Tag Archives: Fédération Aéronautique Internationale

16 April 1958

Lieutenant Commander George Clinton Watkins, United States Navy, set a World Altitude Record with a Grumman F11F-1F Tiger, 18 April 1958. (U.S. Navy)
Lieutenant Commander George Clinton Watkins, United States Navy, set a World Altitude Record with a Grumman F11F-1F Super Tiger, 18 April 1958. (U.S. Navy)

16 April 1958: At Edwards Air Force Base, California, test pilot Lieutenant Commander George Clinton Watkins, United States Navy, set a Fédération Aéronautique Internationale (FAI) World Altitude Record of 23,449 meters (76,932 feet) ¹ with a Grumman F11F-1F Tiger, Bureau of Aeronautics serial number (Bu. No.) 138647.

Lieutenant Commander Watkins wore a David Clark Co. C-1 capstan-type partial-pressure suit with an International Latex Corporation (ILC Dover) K-1 helmet and face plate for protection at high altitudes.

The Valley Times reported:

Edwards Flier Sets Altitude Mark For Jets

By WALT KEESHAN JR.
Valley Times Aviation Editor

     EL CENTRO — The world’s altitude record for jet planes has been taken to the Antelope Valley by a Navy pilot dressed in a Mars-like suit who flew to the edge of space at 76,828.8 feet above Mojave.

     This historic event, announced yesterday at the third annual Naval Air Weapons meet, staged in the Imperial Valley, brought the Distinguished Flying Cross to LCDR George C. Watkins, 37, who gave America the first altitude record it has held in 28 years. The flight was Wednesday.

     Flying a F-11-1F Super Tiger, Watkins, of Pasadena, proved that jet airplanes can operate for a brief period of time 14 miles above earth—a period long enough to launch missiles into space.

45-Minute Flight

     The actual flight which took Watkins up into the Ozonosphere lasted 45 minutes and covered a distance of 500 miles stretching from Needles to Mojave. He stayed at the record altitude for four seconds.

     Watkins flew in a patch like a ballistic missile strapped in his swept-wing fighter, Outside the snug cockpit the temperature was 69 degrees below zero.

     The swept-wing fighter shot from the Edwards Air Force Base runway loaded with 6,270 pounds of fuel and raced for Needles, 210 miles to the east.

     Making a U-turn 30 miles beyond Needles, Watkins poured on teh speed and dashed toward Edwards with his throttle wide open at 1,260 miles per hour (Mach 1.9) at 40,000 feet.

Cruise Climb

     Watkins slowly began to cruise climb, rising 1,500 feet a minute until he had only 400 pounds of fuel left. Rising skyward the afterburner cut off at 65,000 feet and he was on his way.

     The altimeter began to spin crazily and all the energy he had built up pushed him up at  a rate of 50,000 feet a minute in what pilots call a zoom-glide.

     As he eased over the top at 76,828.8 feet, the Super Tiger was only going 100 miles an hour and Watkins was experiencing zero-gravity for more than a minute—an uncomfortable 60 seconds when he became weightless and objects began floating in the cockpit.

     Outside the sky was very deep blue. He was the first jet pilot to see this new color. “I hardly had time to look,” Watkins said.

Lands Without Fuel

     During the record run he had to hit a five mile square area in the sky so that radar cameras on the ground could officially record his record. He landed without enough fuel to taxi back to the hangar.

     The record run was part of “Operation Apollo” now being staged at Edwards. He will try for 84,000 feet probably the first part of next week when the temperature gets down to a minus 79 degrees outside. The colder it is the faster he can go.

     The Air Force and the Navy are both interested in this altitude mark because solid missiles could be launched from these sky platforms and fired at tremendously increased distances—maybe put in orbit.

     The record Watkins broke was 70,308 feet set by the British last year in a combination jet and rocket powered airplane.

Valley Times, Vol. 21, No. 93, Friday 18 April 1958, Page 1, Column 3, and Page 2, Column 3

Watkins’ flight was observed by the National Aeronautic Association and certified by the Fédération Aéronautique Internationale (FAI). For his record-setting flight, Lieutenant Commander Watkins was presented the Distinguished Flying Cross by Vice Admiral William F. Davis, Jr., Deputy Chief of Operations for Air.

Grumman F11F-1F Tiger, Bu. No. 138647, in flight near Edwards AFB, California. (U.S. Navy)
Grumman F11F-1F Tiger, Bu. No. 138647, in flight near Edwards AFB, California. (U.S. Navy)

The F11F-1F Tiger was a higher performance variant of the U.S. Navy F11F single-seat, single-engine swept wing aircraft carrier-based supersonic fighter. The last two regular production F11F-1 Tigers, Bu. Nos. 138646 and 138647 were completed as F11F-2s, with the standard Westinghouse J65-WE-18 turbojet engine replaced by a more powerful General Electric YJ79-GE-3, which produced 9,300 pounds of thrust (41.37 kilonewtons), or 14,350 pounds (63.83 kilonewtons) with afterburner. The air intakes on each side of the fuselage were longer and had a larger area to provide greater airflow for the new engine. After testing, the fuselage was lengthened 1 foot, 1½ inches (0.343 meters) and an upgraded J79 engine installed. The first “Super Tiger” was damaged beyond repair in a takeoff accident and was “expended” as a training aid for fire fighters.

The U.S. Navy determined that the F11F-2 was too heavy for operation aboard carriers and did not place any orders. The designation was changed from F11F-2 to F11F-1F, and later, to F-11B, although the remaining aircraft was no longer flying by that time.

The F11F-1F Tiger is 48 feet, 0.5 inches (14.643 meters) long with a wingspan of 31 feet, 7.5 inches (9.639 meters) and overall height of 13 feet, 10 inches (4.216 meters). The Super Tiger has an empty weight of 16,457 pounds (7,465 kilograms) and maximum takeoff weight of 26,086 pounds (11,832 kilograms).

The General Electric J79 is a single-spool axial-flow afterburning turbojet, which used a 17-stage compressor and 3-stage turbine. The engine is 17 feet, 3.5 inches (5.271 meters) long, 3 feet, 2.3 inches (0.973 meters) in diameter, and weighs 3,325 pounds (1,508 kilograms).

With the YJ79 engine, the F11F-1F has a maximum speed of 836 miles per hour (1,345 kilometers per hour) at Sea Level, 1,325 miles per hour (2,132 kilometers per hour) at 35,000 feet (10,668 meters) and 1,400 miles per hour (2,253 kilometers per hour) at 40,000 feet (12,192 meters). Cruise speed is 580 miles per hour (933 kilometers per hour). It had an initial rate of climb of 8,950 feet per minute (45.5 meters per second) and service ceiling of 50,300 feet (15,331 meters). Range with internal fuel was 1,136 miles (1,828 kilometers).

The Tiger’s armament consisted of four 20 mm Colt Mk 12 autocannon with 125 rounds of ammunition per gun, and four AIM-9 Sidewinder heat-seeking missiles.

The single remaining F11F-1F, Bu. No. 138647, is on static display at the Naval Air Weapons center, China Lake, California.

Grumman F11F-1F Tiger, Bu. No. 138647. (U.S. Navy)
Grumman F11F-1F Tiger, Bu. No. 138647. (U.S. Navy)

George Clinton Watkins was born at Alhambra, California, 10 March 1921, the third of seven children of Edward Francis Watkins, a purchasing agent for the Edison Company, and Louise Whipple Ward Watkins. (Mrs. Watkins was a candidate for election to the United States Senate in 1938.) George’s brother, James, would later serve as Chief of Naval Operations.

George was educated at the Army and Navy Academy, Carlsbad, California, and at The Citadel, the Military College of South Carolina, before being appointed to the United States Naval Academy, Annapolis, Maryland. He entered the Academy 3 July 1940. He graduated and was commissioned as an Ensign, United States Navy, 9 June 1943. He was then assigned as a gunnery officer aboard the battleship, USS Pennsylvania (BB-38). Ensign Watkins was promoted to the rank of lieutenant (junior grade), 1 September 1944.

Near the end of the war, Lieutenant (j.g.) Watkins entered pilot training. He graduated and was awarded the gold wings of a Naval Aviator in 1945. He was promoted to the rank of lieutenant, 1 April 1946. His first operational assignment was as pilot of a Grumman TBF Avenger torpedo bomber with VT-41. In 1950 Watkins attended the Navy’s test pilot school at NAS Patuxent River on the Chesapeake Bay, Maryland. Among his classmates were future astronauts John H. Glenn and Alan B. Shepard. Lieutenant Watkins served as a fighter pilot during the Korean War, flying the Grumman F9F-6 with VF-24, aboard USS Yorktown (CVA-10)then returned to duty as a test pilot. On 1 January 1954, he was promoted to lieutenant commander.

George Watkins was the first U.S. Navy pilot to fly higher than 60,000 feet (18,288 meters), and 70,000 feet (21,336 meters). In 1956, he set a speed record of 1,210 miles per hour (1,947.3 kilometers per hour). Lieutenant Commander Watkins was promoted to the rank of commander, 1 March 1958. He was assigned as Commander Air Group 13 in August 1961. On 9 May 1962, Commander Watkins became the first U.S. Navy pilot to have made 1,000 aircraft carrier landings.

Commander Watkins was promoted to the rank of captain, 1 July 1964. Captain Watkins served in planning assignments at the Pentagon, and was an aide to Presidents Kennedy, Johnson and Nixon.

USS Mars (AFS-1). (United States Navy)
Captain George Clinton Watkins, United States Navy (1921–2005)

From 14 December 1965 to 12 December 1966, Captain Watkins commanded USS Mars (AFS-1), a combat stores ship. (Experience commanding a deep draft ship was a requirement before serving as captain of an aircraft carrier).

He later served as a technical adviser for the 1970 20th Century Fox/Toei Company movie, “Tora! Tora! Tora!,” about the Japanese attack against Pearl Harbor which brought the United States of America into World War II.

By the time Captain Watkins retired from the Navy in 1973, he had flown more than 200 aircraft types, made 1,418 landings on 37 aircraft carriers, and logged more than 16,000 flight hours. He continued flying after he retired, operating sailplane schools at Santa Monica and Lompoc, California. He had flown more than 21,000 hours during 26,000 flights.

Captain Watkins married Miss Monica Agnes Dobbyn, 20 years his junior, at Virginia Beach, Virginia, 9 June 1979. Mrs. Watkins is the author of Cats Have Angels Too, Angelaura & Company, 1998.

Captain Watkins died 18 September 2005 at the age of 84 years. His ashes were spread at sea from the deck of a United States Navy aircraft carrier.

¹ FAI Record File Number 8596

© 2019, Bryan R. Swopes

15 April 1959

This McDonnell RF-101C-60-MC Voodoo, 56-055, is the sister ship of the Voodoo flown by Captain Edwards to set a World Speed Record, 15 April 1959. (Unattributed)
This McDonnell RF-101C-60-MC Voodoo, 56-055, is the sister ship of the airplane flown by Captain Edwards to set a World Speed Record, 15 April 1959. (Hervé Cariou)

15 April 1959: Captain George A. Edwards, Jr., United States Air Force, assigned to the 432nd Tactical Reconnaissance Wing, Shaw Air Force Base, South Carolina, set a Fédération Aéronautique Internationale (FAI) World Record for Speed Over a Closed Circuit of 500 Kilometers (310.686 miles) Without Payload at Edwards Air Force Base, California. Captain Edwards flew a McDonnell RF-101C-60-MC Voodoo, serial number 56-054. His speed over the course averaged 1,313.677 kilometers per hour (816.281 miles per hour).¹

Captain Edwards told The Nashville Tennessean, “The flight was routine. The plane ran like a scalded dog.”

Nine days earlier, Colonel Edward H. Taylor flew another McDonnell RF-101C to a World Record for Speed Over a 1000 Kilometer Course of 1,126.62 kilometers per hour (700.05 miles per hour).²

McDonnell RF-101C Voodoo 56-042, 15th Tactical Reconnaissance Squadron. (U.S. Air Force)
McDonnell RF-101C-60-MC Voodoo 56-042, 15th Tactical Reconnaissance Squadron. (U.S. Air Force)

The RF-101C Voodoo was an unarmed reconnaissance variant of the F-101C fighter. It was 69 feet, 4 inches (21.133 meters) long with a wingspan of 39 feet, 8 inches (12.090 meters). The height was 18 feet (5.486 meters). Empty weight for the RF-101C was 26,136 pounds (11,855 kilograms), with a maximum takeoff weight of 51,000 pounds (23,133 kilograms).

RF-101 on ramp with cameras. (United States Air Force 140114-F-DW547-001)

The RF-101C was powered by two Pratt & Whitney J57-P-13 turbojet engines. The J57 was a two-spool axial-flow turbojet which had a 16-stage compressor (9 low- and 7 high-pressure stages), 8 combustors and a 3-stage turbine (1 high- and 2 low-pressure stages). The J57-P-13 was rated at 10,200 pounds of thrust (45.37 kilonewtons), and 15,800 pounds (70.28 kilonewtons) with afterburner.

Cutaway illustration of the J57 afterburning turbojet engine. (U.S. Air Force)

The aircraft had a maximum speed of 1,012 miles per hour (1,629 kilometers per hour) at 35,000 feet (10,668 meters). The service ceiling was 55,300 feet (16,855 meters). The Voodoo could carry up to three drop tanks, giving a total fuel capacity of 3,150 gallons (11,294 liters) and a maximum range of 2,145 miles (3,452 kilometers).

The RF-101C carried six cameras in its nose. Two Fairchild KA-1s were aimed downward, with four KA-2s facing forward, down and to each side.

Beginning in 1954, McDonnell Aircraft Corporation built 807 F-101 Voodoos. 166 of these were the RF-101C variant. This was the only F-101 Voodoo variant to be used in combat during the Vietnam War. The RF-101C remained in service with the U.S. Air Force until 1979.

This McDonnell RF-101C-45-Voodoo, 56-0183, of the 20th Tactical Reconnaissance Squadron, is similar in appearance to the Voodoo flown by Captain Edwards, 15 April 1959. (Unattributed.
This McDonnell RF-101C-45-Voodoo, 56-0183, of the 20th Tactical Reconnaissance Squadron, 432nd Tactical Reconnaissance Wing, is similar in appearance to the Voodoo flown by Captain Edwards, 15 April 1959. (Unattributed)
Captain George A. Edwards, Jr., in the cockpit of his McDonnell RF-101C Voodoo, after setting an FAI World Record for Speed. (U.S. Air Force)

George Allie Edwards, Jr., was born in Nashville, Tennessee in 1929, the son of George Allie Edwards, an automobile agent, and Veriar (“Vera”) Lenier Edwards. When his father died, his mother, younger sister Jane, and George went to live with Mrs. Edwards’ parents at Crossville, Tennessee. He attended Cumberland High School and studied at the University of Tennessee at Knoxville. He took flight lessons at the age of 15 and accumulated more than 2,000 flight hours over the next six years.

In 1951, during the Korean War, Edwards entered the United States Air Force as an aviation cadet. He graduated from flight school at Vance Air Force Base, Oklahoma, and was commissioned a second lieutenant. He was assigned to the 67th Tactical Reconnaissance Wing at Kimpo Air Base, South Korea. As a pilot of North American RF-51D Mustang and Lockheed RF-80 Shooting Star photographic reconnaissance airplanes, he flew 101 combat missions.

His next assignment was as a jet instructor at Bryan Air Force Base, Texas, and then an F-100 pilot with the 354th Tactical fighter Wing. he next served as chief of safety and standardization for the 432nd Tactical Reconnaissance Wing. It was during this assignment that he set the world record.

From 1959 to 1962, Edwards was an advisor to the West German Air Force. In recognition for his service, the chief of staff awarded him Luftwaffe pilot’s wings. For the next several years, he rotated through a series of training assignments, education and staff assignments.

Major George A. Edwards climbs to the cockpit of a McDonnell RF-4C Phantom II. (Lake Travis View)

During the Vietnam War, Lieutenant Colonel Edwards commanded the 19th Tactical Reconnaissance Squadron which was equipped with the McDonnell RF-4C Phantom II reconnaissance variant. He also commanded a detachment of the 460th Tactical Reconnaissance Wing, and flew the Martin RB-57 Canberra. Edwards flew another 213 combat missions.

Colonel Edwards went on to command the 67th Tactical Reconnaissance Wing, (which he had previously served with during the Korean War), Bergstom Air Force Base, Texas; as a brigadier general, was vice commander of 12th Air Force; commander 314th Air Division, Osan Air Base, Republic of Korea, and also commanded the Korean Air Defense Sector. Edwards was promoted to Major General 1 August 1976, with an effective date of rank of 1 July 1973.

Major General George A. Edwards, Jr., United States Air Force.

During his career in the United States Air Force, Major General George A. Edwards, Jr., was awarded the Distinguished Service Medal, Legion of Merit, Distinguished Flying Cross with four oak leaf clusters (5 awards), the Bronze Star, Air Medal with 19 oak leaf clusters (20 awards), Joint Service Commendation Medal, Air Force Commendation Medal, Presidential Unit Citation emblem, Air Force Outstanding Unit Award ribbon with four oak leaf clusters (5 awards).

General Edwards retired from the Air Force 1 March 1984 after 33 years of service. As of 2015, the General and Mrs. Edwards live near Austin, Texas.

¹ FAI Record File Number 8858

² FAI Record File Number 8928

© 2018, Bryan R. Swopes

9–14 April 1985

The world record-setting Sikorsky S-76 Mark II, N1545X. The helicopter’s paint scheme has been updated since the world record flights in 1985. (MyFlightbook)

9–14 April 1985: Allison Gas Turbine Chief Test Pilot Frederick Jack Schweibold, along with company pilots Harry B. Sutton and R. Frederick (“Fritz”) Harvey, set a series of thirteen Fédération Aéronautique Internationale (FAI) world records for speed and distance, flying a Sikorsky S-76 Mark II, N1545X, which had been leased from Petroleum Helicopters, Inc., of Lafayette, Louisiana.

Contemporary news reports were that Schweibold and his crew, in addition to several PHI pilots, had actually set 15 speed, distance, and altitude records, but only thirteen world records are shown in the FAI’s online records database. The additional records may have been U.S. national records, but This Day in Aviation has been unable to confirm this with the National Aeronautic Association.

The Indianapolis Star reported:

(Frank Espich, The Indianapolis Star, 16 April 1985, Page 1, Columns 1–3)

Local Pilots set 15 world records in helicopter with Allison engine.

By Patricia Hagen

STAR STAFF WRITER

     Three local pilots set 15 world records in a commercial helicopter in two days, stopping only to refuel while flying more than 7,000 miles over the United States and Canada.

     The team from Allison Gas Turbine Division of General Motors Corp. started the marathon trip Friday evening in Lafayette, La. They set coast-to-coast, non-stop, altitude and speed records before inclement weather forced an early landing Sunday night in St. Louis.

     The trio was tired but excited when they finished the trip Monday afternoon at the Indianapolis Heliport in the Sikorsky S-76 Mark II helicopter powered by an Allison engine.

     The trip in the yellow and black craft was flawless, except for the early landing, said Jack Schweibold, Allison’s chief test pilot, who was dressed in tan coveralls and a company baseball cap.

     His teammates in the 35-foot helicopter were R. Frederick “Fritz” Harvey of Indianapolis, director of small-engine programs, and Harry B. Sutton of Pittsboro, staff pilot. The men have been involved in other record-setting flights in small airplanes and helicopters.

     The records set on this trip were for the heavy weight class of helicopters. The Allison team averaged 150 mph between Dallas and Montreal, Quebec, shattering the old record of 104 mph.

     On the way to Canada, they flew a record 950 miles non-stop before refueling in Toledo, Ohio.

     Then they cut several hours off the East Coast-to-West Coast record for this class of helicopters, going from New York City to Los Angeles in 19 hours, which included three stops for fuel.

     They also established speed records for climbs to 10,000 feet an 15,600 feet, said Schweibold, the official recorder on the flight.

     The records must be verified by the National Aeronautic Association in conjunction with the French aeronautics federation, the bodies that oversee challenges to air and space records. The pilots will receive awards at the Paris Air Show in June.

     The pilots managed only a few hours of sleep between turns at the controls of the helicopter, which could seat 14 passengers on a typical commercial flight.

     The only alteration to the $2.3 million helicopter for the weekend trip was a modified fuel tank, which added 200 gallons to the original 300 gallon capacity. About 4,100 gallons of aircraft fuel were burned in the 46 hours of flying time, the pilots estimated.

     The point of the record-setting blitz was to show the versatility of the Allison engine.

     “You can take a standard, stock Allison engine and expect to get championship performance,” Schweibold said.”We treated it like a stock Chevrolet.”

     The Allison model 250 engine is about the size of a car engine but develops 650 horsepower. The flight showed that it performs safely and with little maintenance even when used to challenge world records, Harvey said.

     “We’re bringing world-class aviation records to Indianapolis,” Harvey said. The Allison turbine engine division is proud of its reputation as a leader in engineering power plants for helicopters and turbo prop aircraft, he added.

     The trio of pilots plan to try for two other records before returning the aircraft, which they borrowed from Petroleum Helicopters Inc. in Lafayette, La., Harvey said.

     Over a 100-mile diameter circuit in Indianapolis,they will attempt an air speed record over 650 miles. They will also try to set a distance record on the course, which will entail going about 900 miles without stopping, Schweibold said.

The Indianapolis Star, Tuesday, 16 April 1985, Page 6, Columns, 1–3

The Indianapolis News,16 April 1985 at Page 26

In his own Internet blog, Jack Schweibold wrote that he picked up Harvey and Sutton in New York City before proceeding west to Los Angeles, with fuel stops at Indianapolis (8A4), Wichita (ICT), and Albuquerque (ABQ). The fuel stops took only about ten minutes each. They flew at 12,000 feet (3,658 meters) when crossing over the San Jacinto Mountains, east of Los Angeles, then passed overhead of the Seal Beach VORTAC (SLI) on the coastline south of Los Angeles.

While making a rapid descent to refuel at Riverside Airport (RAL), passing through 7,000 feet (2,134 meters), they heard two booms from the rear compartment. They checked the helicopter while refueling and everything seemed to be fine. They only filled the auxiliary tanks part way at Riverside, as they expected tail winds on the eastward leg.

The next fuel stop was at Saint Louis, Missouri. (Jack wrote that they didn’t land at Lambert Field (STL) because of adverse weather conditions, but did not specify where in St. Louis they did refuel.) They delayed their takeoff for New York waiting for improved weather conditions. When they finally went out to the helicopter, they found the S-76 surrounded by a pool of jet fuel about 200 feet (61 meters) across.

The two “booms” that the crew heard while descending in to RAL were caused by the auxiliary fuel tanks rupturing. They hadn’t leaked during the subsequent flight because the fuel level was kept below the fractures.

Jack’s full article can be found at: https://jetav.com/15-s76-records-set-in-week/

The records set by Schweibold, Harvey and Sutton were in the FAI’s Class E Rotorcraft, Sub-Class E-1 Helicopters, segments.

9 April 1985:

Speed Over A 3 Kilometer Course: 312,15 kilometers per hour (193.96 miles per hour), Lafayette, Louisiana. Leslie E. White, F. J. Schweibold, Arthur S. Chadbourne III. FAI Record File Number 1838

Speed Over A Straight 15-to-25 Kilometer Course: 304,73 kilometers per hour (189.35 miles per hour), Lafayette, Louisiana. Vernon E. Albert, F.J. Schweibold. FAI Record File Number 1839

Time To Climb To A Height of 3 000 Meters (9,843 feet): 6 minutes, 16 seconds, Lafayette, Louisiana. Joseph R. Bolen, Harry B. Sutton, Bruce A. Schneider. FAI Record File Number 1851

12 April 1985:

Speed Over A recognized Course, Dallas, Texas, to Indianapolis, Indiana. 268,56 kilometers per hour (166.88 miles per hour). F.J. Schweibold. FAI Record File Number 2067

Distance Without Landing, Dallas, to Toledo, Ohio. 1 508,91 kilometers (937.59 statute miles). F.J. Schweibold. FAI Record File Number 1823

13 April:

Speed Over a Recognized Course, Dallas to Montreal, Quebec, Canada. 255,96 km/h (159.05 m.p.h.) F.J. Schweibold. FAI Record File Number 2068

Speed Over a Recognized Course, Indianapolis to Montreal. 244,44 km/h (151.89 m.p.h.).  F.J. Schweibold. FAI Record File Number 2069

Speed Over a Recognized Course, New York, New York, to Indianapolis. 261,36 km/h (162.40 m.p.h.). F.J. Schweibold. FAI Record File Number 2070

14 April:

Speed Over a Recognized Course, Indianapolis to Wichita, Kansas. 254,88 km/h (158.38 m.p.h.) F.J. Schweibold. FAI Record File Number 2071

Speed Over a Recognized Course, Indianapolis to Albuquerque, New Mexico. 225,36 km/h (140.03 m.p.h.) F.J. Schweibold. FAI Record File Number 2072

Speed Over a Recognized Course, Indianapolis to Los Angeles, California. 202,68 km/h (125.94 m.p.h.) F.J. Schweibold. FAI Record File Number 2073

Speed Over a Recognized Course, Wichita to Los Angeles. 197,28 km/h (122.58 m.p.h.) F.J. Schweibold. FAI Record File Number 2074

Speed Over a Recognized Course, New York to Los Angeles. 209,52 km/h (130.19 m.p.h.) F.J. Schweibold. FAI Record File Number 2075

A 1984 advertisement for the Sikorsky S-76 Mark II. (Sikorsky Aircraft)

N5145X (s/n 760050) was a Sikorsky S-76 Mark II, an improved version of the original S-76A. There were more than 40 modifications to improve reliability and maintainability. In addition to new helicopters, the Mark II modifications were available as kits to update earlier S-76As.

The Mark II is a twin-engine intermediate class helicopter that can be configured to carry 6 to 12 passengers. It is used as an executive transport, a scheduled passenger airliner, utility transport, search and rescue aircraft and air ambulance. The helicopter is certified for instrument flight and has retractable tricycle landing gear.

The prototype was rolled out at Stratford, Connecticut, on 11 January 1977 and the first flight took place on 13 March. It was certified in 1978 and the first production aircraft was delivered to Air Logistics, 27 February 1979.

Cutaway illustration of a Sikorsky S-76A. (Sikorsky Archives)

The S-76A is 52 feet, 6 inches (16.00 meters) long with rotors turning. The fuselage has a length of 43 feet, 4.43 inches (13.219 meters) and a width of 8 feet (2.44 meters). The helicopter’s overall height is 14 feet, 5.8 inches (4.414 meters). The four bladed composite main rotor is 44 feet (13.41 meters) in diameter. The blades are attached to a one-piece forged aluminum hub and use elastomeric bearings. As is customary with American helicopters, the main rotor turns counter-clockwise as seen from above. (The advancing blade is on the right.) The four-bladed tail rotor has a diameter of 8 feet (2.438 meters) and turns clockwise as seen from the helicopter’s left. (The advancing blade is below the axis of rotation.) It is mounted in a pusher configuration on the left side of the tailboom. The tail rotor is constructed of composite airfoils mounted to graphite spars.

The S-76 Mark II was equipped with two Allison 250-C30S turboshaft engines. The -C30S was capable of producing 650 shaft horsepower, but was derated to 557 shaft horsepower when installed in the S-76. Subsequent S-76 variants have been built with Turbomeca Arriel 1S and 2S engines, as well as Pratt & Whitney PT6B-3A and PW210S engines.

The S-76 has an empty weight of 7,007 pounds (3,178 kilograms). The S-76A maximum gross weight was 10,500 pounds (4,763 kilograms). Beginning with the S-76B, this was increased to 11,700 pounds (5,307 kilograms).

The Sikorsky S-76 has a maximum cruise speed of 155 knots (287 kilometers per hour). It can hover in ground effect (HIGE) at 7,050 feet (2,149 meters) or out of ground effect (HOGE) at 3,300 feet (1,006 meters). The service ceiling is 13,800 feet (4,206 meters).

The helicopter was designed with offshore oil support as a major consideration. It was intended to carry 2 pilots and 12 passengers 400 nautical miles (460 statute miles, or 741 kilometers). Maximum range with no reserve is 411 nautical miles (473 statute miles/762 kilometers).

N1545X’s FAA registration was cancelled 7 December 2016. The current status of the helicopter is not known. (TDiA did inquire with PHI, but the company did not respond.)

In April 2020, new FAA regulations requiring crash-resistant fuel tanks for new-production aircraft took effect. Lockheed Martin decided not to invest in the engineering required to update the S-76. As such, the helicopter was no longer allowed to be sold in the United States. New Sikorsky S-76Ds continued to be sold to overseas customers. Later in the year, though, production came to an end.

876 Sikorsky S-76 were built. There were 307 S-76A and S-76A+ variants produced, followed by the S-76B, S-76C, -C+ and -C++. The final production model was the S-76D.

Petroleum Helicopters’ Sikorsky S-76 Mark II, N1545X. (Charlie Mauzé. Image used with permission.)

Jack Schweibold is currently credited with 29 FAI world flight records in both airplanes and helicopters.

Frederick Jack Schweibold was born at Toledo, Ohio, 8 November 1935, the son of Henry E. Schweibold (a fire extinguisher salesman) and Jeanette Schweibold. He attended Thomas A. De Vilbiss High School, then Ohio State University where he majored in engineering. He had enlisted in the United States Naval Reserve in 1952 and then joined the United States Air Force as an Aviation Cadet in 1954.

Jack Schweibold with a North American Aviation T-28A Trojan.

Schweibold went through pilot training at Randolph Air Force Base, San Antonio, Texas, flying the T-34 and T-28. He went on to train in the B-25 at Reese Air Force Base, Lubbock, Texas. He was commissioned as a second lieutenant and received his pilot’s wings in July 1957. In a momentary decision, he selected helicopter training.

Frederick Jack Schweibold married Miss Sharon Crouse at Toledo, Ohio, 27 December 1957.

Lieutenant Schweibold flew the Sikorsky H-19B for the U.S.A.F. Air Rescue Service, assigned to Oxnard Air Force Base, California (now Camarillo Airport, CMA).

Air Rescue Service Sikorsky H-19A Chicasaw 51-3850. (AR.1999.026)

After leaving the Air Force, Jack flew Sikorsky S-55s for Chicago Helicopter Service, then Bell 47s for Butler Aviation. In 1960, he was hired by the Allison Division of General Motors as a test pilot and engineer for the new 250-series turboshaft engine.

A Chicago Helicopter Airways Sikorsky S-55.

Jack Schweibold is the author of In The Safety Of His Wings: A Test Pilot’s Adventure, published in 2005.

Jack was inducted into the Indiana Aviation Hall of Fame in 2022.

I have had the good fortune to know Jack Schweibold. I first met him through his involvement in the Helicopter Association International’s biennial flight instructor re-certification seminars, held during the HAI’s annual conventions. He kept the seminar classes on track, and in between, was always available for questions. Jack was the authority on Allison’s 250-series turboshaft engines, and over the years I have often called him for technical information and operational advice. On top of that, Jack Schweibold is just an all-around nice guy. It has been a pleasure to know him.

Jack Schweibold

© 2023, Bryan R. Swopes

14 April 1953

Kamov Ka-15 first flight.

14 April 1953: Dmitry Konstantinovich Efremov, chief test pilot for the Kamov Design Bureau, made the first flight of the prototype Kamov Ka-15 helicopter.

The Ka-15 was a single-engine, two-place, light helicopter, flown by a single pilot. It used two fully-articulated, three-bladed, contra-rotating coaxial rotors. The helicopter had two vertical fins mounted at the ends of a horizontal stabilizer, and four-wheeled fixed landing gear.

The fuselage of the Ka-15 was 6.26 meters (20 feet, 6.5 inches) long. The main rotors’ diameter was 9.96 meters (32 feet, 8.1 inches), and the overall height of the the helicopter was 3.35 meters (10 feet, 11.9 inches). The span of the horizontal stabilizer and vertical fins were 2.85 meters (9 feet, 4.2 inches). The Ka-15 had an empty weight of 996 kilograms (2,196 pounds), normal takeoff weight of 1,360 kilograms (2,998 pounds), and maximum takeoff weight (MTOW) of 1,460 kilograms (3,219 pounds).

The rotors turn at 333 r.p.m. The upper rotor turned clockwise, as seen from above. (The advancing blade is on the left), and the lower blades turn counter-clockwise (their advancing blades are on the right). The area of the main rotor disc was 155.83 square meters (1,677.29 square feet) with a solidity ratio of 3% per rotor. (This is the lowest coefficient of disc area of any helicopter.) Each main rotor blade was trapezoidal, with a theoretical chord at the axis of rotation of 300 millimeters (11.8 inches), narrowing to 100 millimeters (3.9 inches) at the blade tip. The blades incorporated 12° of negative twist.

The Ka-15 was powered by a single air-cooled, supercharged 10.131 liter (618.234 cubic inches) Ivchenko AI-14V nine-cylinder radial engine with a compression ratio of 5.9:1. The engine was rated at 188 kilowatts (252 horsepower). It weighed approximately 200 kilograms (441 pounds).

The helicopter could carry a single passenger or 364 kilograms (802 pounds) of cargo. (Interestingly, the contemporary single main rotor/tail rotor Mil Mi-1 helicopter required 575 horsepower to lift the same payload as the Ka-15.)

The Ka-15 had a cruise speed 120 kilometers per hour (75 miles per hour) and maximum speed 155 kilometers per hour (96 miles per hour). The service ceiling was 3,500 meters (11,483 feet). It could hover out of ground effect (HOGE) at 600 meters (1,969 feet). The helicopter had a normal range of 278 kilometers (173 miles) and maximum range of 520 kilometers (323 miles).

The performance of the Ka-15 was better than had been predicted.  After several years of testing, the Ka-15 entered production in 1956. It was the first mass-produced coaxial helicopter, with approximately 375 being built by Aircraft Factory No. 99 at Ulan-Ude, the capitol city of the Buryat-Mongolian Autonomous Soviet Socialist Republic.

A Kamov Ka-15, circa 1953.
Nikolai Ilich Kamov

In a coaxial rotor system, one rotor is placed above the other, with the drive shaft for the upper rotor inside the hollow drive shaft of the lower. As in tandem rotor helicopters, each contra-rotating rotor counteracts the torque effect of the other. There is no anti-torque rotor (tail rotor) required. In helicopters using a tail rotor, as much as 30% of engine power is required to drive the tail rotor. With contra-rotating rotors, all of the engine’s power can be used to provide lift and thrust.

A second benefit of a coaxial rotor is that the dissymetry of lift of each rotor is also canceled out. There is no translating tendency while in a hover, and higher forward speeds are possible because the effect of retreating blade stall is reduced. A helicopter with coaxial rotors is more compact than a similar helicopter with tandem rotors. This makes it useful for operations in confined areas or aboard ships.

Nikolai Ilich Kamov was previously known for his autogyro designs, which were first produced in 1929. These included the Tsentralniy Aerogidrodinamicheskiy Institut (Central Aero-Hydrodynamic Institute) TsAGI A-7, which was the first armed autogyro. The Kamov Design Bureau was established 7 October 1948 at Lyubertsy, near Moscow, Russia.

The Kamov-designed TsAGI A-7 autogyro was armed with two 7.62 mm machine guns and could carry four 100 kilogram (220 pound) bombs or six RS-82 rockets under the fuselage.
Ефремов Дмитрий Константинович (Dmitry Konstantinovich Efremov).

Ефремов Дмитрий Константинович (Dmitry Konstantinovich Efremov) was born at Moscow, in the Russian Socialist Federative Soviet Republic, 30 October 1920.

In 1941, Efremov was a cadet at the Bauman Aero Club. He entered the Red Army the same year and was sent to the Saratov Military Aviation Gliding School, at Samara, Kuybyshev, Russia, U.S.S.R., for training as a military glider pilot. During the Great Patriotic War, Efremov flew gliders behind enemy lines. He was next assigned to an  experimental test squadron of of the Airborne Forces, and then as a pilot instructor at the aviation school of the Airborne Forces in Slavogorod, Altai Krai, Russia, U.S.S.R.

Efremov contracted tuberculosis and in January 1948, was discharged from the Red Army. He was employed as a senior technician at TsAGI, and in November of that year went to work as a mechanic at Kamov OKB. He made the first flight of the Kamov Ka-10, and was then sent to test pilot school.

D.K. Efremov with a float-equipped Kamov Ka-10M. (авиару.рф)

Efremov returned to Kamov OKB after completing test pilot school and was soon promoted the the design bureau’s chief pilot. He made the first flights of the Ka-15, Ka-18 and Ka-25 helicopters.

After transitioning to the Antonov An-8 and Ilyushin Il-18 turboprop transports to gain flight experience in larger transport airplanes, Efremov made the first flight of the Kamov Ka-22 gyrodyne prototype, 15 August 1959. On 7 October 1961, with V. V. Gromov, he flew the Ka-22 to a Fédération Aéronautique Internationale (FAI) World Record for Speed Over a 15km/25km Straight Course of 356.3 kilometers per hour (221.4 miles per hour),¹ and on 24 November 1961, set seven world records for payload to altitude.²

On 28 February 1962, Efremov and a flight test crew were conducting a long-distance test flight of a Kamov Ka-22M gyrodyne prototype, 01-01, 63972, from Tashkent, Uzbekistan, to Kzyl-Orda, Kazakhstan. During an intermediate refueling stop in Turkestan, mechanics found a loose or missing retaining nut for the left support of the synchronizing shaft. The problem was repaired and the flight continued.

While on approach to the main runway at the Dzhusaly airport, the gyrodyne suddenly banked left, entered a left spiraling turn, and, in an inverted dive, crashed on the runway. The Ka-22 exploded and burned. Dmitry Konstantinovich Efremov and seven men of his flight test crew were killed.

Kamov Ka-22 turboprop gyrodyne.

TDiA would like to thank regular reader Mike for suggesting this topic.

¹ FAI Record File Number 13226

² FAI Record File Numbers 13221, 13222, 13223, 13224, 13227 and 13228

© 2019, Bryan R. Swopes

13 April 1960

X-15 56-6670 with NB-52A 52-003, 13 April 1960. (NASA)
X-15 56-6670 with NB-52A 52-003, 13 April 1960. (NASA)

13 April 1960: Major Robert M. White, USAF, was the first U.S. Air Force test pilot to fly an X-15.

Carried aloft by a Boeing NB-52A Stratofortress, serial number 52-003, the first of three X-15 hypersonic research aircraft, 56-6670, was airdropped at 0915 above Rosamond Dry Lake. Major White ignited the two Reaction Motors XLR-11 rocket engines and with a burn time of 4 minutes, 13.7 seconds, the X-15 accelerated to Mach 1.9 (1,254 miles per hour/2,018 kilometers per hour) and reached 48,000 feet (14,630 meters). Both numbers were slightly short of the planned Mach 2.0 (1,320 miles per hour/2,124 kilometers per hour) and 50,000 feet (15,240 meters).

After 8 minutes, 52.7 seconds, Bob White and the X-15 touched down at Edwards Air Force Base.

This photograph shows the second North American Aviation X-15A, 56-6671, flaring to land on Rogers Dry Lake, Edwards Air Force Base, California The rear skids are just touching down. The white patches on the aircraft's belly is frost from residual cryogenic propellants remaining in its tanks. (U.S. Air Force)
This photograph shows the second North American Aviation X-15A, 56-6671, flaring to land on Rogers Dry Lake, Edwards Air Force Base, California The rear skids are just touching down. The white patches on the aircraft’s belly are frost from residual cryogenic propellants remaining in its tanks. (U.S. Air Force)

Over the next 32 months Bob White made 16 flights in the X-15. He was the first pilot to fly faster than Mach 4, Mach 5 and Mach 6. He flew it to Mach 6.04, 4,093 miles per hour (6,587  kilometers per hour) and 314,750 feet (95,936 meters), setting a Fédération Aéronautique Internationale (FAI) record for an altitude gain of 82,190 meters (269,652 feet).¹

White was one of six pilots ² awarded astronaut wings for his flights in the X-15.

Major Robert M. White exits the cockpit of an X-15 at Edwards AFB. White is wearing a David Clark Co. MC-2 full-pressure suit. (U.S. Air Force)
Major Robert M. White exits the cockpit of an X-15 at Edwards AFB. White is wearing a David Clark Co. MC-2 full-pressure suit. (U.S. Air Force)

¹ FAI Record File Number 9604

² Joe Henry Engle, William J. (“Pete”) Knight, Robert A. Rushworth, Joseph Albert Walker, Robert Michael White, and Michael James Adams (posthumous)

© 2021, Bryan R. Swopes