH III touched down a few miles from its departure point at 2342 UTC, 9 October 1958.

After his participation in Project MANHIGH, Clifton McClure applied to become an astronaut in Project Mercury. He was turned down because his height—6 feet, 1 inch (1.854 meters)— exceeded the limits imposed by the small Mercury space capsule. He was awarded the Distinguished Flying Cross for the MANHIGH III flight. He later flew Lockheed F-104 Starfighters with the South Carolina Air National Guard.

Clifton Moody McClure III died at Huntsville, Alabama, 14 January 2000, at the age of 67 years.

Lieutenant Clifton M. McClure, USAF, seated inside the MANHIGH III gondola. (U.S. Air Force)

¹ Sources vary. A NASA publication, Dressing For Altitude, cites McClure’s maximum altitude as 98,097 feet (29,900 meters) (Chapter 4, Page 162). The Albuquerque Tribune reported McClure’s altitude as 99,600 feet (30,358 meters), (Vol. 36, No. 163, Saturday, 11 October 1958, Page 7 at Column 6. The National Museum of the United States Air Force states 99,700 feet (30,389 meters). 99,700 feet is also cited in Office of Naval Research Report ACR-64, “Animals and Man in Space,” 1962.

© 2016, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

4 October 1980: This Day in U.S. Coast Guard Aviation History

MIRACLE RESCUE: Cruise Liner PRINSENDAM—04 October 1980

by Captain Sean M. Cross, United States Coast Guard (Retired)

On this day in 1980, the United States Coast Guard led one of the nation’s largest search and rescue cases when the 519 passengers and crew of the Dutch cruise liner PRINSENDAM were forced to abandon ship more than 130 miles (209 kilometers) off the coast of Alaska after an engine room fire spread throughout the vessel. Over the course of 24 hours, rescue aircraft deployed from Coast Guard Air Stations Sitka and Kodiak, AK. would work side-by-side with the U.S. Air Force, Royal Canadian Armed Forces as well as U.S. Coast Guard Cutters BOUTWELL, WOODRUSH, MELLON and an AMVER-tasked (Automated Mutual-Assistance Vessel Rescue System) tanker WILLIAMSBURG to rescue all hands from 12 to 15 foot (18–24 meters) seas and 25 to 30 knot (13–15 meters per second) winds generated by a nearby Arctic typhoon.

Holland America Line’s MS Prinsendam. (Cruise Critic)

The PRINSENDAM was a 427-foot (130 meters) long cruise liner built in 1973. The liner was transiting through the Gulf of Alaska, approximately 120 miles (193 kilometers) south of Yakutat, Alaska, at midnight October 4, 1980, when fire broke out in the engine room. With conditions too dangerous for the deployment of small boats from the ships, most survivors were hoisted and ferried to surface ships while some were ferried to shore during helicopter refuel transits. The helicopters would then refuel and head back out to the scene for their next load of passengers. Still others were forced to climb aboard the tanker and cutters with the help of two Air Force pararescuemen while hypothermic.

The rescue of the PRINSENDAM was particularly significant because of the distance traveled by the rescuers, the coordination of independent organizations and the fact that all 519 passengers and crew were rescued under challenging environmental conditions without loss of life or serious injury.

USCGC Boutwell (WHEC 719) in the Bering Sea. (Pinterest)

The following aircraft participated:

A USCG Lockheed HC-130H Hercules. (U.S. Coast Guard)

• Two Coast Guard HH-3F helicopters and two HC-130H aircraft from Air Station Kodiak. Distance 385 nautical miles (443 statute miles/713 kilometers) from PRINSENDAM.

• Alaskan Air Command Rescue Coordination Center (RCC), Elmendorf Air Force Base, Anchorage and 71st Aerospace Rescue and Recovery Squadron: one HH-3E helicopter and one HC-130H Hercules. Distance: over 370 nautical miles (426 statute miles/595 kilometers).

A U.S. Air Force Lockheed HC-130H Combat King trails drogues to refuel two Sikorsky HH-3E Jolley Green Giant helicopters. (http://jollygg.blogspot.com/2018/11/)

• Two Coast Guard HH-3F helicopters from Air Station Sitka. Distance: 170 nautical miles (196 statute miles/315 kilometers).

A flight of two U.S. Coast Guard Sikorsky HH-3F Pelican helicopters from Air Station Astoria, Oregon. (United States Coast Guard)

• Canadian Forces from 442 Transport and Rescue Squadron, 19 Wing Comox, British Columbia: Two CH-113 Labradors (CH-46) helicopters, two CC-115 Buffalo aircraft and one CP-107 Argus (from 407 Maritime Patrol Squadron). Distance: over 600 nautical miles (690 statute miles/1,111 kilometers).

U.S. Coast Guard rescue coordination centers began receiving Morse code SOS distress signals from the PRINSENDAM reporting a fire onboard a few minutes prior to 1 a.m. Saturday morning October 4, 1980. A few hours later, at 05:08 a.m., with fire visible on deck, 329 passengers were directed to take to lifeboats about 120 miles offshore in the frigid Gulf of Alaska.

The on-scene operation required unrehearsed teamwork by the U.S. Coast Guard, the U.S. Air Force and two Canadian units flying in close proximity. Overhead, the five long-range reconnaissance aircraft including the U.S. HC-130Hs and the Canadian CP-107 Argus aircraft staged and coordinated helicopter assets while acting as long range communication platforms. Behind the scenes, CC-115 Buffalos from the 442 Squadron operated a shuttle service between shore bases and staging areas, carrying medics, firefighters, supplies, fresh helicopter crews and rescued passengers.

The first 12 to 24 hours of a distress incident offers the best chance of successful rescue and recovery of survivors. After 48 hours chances of a successful rescue and recovery decrease rapidly. The remote and isolated location of the burning PRINSENDAM (and its lifeboats and life rafts) was barely within the timely response capability of the personnel and equipment available. The risks included—but were not limited to—climatic, season, weather, distance from shore and logistics of getting rescue teams and resources to the burning PRINSENDAM’s location. The survivability hazards to both survivors and rescuers included—but were not limited to—remoteness and isolation of the PRINSENDAM’s location from help, water temperature, worsening weather and sea conditions combined with duration the survivors would be vulnerably exposed to the furry of sea and weather. The remnants of Typhoon Thelma heading directly towards the incident area would result in the operational environment becoming more perilous during the on-going rescue operations.

“A U.S. Coast Guard Sikorsky HH-3F Pelican helicopter hovers near the stern of the Holland-America liner MS Prinsendam (ca. 520 passengers and crew) in the Gulf of Alaska.” (SSGT Richard D. McKee, U.S. Air Force/U.S. Department of Defense VIRIN DF-SN-86-12843)

Commander Bruce Melnick, USCG (Retired), who was also designated Coast Guard Astronaut Number 1 in 1992, participated in the rescue as an HH-3F pilot and made the following comments in a 26 October 2016 interview:

Bruce Melnick

“I was on the Prinsendam mission, where there was a Dutch ship from Holland, America cruise lines called the Prinsendam, where I was the SDO that night and we got a call, and the radioman thought the name of the boat was the “Prince and Don” and I said, “Wow. That’s …” and he said, “It’s on fire and it’s out here somewhere.” So, I ran over to the radio room and then I was aware of the cruise ship Prinsendam, how it used to come into the port of Sitka, and so I said … I can’t remember the name of the radioman’s name. I’m sorry. I said but, “That’s the Prinsendam. That’s the big cruise ship and they’re on fire.” So, we talked to RCC and Juno and we launched out, flew out there. They were probably 180 miles away and when we got out there they were listing seriously to starboard and they thought they had the fire out, and then all of a sudden the fire erupted again and the captain of the ship ordered them to abandon ship. When they started to abandon ship, they had all kinds of problems and it was dark at night, and it wasn’t real bad weather yet. There was like a 10-foot swell, but it wasn’t real bad yet. So, we used the night sun ¹ on the H-3 to illuminate the people abandoning ship and we were there until just about everybody got off the ship, and then we were low fuel. By this time, the rest of the resources were being called in.

“The Canadian Forces, the Kodiak Coast Guard, the Elmendorf Air Force Base. I mean we had alerted everybody, and we flew into Yakutat for fuel. We got into Yakutat, we refueled and came back out and by that time, there was a C-130 on scene, some other forces were on scene and the winds had started to pick up real bad. About the time we got on scene, the rest of the helicopters had to go back in for refuel. Now the seas are you know, 15 feet, wind blowing and we looked down and we called back to the on scene commander and said, “We think we need to start hoisting these people,” because the tanker Williamsburg, great big, super tanker was out there and they were trying to get these people over to the side of the ship, the big tanker and climb up the Jacob’s ladders to get up onto the deck of the ship and the average age of these people was 70 years old. So we said, “We think we need to hoist these people,” and I’m not going to mention any names, but he was a senior officer from our air station said, “Whatever you do, don’t hoist those people.” Joel Thuma was the aircraft commander with me, and he was in the left seat at this time, because we had swapped seats, and he says, “Oh …you’re breaking up. I think we’re going to go ahead. I got you, we’re going to start hoisting.” So, we ended up starting the hoisting routine and everybody at the PJ started jumping in. Make a long story short, by the time my day was ended, I’d picked up 115 of the survivors, made multiple trips back and forth to the Williamsburg. At one point they had 24 survivors on the helicopter at one time, and then we took a load back to the Yakutat and anyway, we ended up picking up … we had 519 saves that day. I picked up 115 of them. Great mission and I can talk about that at a great length.”

A U.S. Coast Guard Sikorsky HH-3F Pelican flies over the burning passenger liner MS Prinsendam, 4October 1980. (United States Coast Guard)

Aircrew rescue efforts continued around the clock for 24 hours. Despite the hardships and hazards of abandoning ship in the Gulf of Alaska about 120 miles offshore, all crew and passengers of the M.S. PRINSENDAM—329 passengers, 164 Indonesian crew members and 26 Dutch officers—were successfully rescued. With the exception of the U.S. Air Force HH-3E, which included an in-flight refueling probe, fuel endurance was a major factor, the other helicopters hoisted up as many people as they could from the lifeboats and dropped them on U.S. Coast Guard and AMVER surface vessels until they reached their fuel limits and returned to Yakutat, the closest point of land 130 miles away. This event led to the U.S. Coast Guard developing Helicopter In-Flight Refueling (HIFR) from surface vessels and implementing a Rescue Swimmer program. Interestingly, the next morning (05 October), BOUTWELL spotted a flare from a lifeboat containing the final 20 passengers and two Air Force technicians, completing the rescue of all 519 crewmembers and passengers. In 2007, after reaching the remarkable milestone of more than one million lives saved since 1790, the U.S. Coast Guard published a synopsis of the Top 10 rescues in the history of the Service – the PRINSENDAM rescue came in at number 2 behind the 2005 Hurricane KATRINA response. The combination of hardship, hazard, no loss of life, no significant injury has resulted in this incident being considered the greatest air-sea rescue operation in maritime history.

A U.S. Coast Guard Sikorsky HH-3F Pelican transfers M/S Prinsendam passengers to the AMVER-tasked 1,094-foot super tanker T/T Williamsburgh. A life boat is just astern the tanker. (Documentary Archives Radio Communications)

Helicopter Aircrews:

HH-3E (AF Rescue 802) crew was Captain John J. Walters-Aircraft Commander; Captain William T. Gillen-Copilot; Staff Sergeant Michael J. Engels-Flight Engineer; Staff Sergeant John F. Cassidy-Pararescue Team Leader; and, Sergeant Jose M. Rios-Pararescue Specialist.

The Lifesavers: Crewmen of Air Station Sitka were the first on scene when PRINSENDAM sent out a distress call. Air Station Sitka flight crews: (back row, left to right) LCDR Ron Simond, CDR Chuck Peterson (commanding officer), LTJG Tom Vasilou, CDR Tom Morgan (executive officer), LCDR Ray Hiner, LCDR Joel Thuma, AT3 Richard McManigal, AE2 Andrew Falenski, LCDR Robert Knapp, AD3 Carl Saylor, ASM3 Richard Driscoll, and AT 2 Dave Cook. Front row: AE3 Ron Dupont, LT Dave Barnes, LT Bruce Melnick, AD3 Mike Oliverson, AM3 Sam Overman, AT1 Larry Weygandt, AD2 Tim Burkholder. Photo by AD1 Barfield.

The Mackay Trophy (NASM)

Captain John J. Walters, U.S. Air Force, of the 71st ARRS, was awarded the Mackay Trophy “For extraordinary achievement while participating in aerial flight as HH-3 Helicopter Commander in the rescue of 61, in adverse conditions, from the burning cruise ship Prinsendam.”

Captain Walters and Pararescue Specialists SSGT John Cassidy and SGT Jose Rios were awarded the Distinguished Flying Cross. Also receiving the Distinguished Flying Cross were CDR Thomas Morgan, USCG; LCDR Raymond Hiner, USCG; LCDR Robert Knapp, USCG; LCDR Joel Thuma, USCG;  LT Bruce Melnick, USCG; AT2 David Cook, USCG; AD3 Mike Olverson, USCG; AM3 Samuel Overman, USCG; and AD3 Carl Saylor, USCG. LTJG Tom Vasilou, USCG, and Radio Operators AE2 Andrew Falenski and AD3 Richard McManigal were awarded the Air Medal.

Lieutenant Colonel Clifford B. Fletcher, Royal Canadian Air Force, received the Order of Military Merit.

Aircraft

Sikorsky HH-3E Jolly Green and HH-3F Pelican

Sikorsky HH-3E Jolly Green Giant, circa 1977. (U.S. Air Force)

The Sikorsky HH-3E (Sikorsky S-61R) earned the nickname Jolly Green Giant during the Vietnam War. It is a dedicated Combat Search and Rescue (CSAR) helicopter flown by the U.S. Air Force, based on the CH-3C transport helicopter. The aircraft is flown by two pilots and the crew includes a flight mechanic and gunner. It is a large twin-engine helicopter with a single main rotor/tail rotor configuration. It has retractable tricycle landing gear and a rear cargo ramp. The rear landing gear retracts into a stub wing on the aft fuselage. The helicopter has an extendable inflight refueling boom (the HH-3F does not have this capability).

HH-3E three-view illustration (Sikorsky Historical Archives)
Three-view illustration of the Sikorsky HH-3F Pelican, with dimensions. (U.S. Coast Guard)

The HH-3E is 72 feet, 7 inches (22.123 meters) long and 18 feet, 10 inches (5.740 meters) high with all rotors turning. The main rotor has five blades and a diameter of 62 feet (18.898 meters). Each blade has a chord of 1 foot, 6.25 inches (0.464 meters). The main rotor turns at 203 r.p.m., counter-clockwise, as seen from above. (The advancing blade is on the right.) The tail rotor also has five blades and has a diameter of 10 feet, 4 inches (3.150 meters). The blades have a chord of 7–11/32 inches (0.187 meters). The tail rotor turns clockwise as seen from the helicopter’s left. (The advancing blade is below the axis of rotation.) The tail rotor turns 1,244 r.p.m.

The HH-3E has an empty weight of 13,341 pounds (6,051 kilograms). The maximum gross weight is 22,050 pounds (10,002 kilograms).

The Jolly Green Giant is powered by two General Electric T58-GE-5 turboshaft engines, which have a Maximum Continuous Power rating of 1,400 shaft horsepower, each, and Military Power rating of 1,500 shaft horsepower. The main transmission is rated for 2,500 horsepower, maximum.

The HH-3E has a cruise speed of 154 miles per hour (248 kilometers per hour) at Sea Level, and a maximum speed of 177 miles per hour (285 kilometers per hour), also at Sea Level. The service ceiling is 14,000 feet (4,267 meters). The HH-3E had a maximum range of 779 miles (1,254 kilometers) with external fuel tanks.

The Jolly Green Giant can be armed with two M60 7.62 mm machine guns.

The very similar HH-3F Pelican is equipped with radar, an Automatic Flight Control System (AFCS) and a navigation computer, which allowed the helicopter to fly coupled search patterns.

The HH-3F served the Coast Guard from 1969 to 1994, when it was replaced by the Sikorsky HH-60J Jayhawk. According to the Sikorsky Historical Archives, during its 25 years of service, the HH-3F saved 23,169 lives, and assisted 65,377 others.

Sikorsky built 14 HH-3Es and 40 HH-3Fs. As many as 50 CH-3Cs and CH-3Es were upgraded to the HH-3E configuration. 5 USAF HH-3Es were converted to HH-3Fs for the Coast Guard. Sikorsky built a total of 173 of the S-61R series.

Sikorsky HH-3F Pelican 1497. (U.S. Coast Guard)

Boeing Vertol CH-113 Labrador

A Canadian Forces Boeing Vertol CH-113 Labrador. (Alain Rioux/Wikipedia)
CH-113 hovers over two lifeboats.

This aircraft is a twin-engine, tandem-rotor search and rescue (SAR) helicopter used by the Canadian Forces from 1963 until 2004. It was a variant of the Boeing Vertol CH-46 Sea Knight designed and built in the United States. A search and rescue version was purchased by the Royal Canadian Air Force in the early 1960s and became known as the Labrador. Soon after, the Canadian Army acquired a troop and cargo version known as the Voyageur. In the mid-1970s, these army machines were replaced by CH-147 Chinook heavy lift and transport helicopters and the Voyageurs were transferred to the air force when Air Command was formed in 1975. They joined the Labradors on search and rescue duties and all were modified to a common search and rescue standard.

Technical Information:

Rotor diameter 15.2 m (50 ft)
Length (rotors turning) 25.4 m (83 ft 4 in)
Height 5.1 m (16 ft 8 in)
Weight, Empty 5,104 kg (11,251 lb)
Weight, Gross 9,706 kg (21,400 lb)
Cruising Speed 253 km/h (157 mph)
Max Speed 270 km/h (168 mph)
Rate of Climb 465 m (1,525 ft) /min
Service Ceiling 4,265 m (14,000 ft)
Range 1,100 km (684 mi)
Power Plant Two T-58-GE-8F, 1,500 shaft hp turbines

De Havilland Canada CC-115 Buffalo

De Havilland Canada CC-115 Buffalo (John Davies/Wikipedia)

The CC-115 Buffalo plays a critical role in supporting life-saving search and rescue missions. Its agility and all-weather capabilities are well suited for the rough and mountainous terrain on Canada’s West Coast and in northern operations.

The Buffalo is a utility transport aircraft that can take off and land on the most rugged strips as short as a soccer field. It serves a vast territory from the British Columbia / Washington border to the Arctic and from the Rocky Mountains to 1,200 kilometers out over the Pacific Ocean.

Length 24 m
Wingspan 29.25 m
Height 8.53 m
Empty weight 12,474 kg
Maximum gross weight 19,560 kg
Maximum speed 420 km/h
Range 2,240 km
Locations Comox, B.C.
This aircraft is used for Search and rescue

Canadair CP-107 Argus

Canadair CP-107 Argus  (Pinterest)

The Canadian-built Canadair Argus was a unique hybrid that married the wings, tail surfaces and undercarriage of the British-designed Britannia transport to a completely new Canadian-designed, non-pressurized fuselage that was equipped with different American-designed engines. One of the most effective anti-submarine warfare aircraft of its day, the Argus was a mainstay for the RCAF in the maritime role. The principal difference between the Mark I and Mark II was in the different internal navigation, communication and tactical electronic equipment. Externally, the Mk II exhibited a redesigned smaller nose radome and additional ECM (electronic counter measures) antennae above the fuselage. The Argus replaced the Lancaster and Neptune aircraft types previously flown in the maritime roles and, eventually, the Argus was itself replaced by the current CP-140 Aurora aircraft.

Designation CP-107
Model number CL-20
Marks Mk I, II
Role Anti-submarine warfare (ASW)
Taken on strength 1957
Struck off strength 1982
Number 33
Service RCAF and Canadian Armed Forces

“October Saviours,” by Len Boyd, 2012. 18″ × 24″ (45.7 × 61.0 centimeters), acrylic on Masonite. “At daybreak an RCAF C-115 Buffalo ‘SAR’ transport dispatched from 442 Squadron, Comox overflies the burning and abandoned 425 foot Dutch cruise ship MV ‘Prinsendam’ as a lifeboat full of grateful passengers floats nearby; rescue flares fizzle in the waters.” (Canadian Aerospace Artists Association/http://www.aviationartists.ca/boyd/boyd_october_saviours.html)

¹ “night sun” refers to the Spectrolab Inc. Nightsun® high-intensity searchlight for aircraft.

© 2020, Sean M. Cross

Facebooktwitterredditpinterestlinkedinmailby feather

20 September 1918

Lieutenant (j.g.) David S. Ingalls, USN, France, 1918. (U.S. Navy)
Lieutenant (j.g.) David S. Ingalls, USN, France, 1918. (U.S. Navy)

20 September 1918: While assigned to No. 213 Squadron, Royal Air Force, Lieutenant (junior grade) David Sinton Ingalls, United States Navy, shot down a Fokker D.VII reconnaissance airplane near Vlissegham, Belgium, while flying a Sopwith Camel, serial number D8177. This was Ingalls’ fifth confirmed aerial victory, making him the U.S. Navy’s only fighter ace of World War I.

Lieutenant Ingalls was awarded the Navy Cross for his actions of 15 September 1918, when “he led a flight of five machines on a low bombing raid of an enemy aerodrome. On the homeward journey he shot down a two-seater enemy aeroplane in flames. He further participated in two other low bombing raids and upon still another occasion shot down an enemy kite balloon in flames near Ostend.”  He was also awarded the Distinguished Service Medal for exceptionally meritorious service. The Royal Air Force awarded him its Distinguished Flying Cross for the 15 September mission against Uytkerke Aerodrome, and he was Mentioned in Dispatches. France appointed him Chevalier de la légion d’honneur.

Sopwith Camel F.1. (Royal Air Force)

The Sopwith Camel F.1 was a British single-place, single-engine biplane fighter, produced by the Sopwith Aviation Co., Ltd., Canbury Park Road, Kingston-on-Thames. The airplane was constructed of a wooden framework, with the forward fuselage being covered with aluminum panels and plywood, while the aft fuselage, wings and tail surfaces were covered with fabric.

The length of the Camel F.I varied from 18 feet, 6 inches (5.639 meters) to 19 feet, 0 inches (5.791 meters), depending on which engine was installed. Both upper and lower wings had a span of 28 feet, 0 inches (8.534 meters) and chord of 4 feet, 6 inches (1.372 meters). They were separated vertically by 5 feet (1.524 meters) at the fuselage. The upper wing had 0° dihedral, while the lower wing had 5° dihedral and was staggered 1 foot, 6 inches (0.457 meters) behind the upper wing. The single-bay wings were braced with airfoil-shaped streamline wires. The overall height of the Camel also varied with the engine, from 8 feet, 6 inches (2.591 meters) to 8 feet, 9 inches (2.667 meters).

The heaviest Camel F.I variant used the Le Rhône 180 h.p. engine. It had an empty weight of 1,048 pounds (475 kilograms). Its gross weight of 1,567 pounds (711 kilograms). The lightest was equipped with the Gnôme Monosoupape 100 horsepower engine, with weights of 882 pounds (400 kilograms) and 1,387 pounds (629 kilograms), respectively.

Front view of a Sopwith Camel F.I
Front view of a Sopwith Camel F.I

The first Camel was powered by an air-cooled 15.268 liter (931.72 cubic inches) Société Clerget-Blin et Cie Clerget Type 9 nine-cylinder rotary engine which produced 110 horsepower at 1,200 r.p.m. and drove a wooden two-bladed propeller. Eight different rotary engines ¹ from four manufacturers, ranging from 100 to 180 horsepower, were used in the type.

The best performance came with the Bentley B.R.1 engine (5.7:1 compression ratio). This variant had a maximum speed of 121 miles per hour (195 kilometers per hour) at 10,000 feet (3,048 meters), and 114.5 miles per hour (184 kilometers per hour) at 15,000 feet (4,572 meters). It could climb to 6,500 feet (1,981 meters) in 4 minutes, 35 seconds; to 10,000 feet (3,048 meters) in 8 minutes, 10 seconds; and 15,000 feet (4,572 meters) in 15 minutes, 55 seconds. It had a service ceiling of 22,000 feet (6,706 meters). Two other Camel variants could reach 24,000 feet (7,315 meters).

Sopwith Camel F.1 N6254, right profile. (NASA)
Lt. W.O. Bentley R.N.A.S.
Lieutenant Walter Owen Bentley, R.N.A.S.

The Bentley B.R.1 rotary engine was designed by Lieutenant Walter Owen Bentley, Royal Naval Air Service (later, Captain, Royal Air Force), based on the Clerget Type 9, but with major improvements. It used aluminum cylinders shrunk on to steel liners, with aluminum pistons. The Bentley B.R.1 (originally named the Admiralty Rotary, A.R.1, as it was intended for use by the Royal Navy) was an air-cooled, normally-aspirated 17.304 liter (1,055.9 cubic inches) nine-cylinder rotary engine with a compression ratio of 5.7:1. It was rated at 150 horsepower at 1,250 r.p.m. The B.R.1 was 1.110 meters (3 feet, 7.7 inches) long, 1.070 meters (feet, 6.125 inches) in diameter and weighted 184 kilograms (406 pounds.) The engine was manufactured by Humber, Ltd., Coventry, England.

For his work developing this engine, Captain Bentley was appointed a Member of the Military Division of the Most Excellent Order of the British Empire (M.B.E.) in the New Years Honours List, 1 January 1919. He would later found Bentley Motors, Ltd.

Sopwith Camel F.1 FG394, left rear quarter. © IWM (Q 63822)
Sopwith Camel F.1 F6394, left rear quarter. © IWM (Q 63822)

The Camel was armed with two fixed, forward-firing .303 Vickers machine guns, synchronized to fire forward through the propeller. These guns were modified for air cooling. Some night fighter variants substituted Lewis machine guns mounted above the upper wing for the Vickers guns. Four 25 pound (11.3 kilogram) bombs could be carried on racks under the fuselage.

The instruments and armament of a Sopwith Camel from No. 4 Squadron, AFC. (Australian War Memorial)
The instruments and armament of a Sopwith Camel from No. 4 Squadron, AFC. (Australian War Memorial)

The Sopwith Camel was a difficult airplane to fly. Most of its weight was concentrated far forward, making it unstable, but, at the same time making the fighter highly maneuverable. The rotary engine, with so much of its mass in rotation, caused a torque effect that rolled the airplane to the right to a much greater degree than in airplanes equipped with radial or V-type engines. A skilled pilot could use this to his advantage, but many Camels ended upside down while taking off.

Twelve manufacturers ² produced 5,490 Sopwith Camels between 1916 and 1920. By the end of World War I, it was becoming outclassed by newer aircraft, however it was the single most successful fighter of the war, shooting down 1,294 enemy aircraft. One single fighter, flown by Major William Barker, shot down 46 enemy aircraft, more than any other fighter in history.

It is believed that only seven Sopwith Camels still exist.

Lieutenant David Sinton Ingalls, Naval Reserve Flying Corps, circa 1919. (U.S. Naval Institute)

David Sinton Ingalls was born 28 January 1899 at Cleveland, Ohio. He was the son of Albert Stimson Ingalls, a vice president of the New York Central Railroad, and Jane Ellison Taft Ingalls, niece of President William Howard Taft. He  was educated at the University School, a private school for boys in Cleveland. He entered Yale University at New Haven, Connecticut, in 1916. Ingalls was a member of The First Yale Unit, which would become the U.S. Navy’s first aviation unit.

Shortly after the United States entered World War I, David Sinton Ingalls enlisted as a Machinist’s Mate 1st Class, United States Naval Reserve Force, at New London, Connecticut, 26 March 1917. He was sent to the Naval Aviation Detachment at West Palm Beach, Florida, for initial flight training, and then to the Naval Aviation Detachment, Huntington, New York. MM1c Ingalls was discharged 1 September 1917 and appointed an Ensign, 4 September 1917. He was Naval Aviator Number 85.

Ensign Ingalls was sent to France for duty, 12 September 1917. In December 1917, he was detached and sent to the Royal Flying Corps air station at Turnberry, South Ayrshire, Scotland, for training in aerial gunnery. He then underwent squadron formation training at nearby Ayr, Scotland. Following training, Ensign Ingalls was assigned to the Naval Air Detachment at Paris, France, 12 March 1918. On 23 March 1918, Ingalls was promoted to the rank of Lieutenant (junior grade).

On 21 May 1918, Lieutenant (j.g.) Ingalls was assigned to the U.S. Army Bombing School at Clermont-Ferrand, France. On 27 June 1918, Lieutenant (j.g.) Ingalls was assigned to the Naval Air Station Dunkerque. He flew combat missions with No. 213 Squadron, and No. 218 Squadron, both of the Royal Air Force. (While flying with the 218th, he was reported to have shot down an observation balloon and a biplane. The records were lost and these claims are considered unconfirmed.)

While flying with No. 213 Squadron, on 11 August 1918, Lieutenant (j.g.) Ingalls shot down an Albatros C northeast of Diksmuide, West Flanders—his first confirmed victory. His second confirmed victory was a two-place Luftverkehrsgesellschaft m.b.H. (L.V.G.) biplane south of Zevecote, Belgium, on 21 August. He shot down a Rumpler C over Ostend, 15 September. His fourth confirmed victory took place on 18 September when he destroyed an observation balloon at La Barrière. The Fokker D.VII that he shot down on 20 September was his fifth. He shot down his sixth,a Rumpler, on 24 September 1918, over Saint-Pierre-Cappelle, Belgium. Other than the Fokker D.VII, Ingalls shared credit with other pilots for the shoot-downs.

Lieutenant (j.g.) Ingalls flew his final combat mission, his sixty-third, on 3 October 1918.

On 24 September 1919, he was given the provisional rank of Lieutenant, Naval Reserve Flying Corps, with date of rank, 1 April 1919. He was released from active duty 23 December 1919.

Returning to Yale University, he graduated in 1920 with a Bachelor of Arts degree, and in 1923, received a Doctor of Laws (LL.D.) degree from Harvard University, Cambridge, Massachusetts. He practiced law for several years before being elected to the state legislature of Ohio in 1926. Later, he ran for governor and United States senator.

David Sinton Ingalls married Miss Louise Hale Harkness at Locust Valley, New York, 27 June 1922. They would have five children: Edith, Jane, Anne, Louise, and David.

Flag of the Assistant Secretary of the Navy for Aeronautics

Ingalls was appointed Assistant Secretary of the Navy for Aeronautics by President Herbert Hoover, serving from 16 March 1929 until 1 June 1932, reporting to Secretary of the Navy Charles Francis Adams III.

Secretary Ingalls’ photograph was featured on the cover of TIME Magazine, 2 March 1931.

Assistant Secretary of the Navy for Aeronautics David Sinton Ingalls was featured on the cover of TIME Magazine, 2 March 1931. Photograph by Underwood & Underwood. (TIME Magazine)

On 24 December 1931, Ingalls was appointed a Lieutenant Commander, United States Naval Reserve.

Going to work in the business sector, Ingalls became vice president and general manager of Pan American Air Ferries, a commercial transport service from the United States to Egypt, and which also transported newly-built military aircraft from the United States via South America, across the South Atlantic Ocean to Africa, and then on to the Middle East.

Lieutenant Commander Ingalls was promoted to Commander, U.S.N.R., 1 July 1941, and following the United States entry into World War II, he was recalled to active duty, 23 November 1942. Commander Ingalls served as Assistant Operations Officer on the staff of the Commander, Naval Air Forces, Pacific, (COMNAVAIRPAC), for which he was awarded the Legion of Merit. He was promoted to Captain, 10 June 1943. He then served as chief of staff to the Commander Aircraft South Pacific Force, Admiral Aubrey W. Fitch, USN.

Captain Ingalls took command of U.S. Naval Air Station 29 (now, Daniel K. Inouye International Airport—HNL—Honolulu, Hawaii) on 1 April 1944.

Captain Ingalls was released from active duty 8 November 1945, but he remained an officer in the Naval Reserve. Ingalls returned to Pan American World Airways as vice president, and remained in that position until 1949. Later, he was president and publisher of the Cincinnati Times-Star newspaper, and a vice president of Taft Broadcasting Company.

David Sinton Ingalls, April 1952. (Nina Leen/LIFE Magazine)

By 1951, Ingalls held the rank of Commodore. On 1 July 1955, Commodore Ingalls was promoted to the rank of Rear Admiral. From 1945 until 1959, Ingalls was Commander, Navy Reserve Forces Command (COMNAVRESFORCOM). He retired from the Naval Reserve in February 1959.

During his Naval career, Rear Admiral Ingalls had been awarded the Navy Cross, the Distinguished Service Medal, the Legion of Merit, the Bronze Star, World War I Victory Medal, American Defense Service Medal, American Campaign Medal, Asiatic-Pacific Campaign Medal with four service stars, the World War II Victory Medal, the National Defense Service Medal, the Naval Reserve Medal, and the Armed Forces Reserve Medal with hourglass device.

Miss Louise Hale Harkness Ingalls with her father, David S. Ingalls, 1980. (Historic Images)

Louise Harkness Ingalls died in 1978. David Ingalls married his second wife, Frances W. Wragg, 16 February 1979.

Ingalls is the author of Hero of the Angry Sky: The World War I Diary and Letters of David S. Ingalls, America’s First Naval Ace, Ohio University Press, 2013 (Edited by Geoffrey L.  Rossano).

Rear Admiral David Sinton Ingalls died 26 April 1985 at the age of 86 years. He is buried at the Warm Springs Cemetery, Warm Springs, Virginia.

¹ Humber, Ltd., Bentley B.R.1 150 h.p., B.R.1 (5.7:1 c.r.); Clerget 9B, 130 h.p., Clerget 9Bf, 130 h.p. (long stroke): Gnôme Monosoupape,  100 h.p., Gnôme Monosoupape, 150 h.p.; Le Rhône, 110 h.p., and Le Rhône 180 h.p.

² Sopwith Aviation Co., Ltd., Kingston-on-Thames; Boulton and Paul, Ltd., Norwich; British Caudron Co., London; Clayton and Shuttleworth, Ltd., Lincoln; Hooper and Co., Ltd., London; March, Jones and Cribb, Ltd., Leeds; Nieuport and General Aircraft Co., Ltd., London; Ruston, Proctor and Co., Ltd., Lincoln; Fairey Aviation Co., Ltd.; Portholme Aerodrome Ltd., Huntingdon; Wm. Beardmore & Co., Ltd., Glasgow; Pegler & Co., Ltd., Doncaster.

© 2017, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather