Tag Archives: Fighter

4 April 1917

SPAD S.XIII C.1, s/n 16594, built October 1918 by Kellner et ses Fils, Paris (U.S. Air Force)
SPAD S.XIII C.1, s/n 16594, built by Kellner et ses Fils, Paris, October 1918. (U.S. Air Force)
Sous-Lieutenant Rene P.M. Dorme, Escadrille No. 3
Sous-Lieutenant René Pierre Marie Dorme, Escadrille No. 3, Aéronautique Militaire.

4 April 1917: Sous-Lieutenant René Pierre Marie Dorme of the Aéronautique Militaire (French Air Service) made the first flight of the famous World War I fighter, the SPAD S.XIII C.1.

Lieutenant Dorme was an ace with 18 confirmed victories. In the next seven weeks, he shot down another five enemy aircraft.

Designed by Société Pour L’Aviation et ses Dérivés Technical Director Louis Béchéreau and manufactured by SPAD as well as eight other companies, this was an improved and slightly larger version of the earlier SPAD S.VII C.1. It used a more powerful Hispano-Suiza 8Ba engine instead of the S.VII’s 8Aa, with an increase of 50 horsepower. (Later versions used  8Be engines.) Armament was increased from a single .303-caliber Vickers machine guns to two.

The SPAD was faster than other airplanes of the time and it had a good rate of climb. Though a product of France, it was used by both the Royal Flying Corps and the U.S. Army Air Service. In France, the airplane type now considered a “fighter” was called a chasseur (“hunter”). The letter “C-” in the SPAD’s designation reflects this. The “-.1” at the ending indicates a single-place aircraft.

SPAD S.XIII C.1 at Air Service Production Center No. 2, Romorantin Aerodrome, France, 1918. (Rudy Arnold Photographic Collection, Smithsonian Institution National Air and Space Museum, XRA-5380)

The SPAD S.XIII C.1 was a single-seat, single-engine, two-bay biplane constructed of a wooden framework with a doped fabric covering. Sheet metal covered the engine and cockpit.

The S.XIII was 20 feet, 4 inches (6.198 meters) long.¹ The upper and lower wings had equal span and chord. The span was 26 feet, 3¾ inches (8.020 meters) and chord, 4 feet, 7-1/8 inches (1.400 meters). The vertical spacing between the wings was 3 feet, 10½ inches (1.181 meters), and the lower wing was staggered 1¼° behind the upper. Interplane struts and wire bracing were used to reinforce the wings. The wings had no sweep or dihedral. The angle of incidence of the upper wing was 1½° and of the lower, 1°. Only the upper wing was equipped with ailerons. Their span was 7 feet, 3½ inches (2.222 meters), and their chord, 1 foot, 7½ inches (0.495 meters). The total wing area was 227 square feet (21.089 square meters).

The horizontal stabilizer had a span of 10 feet, 2 inches (3.099 meters) with a maximum chord of 1 foot, 8¾ inches (0.527 meters). The height of the vertical fin was 2 feet, 7/8-inch (0.876 meters) and it had a maximum length of 3 feet, 11¼ inches (1.200 meters). The rudder was 3 feet, 10-5/8 inches high (1.184 meters) with a maximum chord of 2 feet, 2 inches (0.660 meters).

The SPAD S.XIII C.1 had fixed landing gear with two pneumatic tires. Rubber cords (bungie cords) were used for shock absorption. The wheel track was 4 feet, 10¾ inches (1.492 meters). At the tail was a fixed skid.

The airplane had an empty weight of 1,464 pounds (664 kilograms), and gross weight 2,036 pounds (924 kilograms).

Initial production SPAD XIIIs were powered by a water-cooled 11.762 liter (717.769-cubic-inch displacement), La Société Hispano-Suiza 8Ba single overhead cam (SOHC) left-hand-tractor 90° V-8 engine. It was equipped with two Zenith down-draft carburetors and had a compression ratio of 5.3:1. The 8Ba was rated at 150 cheval vapeur (148 horsepower) at 1,700 r.p.m., and 200 cheval vapeur (197 horsepower) at 2,300 r.p.m. It drove a two-bladed, fixed-pitch, wooden propeller with a diameter of 2.50 meters (8 feet, 2.43 inches) through a 0.585:1 gear reduction. (The 8Be engine had a 0.75:1 reduction gear ratio and used both 2.50 meter and 2.55 meter (8 feet, 4.40 inches) propellers.) The Hispano-Suiza 8Ba was 1.36 meters (4 feet, 5.5 inches) long, 0.86 meters (2 feet, 9.9 inches) wide and 0.90 meters (2 feet, 11.4 inches) high. It weighed 236 kilograms (520 pounds).

SPAD S.XIII C.I, right profile. (Unattributed)
The SPAD S.XIII C.1 was developed from the earlier SPAD S.VII C.1. This is Capitaine Georges Guynemer’s SPAD S.VII C.1, N° S 254, “Vieux Charles,” at the Musée de l’Armee. The flowers on the landing gear are a tribute the the fighter ace following his death, 11September 1917. Today, this airplane is in the collection of the Musée de l’Air et de l’Espace at Le Bourget Airport.

The airplane had a main fuel tank behind the engine, with a gravity tank located in the upper wing. The total fuel capacity was 183 pounds (83 kilograms), sufficient for 2 hours, 30 minutes endurance at full throttle at 10,000 feet (3,048 meters), including climb. There was also a 4.5 gallon (17 liters) lubricating oil tank.

The SPAD S.XIII had a maximum speed of 135 miles per hour (218 kilometers per hour) at 6,560 feet (2,000 meters) and a service ceiling of 21,815 feet (6,650 meters).

The chasseur was armed with two fixed, water-cooled, .303-caliber (7.7 mm) Vickers Mk.I machine guns with 400 rounds of ammunition per gun, synchronized to fire forward through the propeller arc. Because of the cold temperatures at altitude, the guns’ water jackets were not filled, thereby saving considerable weight.

The SPAD S.XIII was produced by nine manufacturers. 8,472 were built. Only four are still in existence.

Instrument panel of SPAD S.XIII C.1 16439 at NMUSAF. (U.S. Air Force)
Instrument panel of a SPAD S.XIII C.1 at NMUSAF. (U.S. Air Force)

The airplane in the photograph above is SPAD S.XIII C.1, serial number 16594. It was built in October 1918 by Kellner et ses Fils, an automobile manufacturer in Paris, France. It did not see combat, but was shipped to the United States at the end of the War and was stationed at San Diego, California. The airplane was restored by the National Museum of the United States Air Force and is painted in the markings of the airplane flown by Captain Edward V. Rickenbacker, commanding officer of the 94th Aero Squadron, American Expeditionary Forces. It is on display at NMUSAF, Wright-Patterson Air Force Base, Ohio.

First Lieutenant Edward V. Rickenbacker with his SPAD XIII C.1, 94th Aero Squadron, France, 1918. (U.S. Air Force)
First Lieutenant Edward V. Rickenbacker with his SPAD XIII C.1, 94th Aero Squadron, American Expeditionary Forces, France, 1918. (U.S. Air Force)
Captain Arthur Raymond Brooks, U.S. Army signal Corps
Captain Arthur Raymond Brooks, U.S. Army Signal Corps

The airplane in the photograph below is another SPAD S.XIII C.1, serial number 7689, also built by Kellner et ses Fils, in August 1918. It was sent to the 22nd Aero Squadron at Colombey-les-Belles and assigned to Lieutenant Arthur Raymond Brooks. Brooks’ fiancée attended Smith College and he named the SPAD Smith IV in her honor. With this airplane, Lieutenant Brooks shot down six enemy airplanes. Other pilots also flew it to shoot down another five.

After the War came to an end, 7689 was shipped to the United States and used in a Liberty Bond fund-raising tour. In December 1919, the United States Army gave the fighter to the Smithsonian Institution. It was restored at the Paul E. Garber Center, 1984–1986, and remains in the collection of the National Air and Space Museum.

SPAD S.XIII C.1 serial number 7689, Smith IV, after restoration at the Paul E. Garber Center, Smithsonian Institution National Air and Space Museum. (NASM)
SPAD S.XIII C.1 serial number 7689, Smith IV, after restoration at the Paul E. Garber Center, Smithsonian Institution National Air and Space Museum. (NASM)

René Dorme fought 120 aerial engagements, many while flying a SPAD S.VII C.1. He is officially credited with 22 victories, and may have shot down as many as 59 enemy aircraft. His personal airplane was marked with a green Cross of Lorraine. He was a Chevalier de la légion d’honneur, and had been awarded the Médalle Militaire and the Croix de Guerre with 17 Palms. Dorme was killed in action 25 May 1917 when his SPAD VII was shot down by Oberleutnant Heinrich Kroll of Jasta 9 at Fort de la Pompelle near Reims.

Sous-lieutenant René Pierre Marie Dorme, Aéronautique Militaire, Chevalier de la légion d’honneur.

¹ Dimensions, weights, capacities and performance data cited above refer to SPAD S.XIII C.1 serial number 17956 (A.S. 94101), which was tested at McCook Field, Dayton, Ohio (Project Number P-154), 1921.

© 2017 Bryan R. Swopes

3 April 1941

Test pilot Robert C. Chilton with the North American Aviation prototype NA-73X, NX19998. (North American Aviation, Inc.)
Test pilot Robert C. Chilton with the North American Aviation prototype NA-73X, NX19998. (North American Aviation, Inc.)

3 April 1941: North American Aviation test pilot Robert Creed Chilton takes his first flight—a one hour familiarization—in the company’s prototype of a new fighter for the Royal Air Force, the NA-73X, NX19998, at Mines Field. (Mines would later become Los Angeles International Airport, LAX.)

The airplane had first been flown by free-lance test pilot Vance Breese, 26 October 1940,  and he had flown it several times. North American’s Chief Test Pilot, Paul Baird Balfour, on his first flight in NX19998, ran out of fuel and crash landed in a plowed field 150 yards (137 meters) west of the airfield, 20 November 1940. The prototype had flown just 3 hours, 20 minutes.

The NA-73X was repaired and Bob Chilton was assigned to complete the testing program. The airplane would become the legendary P-51 Mustang, and Chilton would continue to conduct the majority of flight testing on its improvements and modifications.

Test pilot Robert C. Chilton stand on the wing of a North American Aviation P-51B Mustang. (North American Aviation)
Test pilot Robert C. Chilton stands on the wing of a North American Aviation P-51B Mustang. (North American Aviation, Inc.)

Robert Creed Chilton was born 6 February 1912 at Eugene, Oregon, the third of five children of Leo Wesley Chilton, a physician, and Edith Gertrude Gray. He attended Boise High School in Idaho, graduating in 1931. Chilton participated in football, track and basketball, and also competed in the state music contest. After high school, Chilton attended the University of Oregon where he was a member of the Sigma Chi fraternity (ΣΧ). He was also a member of the Reserve Officers Training Corps (ROTC).

Bob Chilton enlisted as an Aviation Cadet in the U.S. Army Air Corps, 25 June 1937. He was trained as a fighter pilot at Randolph Field and Kelly Field in Texas, and was commissioned as a Second Lieutenant in 1938. Lieutenant Chilton was assigned to fly the Curtiss P-36 Hawk with the 79th Pursuit Squadron, 20th Pursuit Group, at Barksdale Field, Louisiana. Because of a medical condition, he was released from active duty, 1 April 1939.

At some time prior to 1940, Bob Chilton, married his first wife, Catherine. They lived in Santa Maria, California, where he worked as a pilot at the local airport.

In January 1941, Chilton went to work as a production test pilot for North American Aviation, Inc., Inglewood, California. After just a few months, he was assigned to the NA-73X.

Chilton married his second wife, Betty W. Shoemaker, 15 November 1951.

On 10 April 1952, Bob Chilton returned to active duty with the U.S. Air Force, with the rank of lieutenant colonel. He served as Chief of the Repulic F-84 and F-105 Weapons System Project Office, Air Material Command, at Wright-Patterson Air Force Base, Dayton, Ohio, until 9 March 1957.

From 1958, Chilton was a vice president for Horkey-Moore Associates, an engineering research and development company in Torrance, California, founded by former North American aerodynamacist Edward J. Horkey. In 1961, he followed Horkey to the Space Equipment Corporation, parent company of Thompson Industries and Kerr Products, also located in Torrance. Chilton served as corporate secretary and contracts administrator.

Chilton married his third wife, Wilhelmina E. Redding (Billie E. Johnson) at Los Angeles, 26 July 1964. They divorced in 1972.

In 1965, Bob Chilton returned to North American Aviation as a flight test program manager. He retired in 1977.

Robert Creed Chilton died at Eugene, Oregon, 31 December 1994, at the age of 82 years.

© 2017, Bryan R. Swopes

31 March 1945

Messerschmitt Me 262 A-1 WNr. 111711 (U.S. Air Force photograph)
Messerschmitt Me 262 A-1 WNr. 111711 (U.S. Air Force)

31 March 1945: Messerschmitt Aktiengesellschaft test pilot and technical inspector Hans Fay (1888–1959) defected to the Allies at Frankfurt/Rhein-Main Airfield, Frankfurt, Germany.

He brought with him a brand-new Messerschmitt Me 262 A-1 twin-engine jet fighter.

Fay had been waiting for an opportunity to bring an Me 262 to the Americans, but feared reprisals against his parents. When he learned that the U.S. Army controlled their town, he felt that it was safe to go ahead with his plan.

On 31 March, Fay was ordered to fly one of twenty-two new fighters from the Me 262 assembly factory at Schwäbisch-Hall to a safer location at Neuburg an der Donau, as they were in danger of being captured by advancing Allied forces. His airplane was unpainted other than low visibility Balkenkreuz markings on the wings and fuselage, and standard Luftwaffe markings on the vertical fin. Fay was the fourth to take off, but instead of heading east-southeast toward Neuburg, he flew north-northwest to Frankfurt, arriving there at 1:45 p.m.

Hans Fay’s Messerschmitt Me 262 A-1 at Frankfurt Airfield. (U.S. Air Force)

The Messerchmitt Me 262 Schwalbe was the first production jet fighter. It was a single-place, twin-engine airplane with the engines placed in nacelles under the wings. It was 10.6 meters (34 feet, 9.3 inches) long with a wingspan of 12.51 meters (41 feet, 5.2 inches) and overall height of 3.85 meters (12 feet, 7.6 inches). According to Fay, the fighter’s empty weight was 3,760 kilograms (8,289 pounds) and the maximum gross weight was 7,100 kilograms (15,653 pounds) at engine start.¹

The Me-262 wings had 6° dihedral. The leading edges were swept aft to 20°, while the trailing edges of the inner panels swept forward 8½° to the engine nacelle, then outboard of the engines, aft 5°. The purpose of the sweep was to keep the airplane’s aerodynamic center close to the center of gravity, a technique first applied to the Douglas DC-2. The total wing area was 21.7 square meters (233.6 square feet).

Messerschmitt Me 262A-1 WNr. 111711 at Frankfurt Airfield. (U.S. Air Force)

The Me 262 A-1 was powered by two Junkers Jumo TL 109.004 B-1 turbojet engines. The 004 was an axial-flow turbojet with an 8-stage compressor section, six combustion chambers, and single-stage turbine. The 004 engine case was made of magnesium for light weight, but this made it vulnerable to engine fires. The engine was designed to run on diesel fuel, but could also burn gasoline or, more commonly, a synthetic fuel produced from coal, called J2. The engine was first run in 1940, but was not ready for production until 1944. An estimated 8,000 engines were built. The 004 B-1 idled at 3,800 r.p.m., and produced 1,984 pounds of thrust (8.825 kilonewtons) at 8,700 r.p.m. The engine was 2 feet, 10 inches (0.864 meters) in diameter, 12 feet, 8 inches (3.861 meters) long, and weighed 1,669 pounds (757 kilograms).

24 March 1946: Jumo 004 was tested at the NACA Aircraft Engine research Laboratory, Cleveland, Ohio. (NASA)
24 March 1946: The Jumo 004 was tested at the NACA Aircraft Engine Research Laboratory, Cleveland, Ohio. The axial-flow compressor section is visible. (NASA)

During interrogation, Hans Fay said that for acceptance, the production Me 262 was required to maintain a minimum of 830 kilometers per hour (515 miles per hour) in level flight, and 950 kilometers per hour (590 miles per hour) in a 30° dive. The fighter’s cruise speed was 750 kilometers per hour (466 miles per hour).

A number of factors influenced the Me 262’s maximum range, but Fay estimated that the maximum endurance was 1 hour, 30 minutes. U.S. Air Force testing establish the range as 650 miles (1,046 kilometers) and service ceiling at 38,000 feet (11,582 meters).

Lieutenant Walter J. McAuley, Jr.
Lt. Walter J. McAuley, Jr.

The Me 262 A-1 was armed with four Rheinmetall-Borsig MK 108 30 mm autocannons with a total of 360 rounds of ammunition. (The Me 262 A-2 had just two autocannons with 160 rounds.) It could also be armed with twenty-four  R4M Orkan 55 mm air-to-air rockets. Two bomb racks under the fuselage could each be loaded with a 500 kilogram (1,102 pounds) bomb.

1,430 Me 262s were produced. They entered service during the summer of 1944. Luftwaffe pilots claimed 542 Allied airplanes shot down with the Me 262.

Hans Fay’s Messerschmitt Me 262 A-1, WNr. 111711, was transported to the United States and was tested at Wright Field, Dayton, Ohio.

711 was lost during a test flight, 20 August 1946, when one of its engines caught fire. The test pilot, Lieutenant Walter J. “Mac” McAuley, Jr., U.S. Army Air Corps, safely bailed out. The Me 262 crashed 2 miles (3.2 kilometers) east of Lumberton, Ohio, and was completely destroyed.

Messerschmitt Me 262A-1 Schwalbe WNr. 111711. (U.S. Air Force)
Messerschmitt Me 262A-1 Schwalbe WNr. 111711. (U.S. Air Force)

Walter J. McAuley, Jr.,²  was born 10 March 1917 at Fort Worth, Texas. He was the fourth child of Walter J. McAuley and Lola Mahaffey McAuley. Walter attended Texas A&M College at College Station, Texas. While there, he also worked as a mechanic. He graduated with a bachelor of science degree in 1941.

McAuley had brown hair, blue eyes, was 5 feet, 9 inches (1.75 meters) tall and weighed 160 pounds (75.6 kilograms).

McAuley enlisted as a seaman, second class, United States Naval Reserve, and served from 11 April to 3 December 1941. He transferred to the U.S. Army as a private, Air Corps Enlisted Reserve Corps (A.C.E.R.C.), 2 May 1942. Private McAuley was accepted as an aviation cadet, Air Corps, 18 October 1942.

Aviation Cadet McAuley was commissioned as a second lieutenant, Army of the United States (A.U.S.), 29 July 1943, and placed on active duty. He was promoted to first lieutenant, A.U.S., one year later, 1 August 1944.

Lieutenant McAuley was promoted to captain, Air-Reserve, 30 July 1947. On 10 July 1947, he received a permanent commission as a first lieutenant, Air Corps, United States Army. His date of rank was retroactive to 10 March 1945.

After the establishment of the United States Air Force, Lieutenant McAuley was transferred to the new service. He was number 6,626 on the register of Air Force first lieutenants.

McCauley rose to the rank of lieutenant colonel in the U.S. Air Force. He was released from duty 31 December 1962.

Walter J. McAuley Jr., married Miss Mary Elizabeth Sloss, 8 May 1943. They divorced 25 March 1969. He then married Lillian R. Zwickl, 3 April 1969. They also divorced, 10 September 1971.

Lieutenant Colonel McAuley died 11 March 1985. He was buried at Greenwood Memorial Park, Fort Worth, Texas.

 

Messerschmitt Me 262A-1 WNr. 111711 at Wright Field. (U.S. Air Force)

¹ A technical report from RAE Farnborough gave the empty weight of the Me 262 as 11,120 pounds (5,044 kilograms). Its “all up weight,” less ammunition, was 14,730 pounds (6,681 kilograms).

² Initial only, no middle name

© 2019, Bryan R. Swopes

25 March 1955

John W. Konrad in the cockpit of the prototype Vought XF8U-1 Crusader, Bu. No. 138899. (Vought Heritage)
John W. Konrad in the cockpit of the prototype Vought XF8U-1 Crusader, Bu. No. 138899. (Vought Heritage)

25 March 1955: Chance Vought Aircraft Corporation experimental test pilot John William Konrad took the first prototype XF8U-1 Crusader, Bu. No. 138899, for its first flight at Edwards Air Force Base in the high desert of Southern California.

The new fighter had been transported from the factory at Dallas, Texas, aboard a Douglas C-124C Globemaster II, on 3 March 1955. It was reassembled and all systems were checked. Taxi tests began on 14 March.

During the first flight on 25 March, the Crusader went supersonic in level flight. It was able to maintain supersonic speeds (not only for short periods in a dive) and was the first fighter aircraft to exceed 1,000 miles per hour in level flight (1,609 kilometers per hour).

Chance Vought test pilot John W. Konrad talks with engineers following the first test flight. (Chance Vought Aircraft Corporation photograph via Bill Spidle’s “Voughtworks” http://voughtworks.blogspot.com)

The F8U Crusader has a unique variable-incidence wing which can be raised to increase the angle of attack. This created more lift at low speeds for takeoff and landing aboard aircraft carriers, but allows the fuselage to remain fairly level for better forward visibility.

The test program went so well that the first production airplane, F8U-1 Crusader Bu. No. 140444, made its first flight just over six months after the prototype’s.

Prototype Vought XF8U-1 Crusader during a test flight, 25 March 1955. (Vought)
Prototype Vought XF8U-1 Crusader Bu. No. 138899 during a test flight, 25 March 1955. (Vought Heritage)

The Chance Vought F8U-1 was nearly identical to the prototype XF8U-1. It was a single-place, single-engine swept-wing fighter designed to operate from the United States Navy’s aircraft carriers. The F8U-1 was 54 feet, 2.75 inches (16.529 meters) long with a wingspan of 35 feet, 8 inches (10.871 meters) and height of 15 feet, 9.1 inches (4.803 meters). With wings folded, the airplane’s width was reduced to 22 feet, 6 inches (6.858 meters).

The Crusader’s wing angle of incidence was adjustable in flight. It had a total area of 375 square feet (34.8 square meters). The leading edges were swept aft to 47°, and the outer panels had a 1 foot, 0.7 inch “dog tooth.” The wings had 5° anhedral, while the horizontal stabilator had 5° 25′ dihedral. The stabilator’s leading edges were swept 50°.

Its empty weight was 15,513 pounds (7,037 kilograms) and maximum takeoff weight was 27,500 pounds (12,474 kilograms).

Prototype Chance Vought XF8U-1 Crusader in landing configuration. (Vought Heritage)

Early production aircraft were powered by a Pratt & Whitney J57-P-4 engine. This was a two-spool, axial-flow turbojet engine with a 16-stage compressor and 3-stage turbine. The J57-P-4 had a normal power rating of 8,700 pounds of thrust (38.70 kilonewtons); military power, 10,200 pounds (45.37 kilonewtons), and a maximum rating of 16,000 pounds (71.17 kilonewtons) with afterburner. The engine was 20 feet, 10 inches (6.350 meters) long and 3 feet, 5 inches (1.041 meters) in diameter.

The F8U-1 had a cruising speed of 494 knots (569 miles per hour/915 kilometers per hour). Its maximum speed was 637 knots (733 miles per hour/1,180 kilometers per hour) at Sea Level—0.95 Mach—and 860 knots (990 miles per hour/1,180 kilometers per hour) at 35,000 feet (10,668 meters)—Mach 1.50.  It had a service ceiling of 42,300 feet (12,893 meters) and combat range of 1,280 nautical miles miles (1,473 statute miles/2,371 kilometers).

The F8U Crusader was known as “The Last of the Gunfighters” because it was the last American fighter aircraft to be designed with guns as the primary armament. It carried four Colt Mark 12 20-mm autocannon with 500 rounds of ammunition. It could also carry two AIM-9 Sidewinder infrared-homing air-to-air missiles.

Because of a high accident rate, the Crusader has also been called “The Ensign Killer.”

Vought XF8U-1 Crusader parked on Rogers Dry Lake, Edwards Air Force Base. (Vought)
Vought XF8U-1 Crusader Bu. No. 138899 parked on Rogers Dry Lake, Edwards Air Force Base. (Vought Heritage)

The Vought F8U Crusader was in production from 1955 through 1964 with a total of 1,261 built in both fighter and photo reconnaissance versions.

Vought XF8U-1 Crusader Bu. No. 138899 parked on Rogers Dry Lake, Edwards Air Force Base. (Vought Heritage)

During five years of testing, Bu. No. 138899 made 508 flights. It was donated to the Smithsonian Institution in 1960. The restored prototype is now at The Museum of Flight, Seattle, Washington.

According to information recently discovered by The Museum of Flight, fighter pilot, test pilot and future astronaut John Herschel Glenn, Jr., made his first flight in a Crusader when he flew Bu. No. 138899 on 4 May 1956. According to Glenn’s logbook, he made two flights in the prototype on that date, totaling 2 hours of flight time. Many thanks to Mike Martinez, a docent for the museum for providing this information.

The Vought XF8U-1 has been restored by The Museum of Flight at Paine Field, Stattle, Washington. (The Museum of Flight)
The first of two prototypes, Chance Vought XF8U-1 Crusader, Bu. No. 138899, has been restored by The Museum of Flight at Paine Field, Seattle, Washington. The Crusader’s variable incidence wing is in the raised take-off/landing position. (The Museum of Flight)

John William Konrad was born 25 November 1923 at San Diego, California. He was the second of three children of  William Konrad, a salesman, and Emma Louise Stensrud Konrad.

Konrad became interested in aviation at an early age, learning to fly in a Piper Cub at the age of 15. After graduating from high school, he enlisted as a private in the U.S. Army Air Corps at San Diego, 26 February 1943. Konrad was 5 feet, 3 inches (1.60 meters) tall and weighed 118 pounds (53.5 kilograms). He trained as a pilot and flew Boeing B-17 Flying Fortress heavy bombers with the 305th Bombardment Group (Heavy), stationed at RAF Chelveston, during World War II. He later flew Douglas C-47 Skytrains during the Berlin Airlift.

Konrad married Miss Harriet Marilyn Hastings at Clearwater, Florida, 11 February 1945. They would have two children.

Following the War, Konrad was selected for the first test pilot training class at Wright Field, then was assigned to Muroc Army Airfield (Edwards Air Force Base) in California, where he graduated from the Air Force Experimental Flight Test Pilot School, Class 51-C, 19 May 1952.

Konrad resigned from the Air Force in 1953 and joined the Chance Vought Aircraft Corporation in Dallas, Texas, as a test pilot. In addition the the XF8U-1 Crusader, he also made the first flight of the Ling-Temco-Vought A-7 Corsair II, and the experimental LTV XC-142 tiltwing V/STOL transport in 1964. He was appointed Director Test Operations in 1965. Konrad retired from Vought in 1988 after 25 years with the company.

After retiring, John Konrad continued to fly a Goodyear FG-1D Corsair with Commemorative Air Force.

John William Konrad, Sr., Captain, United States Air Force, died 20 September 2006 at Dallas, Texas. He is buried at the Dallas–Fort Worth National Cemetery.

John William Konrad. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

© 2019, Bryan R. Swopes

14 February 1991

McDonnell Douglas F-15E-47-MC Strike Eagle 89-0487 at Bagram Airfield, Afghanistan. (Photo by Airman 1st Class Ericka Engblom, U.S.Air Force.)
McDonnell Douglas F-15E-47-MC Strike Eagle 89-0487 at Bagram Airfield, Afghanistan. (Photo by Airman 1st Class Ericka Engblom, U.S.Air Force.)

14 February 1991: An unusual incident occurred during Desert Storm, when Captains Tim Bennett and Dan Bakke, United States Air Force, flying the airplane in the above photograph, McDonnell Douglas F-15E-47-MC Strike Eagle, 89-0487, used a 2,000-pound (907.2 kilogram) GBU-10 Paveway II laser-guided bomb to “shoot down” an Iraqi Mil Mi-24 Hind attack helicopter. This airplane is still in service with the Air Force, and on 17 May 2024 logged its 15,000th flight hour.

Captain Bennett (Pilot) and Captain Bakke (Weapon Systems Officer) were leading a two-ship flight on a anti-Scud missile patrol, waiting for a target to be assigned by their Boeing E-3 AWACS controller. 89-0487 was armed with four laser-guided GBU-10 bombs and four AIM-9 Sidewinder heat-seeking air-to-air missiles. Their wingman was carrying twelve Mk. 82 500-pound (227 kilogram) bombs.

The AWACS controller called Bennett’s flight and told them that a Special Forces team on the ground searching for Scud launching sites had been located by Iraqi forces and was in need of help. They headed in from 50 miles (80.5 kilometers) away, descending though 12,000 feet (3,658 meters) of clouds as the went. They came out of the clouds at 2,500 feet (762 meters), 15–20 miles (24– 32 kilometers) from the Special Forces team.

With the Strike Eagle’s infrared targeting pod, they picked up five helicopters and identified them as enemy Mi-24s. It appeared that the helicopters were trying to drive the U.S. soldiers into a waiting Iraqi blocking force.

Iraqi Army Aviation Mil Mi-24 Hind (helis.com)
Iraqi Army Aviation Mil Mi-24 Hind (helis.com)

Their Strike Eagle was inbound at 600 knots (1,111 kilometers per hour) and both the FLIR (infrared) targeting pod and search radar were locked on to the Iraqi helicopters. Dan Bakke aimed the laser targeting designator at the lead helicopter preparing to drop a GBU-10 while Tim Bennett was getting a Sidewinder missile ready to fire. At four miles (6.44 kilometers) they released the GBU-10.

Mission count for the 10,000+ flight hours of F-15E 89-0487. The green star indicates the Iraqi Mi-24 helicopter destroyed 14 February 1991. (U.S. Air Force)

At this time, the enemy helicopter, which had been either on the ground or in a hover, began to accelerate and climb. The Eagle’s radar showed the helicopter’s ground speed at 100 knots. Bakke struggled to keep the laser designator on the fast-moving target. Bennett was about to fire the Sidewinder at the helicopter when the 2,000-pound (907.2 kilogram) bomb hit and detonated. The helicopter ceased to exist. The other four helicopters scattered.

Soon after, additional fighter bombers arrived to defend the U.S. Special Forces team. They were later extracted and were able to confirm the Strike Eagle’s kill.

A Royal Australian Air Force fighter pilot checks a GBU-10 Paveway II 2,000-pound laser-guided bomb on an F-18 Hornet. This is the same type of bomb used by Captains and Bakke to destroy an Iraqi Mil Mi-24 Hind attack helicopter.(RAAF)
A Royal Australian Air Force fighter pilot checks a GBU-10 Paveway II 2,000-pound (907.2 kilogram) laser-guided bomb on an F-18 Hornet. This is the same type of bomb used by Captains Bennett and Bakke to destroy an Iraqi Mil Mi-24 Hind attack helicopter. (RAAF)

The Strike Eagle was begun as a private venture by McDonnell Douglas. Designed to be operated by a pilot and a weapon system officer (WSO), the airplane can carry bombs, missiles and guns for a ground attack role, while maintaining its capability as an air superiority fighter. It’s airframe was a strengthened and its service life doubled to 16,000 flight hours. The Strike Eagle became an Air Force project in March 1981, and went into production as the F-15E. The first production model, 86-0183, made its first flight 11 December 1986.

The prototype McDonnell Douglas F-15E Strike Eagle (modified from F-15B-4-MC 71-0291) is parked on the ramp at the McDonnell Douglas facility at St. Louis. (U.S. Air Force)

The McDonnell Douglas F-15E Strike Eagle is a two-place twin-engine multi-role fighter. It is 63 feet, 9 inches (19.431 meters) long with a wingspan of 42 feet, 9¾ inches (13.049 meters) and height of 18 feet, 5½ inches (5.626 meters). It weighs 31,700 pounds (14,379 kilograms) empty and has a maximum takeoff weight of 81,000 pounds (36,741 kilograms).

The F-15E is powered by two Pratt and Whitney F100-PW-229 turbofan engines which produce 17,800 pounds of thrust (79.178 kilonewtons) each, or 29,100 pounds (129.443 kilonewtons) with afterburner.

The Strike Eagle has a maximum speed of Mach 2.54 (1,676 miles per hour, (2,697 kilometers per hour) at 40,000 feet (12,192 meters) and is capable of sustained speed at Mach 2.3 (1,520 miles per hour, 2,446 kilometers per hour). Its service ceiling is 60,000 feet (18,288 meters). The fighter-bomber has a combat radius of 790 miles (1,271 kilometers) and a maximum ferry range of 2,765 miles (4,450 kilometers).

Though optimized as a fighter-bomber, the F-15E Strike Eagle retains an air-to-air combat capability. The F-15E is armed with one 20mm M61A1 Vulcan 6-barrel rotary cannon with 512 rounds of ammunition, and can carry four AIM-9M Sidewinder heat-seeking missiles and four AIM-7M Sparrow radar-guided missiles, or a combination of Sidewinders, Sparrows and AIM-120 AMRAAM long range missiles. It can carry a maximum load of 24,500 pounds (11,113 kilograms) of bombs and missiles for ground attack.

A McDonnell Douglas F-15E Strike Eagle over Iraq during Operation Northern Watch, 1999. (U.S. Air Force)
A McDonnell Douglas F-15E Strike Eagle over Iraq during Operation Northern Watch, 1999. (U.S. Air Force)

The Mil Mi-24 (NATO reporting name “Hind”) is a large, heavily-armed attack helicopter that can also carry up to eight troops. It is flown by a pilot and a gunner.

It is 57 feet, 4 inches (17.475 meters) long and the five-bladed main rotor has a diameter of 56 feet, 7 inches (17.247 meters). The helicopter has an overall height of 21 feet, 3 inches (6.477 meters). The empty weight is 18,740 pounds (8,378 kilograms) and maximum takeoff weight is 26,500 pounds (12,020 kilograms).

The helicopter is powered by two Isotov TV3-117 turboshaft engines which produce 2,200 horsepower, each. The Mil-24 has a maximum speed of 208 miles per hour (335 kilometers per hour) and a range of 280 miles (451 kilometers). Its service ceiling is 14,750 feet (4,496 meters).

The helicopter is armed with a 12.7 mm Yakushev-Borzov Yak-B four-barreled Gatling gun with 1,470 rounds of ammunition; a twin-barrel GSh-30K 30 mm autocannon with 750 rounds; a twin-barrel GSh-23L 23 mm autocannon with 450 rounds. The Mi-24 can also carry a wide range of bombs, rockets and missiles.

The Mil Mi-24 first flew in 1969 and is still in production. More than 2,300 have been built and they have served the militaries of forty countries.

A Russian-built Mil Mi-24P Hind-F at the U.S. Army Test and Evaluation Center, Threat Support Activity, NAS Fallon, Nevada. (U.S. Army)
A Russian-built Mil Mi-24P Hind-F at the U.S. Army Test and Evaluation Center, Threat Support Activity, NAS Fallon, Nevada. (United States Air Force)

© 2019, Bryan R. Swopes