Tag Archives: Fighter

19 June 1947

P-80R speed run
Colonel Boyd flies the Lockheed XP-80R over the 3 kilometer course at Muroc Army Air Field, 19 June 1947. (U.S. Air Force)

19 June 1947: At Muroc Army Airfield (now, Edwards Air Force Base) Colonel Albert Boyd, United States Army Air Forces, set a Fédération Aéronautique Internationale (FAI) World Record for Speed Over a 3 Kilometer Course, with an average speed of 1,003.81 kilometers per hour (623.74 miles per hour).¹ This was not just a class record, but an absolute world speed record.

Col. Boyd flew the Lockheed P-80R Shooting Star, serial number 44-85200, four times over the course, twice in each direction. The record speed was the average of the two fastest consecutive runs. As can be seen in the above photograph, these runs were flown at an altitude of approximately 70 feet (21 meters).

Originally a production P-80A-1-LO Shooting Star, 44-85200 had been converted to the XP-80B, a single prototype for the improved P-80B fighter.

Lockheed P-80A-1-LO shooting Star 44-85004, similar to the fighter being test flown by Richard I. Bong, 6 August 1945. (U.S. Air Force)
A very early production Lockheed P-80A-1-LO Shooting Star, 44-85004. (U.S. Air Force)

The P-80A-1-LO was a single-place, single-engine, low-wing monoplane powered by a turbojet engine. It was a day fighter, not equipped for night or all-weather combat operations. The P-80A was 34 feet, 6 inches (10.516 meters) long with a wingspan of 38 feet, 10½ inches (11.849 meters) and overall height of 11 feet, 4 inches (3.454 meters). The fighter had an empty weight of 7,920 pounds (3,592 kilograms) and a gross weight of 11,700 pounds (5,307 kilograms).

The P-80A-1 was powered by an Allison J33-A-9 or -11 turbojet, rated at 3,850 pounds of thrust (17.126 kilonewtons). It had a maximum speed of 558 miles per hour (898 kilometers per hour) at Sea Level and a service ceiling of 45,000 feet (13,716 meters).

The P-80A was armed with six Browning .50-caliber machine guns grouped together in the nose.

Lockheed P-80B-1-LO Shooting Star 45-8554, 1948. (U.S. Air Force)
Lockheed P-80B-1-LO Shooting Star 45-8554, 1948. (U.S. Air Force)

After modification to the XP-80B configuration, 44-85200 was powered by an Allison J33-A-17 with water/alcohol injection. It was rated at 4,000 pounds of thrust (17.793 kilonewtons). Fuel capacity was reduced by 45 gallons (170 liters) to allow for the water/alcohol tank. This was also the first American-built fighter to be equipped with an ejection seat.

The P-80B was heavier than the P-80A, with an empty weight of 8,176 pounds (3,709 kilograms) and gross weight of 12,200 pounds (5,534 kilograms). Visually, the two variants are almost identical.

The XP-80B had a maximum speed of 577 miles per hour (929 kilometers) per hour at 6,000 feet (1,829 meters), a 19 mile per hour (31 kilometers per hour) increase. The service ceiling increased to 45,500 feet (13,868 meters).

This photograph of XP-80R shows the cut-down windscreen an canopy, recontoured leading edges and the NACA-designed engine intakes. (U.S. Air Force)
This photograph of XP-80R shows the cut-down windscreen and canopy, re-contoured wing leading edges and the low-drag, NACA-designed engine intakes. (U.S. Air Force)

44-85200 was next modified to the XP-80R high-speed configuration. The canopy was smaller, the wings were shortened and their leading edges were re-contoured. In its initial configuration, the XP-80R retained the J33-A-17 engine, and incorporated new intakes designed by the National Advisory Committee for Aeronautics (NACA).

The initial performance of the XP-80R was disappointing. The intakes were returned to the standard shape and the J33-A-17 was replaced by a J33-A-35 engine. This improved J33 would be the first turbojet engine to be certified for commercial transport use (Allison Model 400). It was rated at 5,200 pounds of thrust (23.131 kilonewtons) at 11,750 r.p.m. at Sea Level, and 5,400 pounds of thrust (24.020 kilonewtons) with water/methanol injection.

The J33 was a single-spool turbojet with a single-stage centrifugal-flow compressor, 14 combustion chambers, and a single-stage axial-flow turbine. The J33-A-35 had a maximum diameter of 4 feet, 1.2 inches (1.250 meters) and was 8 feet, 8.5 inches (2.654 meters) long. It weighed 1,795 pounds (814 kilograms).

Lockheed P-80R 44-85200 at the National Museum of the United States Air Force
Lockheed P-80R 44-85200 at the National Museum of the United States Air Force

Technicians who modified the XP-80R at Lockheed Plant B-9 Production Flight Test Center, Metropolitan Airport, Van Nuys (just a few miles west of the main plant in Burbank). nicknamed the modified Shooting Star “Racey.”

Lockheed XP-80R 44-85200 is in the collection of the National Museum of the United States Air Force at Wright-Patterson Air Force Base, Ohio.

DAYTON, Ohio -- Lockheed P-80R at the National Museum of the United States Air Force. (U.S. Air Force photo)
Lockheed P-80R 44-85200 at the National Museum of the United States Air Force.

At the time of the speed record flight, Colonel Boyd was chief of the Flight Test Divison at Wright Field, Dayton, Ohio.

Albert Boyd was born 22 November 1906 at Rankin, Tennessee, the first of three sons of Kester S. Boyd a school night watchman, and Mary Eliza Beaver Boyd. In 1924, Boyd graduated from high school in Asheville, North Carolina, then attended Buncombe Junior College in Asheville.

Boyd was one of the most influential officers to have served in the United States Air Force. He entered the U.S. Army Air Corps as an aviation cadet 27 October 1927. After completion of flight training at Maxwell Field, Alabama, Boyd was commissioned as a second lieutenant, Air Corps Reserve, 28 February 1929, and as a second lieutenant, Air Corps, 2 May 1929.

Lieutenant Boyd married Miss Anna Lu Oheim at San Antonio, Texas, 8 September 1933. She was the daughter of Mr. and Mrs. G.F. Oheim of New Braunfels, Texas, (1907–1981).

He was promoted to 1st lieutenant 1 October 1934. On 24 July 1936, Boyd was promoted to the temporary rank of captain. This rank became permanent 2 May 1939. For the next five years, Lieutenant Boyd served as a flight instructor at Maxwell Field, Alabama, an then Brooks, Kelly and Randolph Fields in Texas.

In 1934, 1st Lieutenant Boyd was assigned as engineering and operations officer at Chanute Field, Rantoul, Illinois. He completed the Air Corps technical School and the Engineer Armament Course. On 24 July 1936, Boyd was promoted to the temporary rank of captain. This rank became permanent 2 May 1939. In 1939 he was assigned to the Hawaiian Air Depot as assistant engineering officer, and was promoted to major (temporary), 15 March 1941. He and Mrs. Boyd lived in Honolulu. His Army salary was $3,375 per year. In December 1941, he became the chief engineering officer.

On 5 January 1942, Major Boyd was promoted to lieutenant colonel (temporary) and rated a command pilot. Following the end of World War II, Boyd reverted to his permanent rank of major, 2 May 1946.

In October 1945, Major Boyd was appointed acting chief of the Flight Test Division at Wright Field. He became chief of the division, October 1945, and also flew as an experimental test pilot. Boyd believed that it was not enough for Air Force test pilots to be superior pilots. They needed to be trained engineers and scientists in order to properly evaluate new aircraft. He developed the Air Force Test Pilot School and recommended that flight testing operations be centered at Muroc Field in the high desert of southern California, where vast open spaces and excellent flying conditions were available. He was the first  commander of the Air Force Flight Test Center.

Colonel Albert G. Boyd with XP-80R 44-85200 (U.S. Air Force)
Colonel Albert G. Boyd with the Lockheed XP-80R, 44-85200. (U.S. Air Force)

When Brigadier General Boyd took command of Muroc Air Force Base in September 1949, he recommended that its name be changed to honor the late test pilot, Glen Edwards, who had been killed while testing a Northrop YB-49 near there, 5 June 1948. Since that time the airfield has been known as Edwards Air Force Base.

Major General Albert Boyd, United States Air Force
Major General Albert Boyd, United States Air Force.

In February 1952, General Boyd was assigned as vice commander of the Wright Air Development Center, and commander, June 1952. His final assignment on active duty was as deputy commander of the Air Research and Development Command at Baltimore, Maryland, from 1 August 1955.

From 1947 until he retired in 1957 as a major general, Albert Boyd flew and approved every aircraft in use by the U.S. Air Force. By the time he retired, he had logged over 21,120 flight hours in more than 700 different aircraft. He had been awarded the Legion of Merit, the Distinguished Flying Cross and the Distinguished Service Medal.

Major General Albert Boyd retired from the Air Force 30 October 1957 following 30 years of service. During his military career, he had been awarded the legion of Merit and the Distinguished Flying Cross. General Boyd died  at Saint Augustine, Florida, 18 September 1976 at the age of 69 years. He is buried at the Arlington National Cemetery.

¹ FAI Record File Number 9863

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

3 June 1946

Lieutenant Howard A. Johnson, USAAF, with Lockheed P-80A-1-LO Shooting Star 44-85123. (FAI)
Lieutenant Henry A. Johnson, USAAF, with Lockheed P-80A-1-LO Shooting Star 44-85123. (FAI)

3 June 1946: Lieutenant Henry A. Johnson, U.S. Army Air Force, set a Fédération Aéronautique Internationale (FAI) World Record for Speed Over a Closed Circuit of 1,000 Kilometers Without Payload flying a Lockheed P-80A-1-LO Shooting Star, serial number 44-85123, at Dayton, Ohio. The average speed was 745.08 kilometers per hour (462.97 miles per hour). The elapsed time was 1 hour, 20 minutes, 31 seconds.¹

This airplane had earlier set a transcontinental speed record when Colonel William H. Councill flew it from Daugherty Field, Long Beach, California to La Guardia Field, New York, in 4 hours, 13 minutes, 26 seconds on 26 January 1946. It would go on to win the Thompson Trophy Race J Division, 2 September 1946, when Major Gustav E. Lundquist flew it to an average speed of 515.853 miles per hour (830.185 kilometers per hour) over the 180-kilometer course.

Lockheed P-80A-1-LO 44-85123, photographed 22 June 1946 at the General Electric Air Research Laboratory, Schenectady, New York, by Richard Lockett. (Brian Lockett/Air-and-Space.com)

The Lockheed P-80-1-LO was the United States’ first operational jet fighter. It was a single-seat, single engine airplane, designed by a team of engineers led by Clarence L. (“Kelly”) Johnson. The prototype XP-80A, 44-83020, nicknamed Lulu-Belle, was first flown by test pilot Tony LeVier at Muroc Army Air Field (now known as Edwards AFB) 8 January 1944.

The P-80A was 34 feet, 6 inches (10.516 meters) long with a wingspan of 38 feet, 10.5 inches (37 feet, 7.5 inches with “clipped” wing tips) (11.849 or 11.468 meters) and an overall height of 11 feet, 4 inches (3.454 meters). The wings had 1° incidence with -1° 30° twist, and 3° 50′ dihedral. The leading edges were swept aft 9° 18′ 33″. The total wing area was 237.70 square feet (22.08 square meters). The P-80A weighed 7,920 pounds empty (3,593 kilograms) and had a maximum takeoff weight of 14,000 pounds (6,350 kilograms).

Lockheed P-80A-1-LO Shooting Star 44-85123, World Speed Record Holder. (FAI)

Early production P-80As were powered by either an Allison J33-A-9 or a General Electric J33-GE-11 turbojet engine. The J33 was a licensed version of the Rolls-Royce Derwent. It was a single-shaft turbojet with a 1-stage centrifugal compressor section and a 1-stage axial-flow turbine. The -9 and -11 engines were rated at 3,825 pounds of thrust (17.014 kilonewtons) at 11,500 r.p.m. They were 8 feet, 6.9 inches (2.614 meters) long, 4 feet, 2.5 inches (1.283 meters) in diameter and weighed 1,775 pounds (805 kilograms).

The P-80A-1 had a maximum speed of 510 miles per hour (821 kilometers per hour) at Sea Level, 520 miles per hour (837 kilometers per hour) at 20,000 feet (6,096 meters), and 495 miles per hour (797 kilometers per hour) at 40,000 feet (12,192 meters). The service ceiling was 45,000 feet (13,716 meters).

Several hundred of the early production P-80 Shooting stars had all of their surface seams filled, and the airplanes were primed and painted. Although this process added 60 pounds (27 kilograms) to the empty weight, the decrease in drag allowed a 10 mile per hour (16 kilometers per hour) increase in top speed. The painted surface was difficult to maintain in the field and the process was discontinued.

The P-80A Shooting Star was armed with six Browning AN-M3 .50-caliber  aircraft machine guns mounted in the nose, with 300 rounds of ammunition per gun.

44-85123 is undergoing restoration at Edwards Air Force Base, California.

Lockheed test pilots Anthony W. ("Tony") LeVier and David L. Ferguson stand in front of P-80A 44-85123 and an F-117A Nighthawk at the Lockheed Skunk Works, Palmdale, California, 17 June 1993. (Denny Lombard, Lockheed Martin)
Lockheed test pilots Anthony W. (“Tony”) LeVier and David L. Ferguson stand in front of P-80A 44-85123 and an F-117A Nighthawk at the Lockheed Skunk Works, Palmdale, California, 17 June 1993. (Denny Lombard, Lockheed Martin)

¹ FAI Record File Number 10973

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

1 June 1939

Focke-Wulf Fw 190 V1, D-OPZE, the first prototype. (Focke-Wulf Flugzeugbau AG)
Focke-Wulf Fw 190 V1, W.Nr. 0001, D-OPZE, the first prototype. (Focke-Wulf Flugzeugbau AG)

1 June 1939: At Bremen, Germany, Focke-Wulf Flugzeugbau AG chief test pilot Hans Sander took the first prototype of a new fighter, Fw 190 V1, W.Nr. 0001, registration D-OPZE, for its first flight.

Dipl. Ing. Hans Sander

The Fw 190 was designed as a fast, light-weight fighter with a powerful engine, easy to maintain under field conditions and able to absorb a reasonable amount of combat damage. The landing gear had a wide track which improved ground handling and was an advantage when operating on unimproved airfields. The mechanism used the gear’s own weight to lower it into place. Another interesting feature was to use of pushrods and bearings in place of the common cables and pulleys used to operate the flight controls. This gave a more precise, responsive operation. Also, the recent introduction of vacuum forming allowed a large one-piece “bubble” canopy to be used rather than the acrylic plastic/metal framework which was used in other fighters, such as the Messerschmitt Bf 109.

V-1 near completion.
The prototype Focke-Wulf Fw 190 V1 W.Nr. 0001. (Focke-Wulf Flugzeugbau AG)

Focke-Wulf frequently named its airplanes after birds. The Fw 190 was known as the Würger, or Shrike.

Fw 190 V1 (Versuchsflugzeug 1) was 8.730 meters (28 feet, 7¾ inches) long with a wingspan of 9.500 meters (31 feet, 2 inches). It weighed approximately 3,000 kilograms (6,615 pounds).

Focke-Wulf Fw 190 V1, D-OPZE, the first prototype. (Focke-Wulf Flugzeugbau AG)
Focke-Wulf Fw 190 V1, D-OPZE, the first prototype, during flight. The long landing gear struts were made necessary by the use of a large diameter propeller. (Focke-Wulf Flugzeugbau AG)

D-OPZE was powered by an experimental air-cooled, supercharged 55.4-liter (3,380.4 cubic inch) BMW 139 two-row, 18-cylinder, radial engine which produced 1,529 horsepower. This engine had been developed from the nine-cylinder Pratt & Whitney Hornet (R-1690) which Bayerische Motoren Werke AG (BMW) built under license. (A redesign of the BMW 139 engine resulted in the 14-cylinder BMW 801 which was used in the production Fw 190.)

The propeller was a three-bladed Vereingite Deutsche Metallwerke (VDM) variable-pitch unit with a diameter of 3.460 meters (11 feet, 4¼ inches). It was driven at 54% of engine speed through a gear reduction unit.

To minimize aerodynamic drag, the large radial engine was tightly cowled and a large propeller spinner used. Cooling air entered through an opening at the center of the spinner and a fan between the propeller and the front of the engine circulated air. This was unsatisfactory and was significantly changed with the second prototype.

Focke-Wulf Fw 190 V1 W.Nr. 0001, D-OPZE. (Focke-Wulf Flugzeugbau AG)

After testing by Focke-Wulf at Bremen, Fw 190 V1 was flown to the Luftwaffe test site at Rechlin-Lärz Airfield. Its identification markings were changed to FO+LY. Later, they were changed again, to RM+CA. V1 continued to be used for testing until 29 March 1943.

Fw 190 V1 after the original spinner was replaced. The cooling fan behind the propeller is visible. The prototype is now marked FO+LY. (Focke-Wulf Flugzeugbau AG)
Focke-Wulf Fw 190 V1 W.Nr. 0001 with modified engine cowling. The prototype is now camouflaged and marked with the Luftwaffe Balkenkruz and the swastika of the Deutsches Reich. The identification marks have been changed to  FO+LY. (Focke-Wulf Flugzeugbau AG)

The Fw 190 was the most effective of Germany’s world War II fighters. More than 20,000 were built in 16 variants. The Focke-Wulf factory at Marienburg and the AGO Flugzeugwerke at Oschersleben were frequently attacked by Allied bombers.

A captured Focke-Wulf Fw 190 in flight. (U.S. Air Force)
A captured Focke-Wulf Fw 190 G-3 DN+FP, W.Nr. 160016, in flight near Wright Field, Ohio, 26 May 1944. (U.S. Air Force)

A Focke-Wulf Fw 190 G-3 fighter bomber, W.Nr. 160016, which had been captured in Italy, was flight tested by the U.S. Army Air Force at Wright Field, Ohio, from 25 March to 15 April 1944, flown by Major Gustav Edward Lundquist, U.S. Army Air Force. In a report dated 26 May 1944, it was described as having a length of 29.1 feet (8.87 meters) and wingspan of 34.5 feet (10.52 meters), and was tested with maximum gross weight of 8,535 pounds (3,871 kilograms).

This aircraft was powered by an air-cooled, supercharged and fuel-injected 41.744 liter (2,547.4 cubic inch) BMW 801-D two-row, fourteen-cylinder radial engine which produced 1,750 horsepower at 2,700 r.p.m. with 41.1 inches of manifold pressure (1.39 bar). It could climb at 4,000 feet per minute (20.32 meters per second) and reach 20,000 feet (6,096 meters) in 7.3 minutes. 160016 had a maximum airspeed of 415 miles per hour (668 kilometers per hour) at 22,000 feet (6,706 meters). The service ceiling was 36,100 feet (11,003 meters).

The fighter was described to have performance “definitely weaker than standard AAF fighters at altitudes above 28,000 feet.”  [8,534 meters]

The Fw 190 G-3 was armed with two Waffenfabrik Mauser AG MG151/20 20 mm autocannon with 550 rounds of ammunition.

Focke-Wulf Fw 190 G-3 DN+FP, W.Nr. 160016, in flight near Wright Field, Ohio, May 1946. (U.S. Air Force)

(Two months later, Major Lundquist was in Europe, flying with the 486th Fighter Squadron, 352nd Fighter Group. On 29 July 1944, his North American Aviation P-51D-5-NA Mustang, 44-13395, was shot down by a Messerschmiit Bf 109 G-6 near Merseberg, Germany. Lundquist was captured and remained a Prisoner of War until the end of World War II. He was officially credited with 2 enemy aircraft destroyed. After the war, he returned to Wright Field and flight test. On 2 September 1946, Major Lundquist won the Thompson Trophy Race (J Division) while flying a Lockheed P-80A Shooting Star. Remaining in the Air Force for 29 years, he rose to the rank of brigadier general.)

Focke-Wulf-Fw-190-WNr-50046-in-flight-01
Focke-Wulf Fw 190 G-3 DN+FP, W.Nr. 160016, from above and behind. (U.S. Air Force)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

28 May 1935

Bayerische Flugzeugwerke Bf 109 V1, D-IABI, Werk-Nr. 758, with engine running. (National Air and Space Museum)

28 May 1935: Bayerische Flugzeugwerke Aktiengesellschaft (BFW) test pilot Hans-Dietrich Knoetzsch took the prototype Bf 109 V1 fighter, civil registration D-IABI, on its first flight at Haunstetten, near Augsburg, Germany. The duration of the flight was twenty minutes.

The new fighter was designed by Wilhelm Emil Messerschmitt, Walter Rethel and Robert Lusser. It was a light weight, single-seat, single-engine, low-wing monoplane with retractable landing gear.

BKW Bf 109 V! D-IABI prototype, left profile. (National Air and Space Museum)
BFW Bf 109 V1 D-IABI prototype, left profile. (National Air and Space Museum)

The first prototype, Versuchsflugzeug 1, was 8.884 meters (29.147 feet) long with a wingspan of 9.890 meters (32.448 feet). The empty weight was 1,404 kilograms (3,095 pounds) and the maximum weight was 1,800 kilograms (3,968 pounds).

Because the Junkers Jumo 210 inverted V-12 engines planned for the new fighter were not yet available, a liquid-cooled, supercharged, 1,295.91-cubic-inch-displacement (21.24 liter) Rolls-Royce Kestrel VI single overhead cam (SOHC) 60° V-12 was installed. This British engine had four valves per cylinder and a compression ratio of 6.00:1. It produced 695 horsepower at 2,500 r.p.m., and turned a two-bladed, fixed-pitch Propellerwerk Gustav Schwarz laminated composite propeller through a 0.553:1 gear reduction. The Kestrel was 6 feet, 0.35 inches (1.838 meters) long, 2 feet, 11.00 inches (0.889 meters) high and 2 feet, 0.40 inches (0.620 meters) wide. It weighed 955 pounds (433 kilograms).

This photograph shows teh two-bladed wooden Schwarz propeller installed on D-IAGI. The position of the exhaust ports high on teh engine cowling indicated the use of a Rolls-Royce Kestrel V-12 engine. (National Air and Space Museum)
This photograph shows the two-bladed laminated composite Schwarz propeller installed on D-IAGI. The position of the exhaust ports high on the engine cowling and the large radiator intake indicate the use of the Rolls-Royce Kestrel V-12 engine. (National Air and Space Museum)

V1’s maximum airspeed was 470 kilometers per hour (292 miles per hour) and its maximum altitude was 8,000 meters (26,247 feet).

No armament was installed on the prototype.

The Bf 109 V1 was tested for several months before being sent to the Luftwaffe test center at Rechlin for acceptance trials. The prototype’s landing gear collapsed while landing there.

Bf 109 V1 D-IABI after the landing gear collapsed at Rechlin. (National Air and Space Museum).
Bf 109 V1 D-IABI after the landing gear collapsed at Rechlin. (National Air and Space Museum).

The prototype Bf 109 was revealed to the public when D-IABI flew at the Games of the XI Olympiad (the 1936 Summer Olympics, held at Berlin, Germany).

The Bf 109 (also known as the Me 109, following Willy Messerschmitt’s acquisition of BFW) was produced from 1937 to 1945. Total production was 33,894 aircraft, which amounted to 57% of total fighter production for Germany. Seven plants produced the Bf 109 during World War II.

After the war ended, Czechoslovakia produced a variant until 1948. Another Spanish-built variant remained in production until 1958.

This recently-restored Messerschmitt Bf 109G-4 is a very fine example ofthe World War II German fighter. (© Photoz by Liza. Image courtesy of Liza Eckardt)
This Messerschmitt Bf 109G-4 was recently restored by the Fighter Factory, Virginia Beach, Virginia. It is a very fine example of the classic World War II German fighter. (Image courtesy of Liza Eckardt © Photoz by Liza)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

25 May 1953

George S. Welch with North American YF-100A 52-5754. (North American Aviation, Inc.)

25 May 1953: North American Aviation Chief Test Pilot George S. Welch took the YF-100A Super Sabre, U.S. Air Force serial number 52-5754, for its first flight at Edwards Air Force Base. The airplane reached Mach 1.03.

Development of the Super Sabre began with an effort to increase the speed of the F-86D and F-86E Sabre fighters. The wings had more sweep and the airfoil sections were thinner. A much more powerful engine would be needed to achieve supersonic speed in level flight. As design work on the “Sabre 45” proceeded, the airplane evolved to a completely new design. Initially designated XF-100, continued refinements resulted in the first two aircraft being redesignated YF-100A.

North American Aviation Chief Test Pilot George S. Welch in the cockpit of the YF-100A, 52-5754, at Los Angeles International Airport. (North American Aviation, Inc.)
North American Aviation Chief Test Pilot George S. Welch in the cockpit of YF-100A 52-5754 at Los Angeles International Airport. (North American Aviation, Inc.)

The two YF-100As, 52-5754 and 52-5755, were 47 feet, 11¼ inches (14.611 meters) long with a wingspan of 36 feet, 7 inches (11.151 meters) and height of 16 feet, 3 inches (4.953 meters). The wings were swept to 45° at 25% chord, and had 0° angle of incidence and 0° dihedral. The ailerons were placed inboard on the wings to eliminate their twisting effects at high speed. The airplane had no flaps. The pre-production prototypes weighed 18,135 pounds (8,226 kilograms) empty, and had a gross weight of 24,789 pounds (11,244 kilograms).

The new air superiority fighter was powered by a Pratt & Whitney Turbo Wasp J57-P-7 engine. The J57 was a two-spool axial-flow turbojet which had a 16-stage compressor section (9 low- and 7 high-pressure stages) and a 3-stage turbine (2 high- and 1 low-pressure stages). The J57-P-7 had a Maximum Continuous Power rating of 8,000 pounds of thrust (35.586 kilonewtons) at 5,875 r.p.m., N1, and 9550 r.p.m., N2. The engine’s Military Power rating was 9,700 pounds thrust (43.148 kilonewtons) at 6,275 r.p.m./9,900 r.p.m., for 30 minutes; and 14,800 pounds thrust (65.834 kilonewtons) at 6,275 r.p.m./9,900 r.p.m. with afterburner, limited to five minutes. The engine was 20 feet, 9.7 inches (6.342 meters) long, 3 feet, 3.9 inches (1.014 meters) in diameter, and weighed 5,075 pounds (2,303 kilograms). Later production aircraft used a J57-P-39 engine, which had the same ratings.

Cutaway illustration ofa North American Aviation F-100A Super Sabre. (Boeing)
Cutaway illustration of a North American Aviation F-100A Super Sabre. (Boeing)
North American Aviation YF-100 Super Sabre 52-5754. (U.S. Air Force)
North American Aviation YF-100 Super Sabre 52-5754, 19 May 1953. (North American Aviation, Inc.)
The prototype North American Aviation YF-100A Super Sabre, 52-5754, with the North American F-100 team. Chief Test Pilot George S. Welch is in the center of the front row, seated. (North American Aviation, Inc.)

The YF-100A had a maximum speed of 660 miles per hour (1,062 kilometers per hour) at 43,350 feet (13,213 meters). The service ceiling was 52,600 feet (16,033 meters). Range with internal fuel was 422 miles (679 kilometers).

During testing, 52-5754 reached Mach 1.44 in a dive. On 29 October 1953, Colonel Frank K. Everest set a world speed record of 1,215.298 kilometers per hour (755.151 miles per hour) with 754.¹

In service with the United States Air Force, the Super Sabre’s mission changed from air superiority fighter to fighter bomber. It was used extensively during the Vietnam War. North American Aviation, Inc., built 2,294 single and tandem-seat Super Sabres between 1954 and 1959.

North American Aviation YF-100A Super Sabre 52-5754. (U.S. Air Force)
North American Aviation YF-100A Super Sabre 52-5754 over Edwards Air Force Base, California, 25 May 1953. (North American Aviation, Inc.)
North American Aviation YF-100A Super Sabre 52-5754 lands on the dry lake at Edwards Air Force Base, California. (North American Aviation, Inc.)

George Welch was born George Lewis Schwartz, in Wilmington, Delaware, 10 May 1918. His parents changed his surname to Welch, his mother’s maiden name, so that he would not be effected by the anti-German prejudice that was widespread in America following World War I. He studied mechanical engineering at Purdue, and enlisted in the Army Air Corps in 1939.

North American Aviation YF-100A Super Sabre 52-5754 banks away from a chase plane during a flight test. (U.S. Air Force)

George S. Welch is best remembered as one of the heroes of Pearl Harbor. He was one of only two fighter pilots to get airborne during the Japanese surprise attack on Hawaii, 7 December 1941. Flying a Curtiss P-40B Warhawk, he shot down three Aichi D3A “Val” dive bombers and one Mitsubishi A6M2 Zero fighter. For this action, Lieutenant General H.H. “Hap” Arnold recommended the Medal of Honor, but because Lieutenant Welch had taken off without orders, an officer in his chain of command refused to endorse the nomination. He received the Distinguished Service Cross. During the War, Welch flew the Bell P-39 Airacobra and Lockheed P-38 Lightning on 348 combat missions. He had 16 confirmed aerial victories over Japanese airplanes and rose to the rank of Major.

Suffering from malaria, George Welch was out of combat, and when North American Aviation approached him to test the new P-51H Mustang, General Arnold authorized his resignation. Welch test flew the P-51, FJ-1 Fury, F-86 Sabre and F-100 Super Sabre. He was killed 12 October 1954 when his F-100A Super Sabre came apart in a 7 G pull up from a Mach 1.5 dive.

North American Aviation pre-production prototype YF-100A Super Sabre 52-5754 with drag chute deployed on landing at Edwards Air Force Base, California. (U.S. Air Force)
North American Aviation pre-production prototype YF-100A Super Sabre 52-5754 with drag chute deployed on landing at Edwards Air Force Base, California. The extended pitot boom is used to calibrate instruments early in the flight test program. (U.S. Air Force)
North American Aviation YF-100 Super Sabre 52-5754 with external fuel tanks, parked on the dry lake at Edwards Air Force Base, California. (U.S. Air Force)

¹ FAI Record File Number 8868

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather