Tag Archives: Final Flight

11 November 1966, 20:46:33.419 UTC, T minus Zero

Gemini XII lifts off from LC-19 at 2:21:04 p.m., EST, 11 November 1966. (NASA)
Gemini XII lifts off from LC-19 at 3:46:33 p.m., EST, 11 November 1966. (NASA)

11 November 1966: Gemini 12 lifted off from Launch Complex 19 at the Cape Canaveral Air Force Station, Florida, at 3:36.33.419 p.m., Eastern Standard Time. Two NASA Astronauts, Captain James A Lovell, Jr., United States Navy, and Major Edwin E. (“Buzz”) Aldrin, Jr., United States Air Force, were the crew. This was the second space flight for Lovell, who had previously flown on Gemini VII, and would later serve as Command Module Pilot on Apollo 8 and Mission Commander on Apollo 13. It was Aldrin’s first space flight. He would later be the Lunar Module Pilot of Apollo 11, and was the second human to set foot of the surface of the Moon.

The Gemini 12 mission was to rendezvous and docking with an Agena Target Vehicle, which had been launched from Launch Complex 14, 1 hour, 38 minutes, 34.731 seconds earlier by an Atlas Standard Launch Vehicle (SLV-3), and placed in a nearly circular orbit with a perigee of 163 nautical miles (187.6 statute miles/301.9 kilometers) and apogee of 156 nautical miles (179.5 statute miles/288.9 kilometers).

Artist’s concept of Gemini spacecraft, 3 January 1962. (NASA-S-65-893)

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a reentry module and an adapter section. It had an overall length of 19 feet (5.791 meters) and a diameter of 10 feet (3.048 meters) at the base of the adapter section. The reentry module was 11 feet (3.353 meters) long with a diameter of 7.5 feet (2.347 meters). The weight of the Gemini varied from ship to ship, but Spacecraft 12 weighed 8,296.47 pounds (3,763.22 kilograms) at liftoff.

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin Marietta’s Middle River, Maryland plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 63 feet (19.202 meters) long with a diameter of 10 feet (3.048 meters). The second stage was 27 feet (8.230 meters) long, with the same diameter. The 1st stage was powered by an Aerojet Engineering Corporation LR-87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by a hypergolic combination of hydrazine and nitrogen tetroxide. Ignition occurred spontaneously as the two components were combined in the combustion chambers. The LR-87-7 produced 430,000 pounds of thrust (1,912.74 kilonewtons).¹ It was not throttled and could not be shut down and restarted. The 2nd stage used an Aerojet LR-91 engine which produced 100,000 pounds of thrust (444.82 kilonewtons).²

The Gemini/Titan II GLV combination had a total height of 109 feet (33.223 meters) and weighed approximately 340,000 pounds (154,220 kilograms) when fueled.³

Astronaut Buzz Aldrin standing in the open hatch of Gemini XII in Earth orbit. (NASA)

Gemini XII was the tenth and last flight of the Gemini program. The purpose of this mission was to test rendezvous and docking with an orbiting Agena Target Docking Vehicle and to test extravehicular activity (“EVA,” or “space walk”) procedures. Both of these were crucial parts of the upcoming Apollo program and previous problems would have to be resolved before the manned space flight projects could move to the next phase.

Buzz Aldrin had made a special study of EVA factors, and his three “space walks,” totaling 5 hours, 30 minutes, were highly successful. The rendezvous and docking was flown manually because of a computer problem, but was successful. In addition to these primary objectives, a number of scientific experiments were performed by the two astronauts.

Gemini XII is tethered to the Agena TDV, in Earth orbit over the southwest United States and northern Mexico. (NASA)
Gemini XII is tethered to the Agena TDV, in Earth orbit over the southwest United States and northern Mexico. (NASA)

Gemini XII reentered Earth’s atmosphere and splashed down in the Atlantic Ocean, just 3.8 nautical miles (4.4 statute miles/7.0 kilometers) from the planned target point. Lovell and Aldrin were hoisted aboard a Sikorsky SH-3A Sea King helicopter and transported to the primary recovery ship, USS Wasp (CVS-18). The total duration of the flight was 3 days, 22 hours, 34 minutes, 31 seconds.

Gemini XII astronauts Major Edwin E. Aldrin, Jr., USAF, and Captain James A. Lovell, Jr., USN, arrive aboard USS Wasp (CVS-18), 15 November 1966. (NASA)

¹ Post-flight analysis gave the total average thrust of GLV-12’s first stage as 458,905 pounds of thrust (2,041.31 kilonewtons)

² Post-flight analysis gave the total average thrust of GLV-12’s second stage as 99,296 pounds of thrust (441.69 kilonewtons)

³ Gemini XII/Titan II GLV (GLV-12) weighed 345,710 pounds (156,811 kilograms) at Stage I ignition.

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

6 November 1958

Bell X-1E 46-063 on Rogers Dry Lake. (NASA)
Bell X-1E 46-063 on Rogers Dry Lake, 1955. (NASA)

6 November 1958: NASA Research Test Pilot John B. (Jack) McKay made the final flight of the X-1 rocketplane program, which had begun twelve years earlier.

Bell X-1E 46-063 made its 26th and final flight after being dropped from a Boeing B-29 Superfortress over Edwards Air Force Base on a flight to test a new rocket fuel.

John B. McKay, NACA/NASA Research Test Pilot. (NASA)
John B. McKay, NACA/NASA Research Test Pilot. (NASA)

When the aircraft was inspected after the flight, a crack was found in a structural bulkhead. A decision was made to retire the X-1E and the flight test program was ended.

The X-1E had been modified from the third XS-1, 46-063. It used a thinner wing and had an improved fuel system. The most obvious visible difference is the cockpit, which was changed to provide for an ejection seat. Hundreds of sensors were built into the aircraft’s surfaces to measure air pressure and temperature.

The Bell X-1E was 31 feet (9.449 meters) long, with a wingspan of 22 feet, 10 inches (6.960 meters). The rocketplane’s empty weight was 6,850 pounds (3,107 kilograms) and fully loaded, it weighed 14,750 pounds (6,690 kilograms). The rocketplane was powered by a Reaction Motors XLR11-RM-5 rocket engine which produced 6,000 pounds of thrust (26.689 kilonewtons). The engine burned ethyl alcohol and liquid oxygen. The X-1E carried enough propellants for 4 minutes, 45 seconds burn.

The Bell X-1E rocketplane being loaded into a Boeing B-29 Superfortress mothership for another test flight. (NASA)
The Bell X-1E rocketplane being loaded into NACA 800, a Boeing B-29-96-BW Superfortress mothership, 45-21800, for another test flight. (NASA)

The early aircraft, the XS-1 (later redesignated X-1), which U.S. Air Force test pilot Charles E. (“Chuck”) Yeager flew faster than sound on 14 October 1947, were intended to explore flight in the high subsonic and low supersonic range. There were three X-1 rocketplanes. Yeager’s Glamorous Glennis was 46-062. The X-1D (which was destroyed in an accidental explosion after a single glide flight) and the X-1E were built to investigate the effects of frictional aerodynamic heating in the higher supersonic ranges from Mach 1 to Mach 2.

Bell X-1E loaded aboard Boeing B-29 Superfortress, circa 1955. (NASA)
Bell X-1E 46-063 loaded aboard NACA 800, a Boeing B-29-96-BW Superfortress, 45-21800, circa 1955. (NASA)

The X-1E reached its fastest speed with NASA test pilot Joseph Albert Walker, at Mach 2.24 (1,450 miles per hour/2,334 kilometers per hour), 8 October 1957. Walker also flew it to its peak altitude, 70,046 feet (21,350 meters) on 14 May 1958.

NACA test pilot Joseph Albert Walker made 21 of the X-1E's 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)
NACA test pilot Joseph Albert Walker made 21 of the X-1E’s 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)

There were a total of 236 flights made by the X-1, X-1A, X-1B, X-1D and X-1E. The X-1 program was sponsored by the National Advisory Committee on Aeronautics, NACA, which became the National Aeronautics and Space Administration, NASA, on 29 June 1958.

The X-1E is on display in front of the NASA administration building at the Dryden Flight Research Center, Edwards Air Force Base, California.Bell X-1E 46-063 on display at Dryden Flight Research Center© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

9 October 1999

9 October 1999: At a Saturday air show at Edwards Air Force Base, California, NASA Research Pilot Rogers E. Smith and Flight Test Engineer Robert R. Meyer, Jr., flew Lockheed SR-71A-LO 61-7980, NASA 844, on what would be the very last flight of a Blackbird. Although it was scheduled to fly again for the Sunday air show, a serious fuel leak prevented that flight.

61-7980 (Lockheed serial number 2031) was the final SR-71A to be built.

NASA 844 was retired after the final flight and placed in flyable storage, but in 2002, it was placed on static display at the Dryden Flight Research Center,¹ Edwards Air Force Base, California.EC92-02273 

¹ In 2014, DFRC was renamed the NASA Neil A. Armstrong Flight Research Center (AFRC).

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

3 October 1967

Major William J. Knight, United States Air Force, with the North American Aviation X-15A-2, 56-6671. (U.S. Air Force)

3 October 1967: The 188th flight of the X-15 Program was the 53rd for the Number 2 aircraft, 56-6671. It had been extensively modified by North American Aviation to an X-15A-2 configuration following a landing accident which had occurred 9 November 1962. The fuselage was lengthened 28 inches (0.711 meters) to accommodate a liquid hydrogen fuel tank for a scramjet engine that would be added to the ventral fin, a new tank for additional hydrogen peroxide to generate steam for the rocket engine turbo pump, and external propellant tanks to allow the rocketplane to reach higher speeds and altitudes. The entire surface of the X-15 was covered with an ablative coating to protect the metal structure from the extreme heat it would encounter on this flight.

Minor issues delayed the takeoff but finally, after they were corrected, and with Pete Knight in the X-15’s cockpit, it was carried aloft under the right wing of Balls 8, a Boeing NB-52B Stratofortress, 52-008.

At 45,000 feet (13,716 meters) over Mud Lake, Nevada, the X-15 was droppeded at 14:31:50.9 local time. Knight fired the Reaction Motors XLR99-RM-1 rocket engine and began to climb and accelerate. After 60 seconds, the ammonia and liquid oxygen propellants in the external tanks was exhausted, so the the tanks were jettisoned to eliminate their weight and aerodynamic drag.

The X-15A-2 climbed to 102,100 feet (31,120 meters) and Pete Knight leveled off, still accelerating. After 140.7 seconds of engine burn, Knight shut the XLR99 down. He noticed that thrust seemed to decrease gradually and the X-15 continued to accelerate to 6,630 feet per second (2,021 meters per second), or Mach 6.72.

North American Aviation X-15A-2 56-6671 is carried to launch altitude under the right wing of the Boeing NB-52B Stratofortress 52-008. (U.S. Air Force)
North American Aviation X-15A-2 56-6671 is carried to launch altitude under the right wing of the Boeing NB-52B Stratofortress 52-008. The scramjet is attached to the ventral fin. (U.S. Air Force)
North American Aviation X-15A-2 56-6671 immediately after being released from the mothership, Boeing NB-52B Stratofortress 52-008, Balls 8, over Mud Lake, Nevada, 3 October 1967. The steam trail is hydrogen peroxide used to power the rocket engine turbopump. (U.S. Air Force)
North American Aviation X-15A-2 56-6671 immediately after being released from the mothership, Boeing NB-52B Stratofortress 52-008, Balls 8, over Mud Lake, Nevada, 3 October 1967. The steam trail is hydrogen peroxide used to power the rocket engine turbopump. (U.S. Air Force) 
The North American Aviation X-15A-2 56-6671 ignites the XLR99 engine after being released from the mothership, Balls 8, 3 October 1967. (U.S. Air Force)
The X-15A-2’s XLR99-RM-1 rocket engine ignites after release from the mothership, Balls 8, 3 October 1967. (U.S. Air Force) 

Shock waves from the dummy scramjet mounted on the ventral fin impinged on the fin’s leading edge and the lower fuselage, raising surface temperatures to 2,700 °F. (1,482 °C.) The Inconel X structure started to melt and burn through.

Pete Knight entered the high key over Rogers Dry Lake at 55,000 feet (16,764 meters) and Mach 2.2, higher and faster than normal. As he circled to line up for Runway One Eight, drag from the scramjet caused the X-15 to descend faster and this set him up for a perfect approach and landing. Because of heat damage, the scramjet broke loose and fell away from the X-15.

Knight touched down after an 8 minute, 17.0 second flight. His 4,520 mile per hour (7,274 kilometers per hour) maximum speed is a record that still stands.

Firefighters cool down the ventral fin of the North American Aviation X-15A-2 56-6671 after its last landing on Rogers Dry Lake, 3 October 1967.(U.S. Air Force)
Firefighters cool down the ventral fin of the North American Aviation X-15A-2 56-6671 after its final landing on Rogers Dry Lake, 3 October 1967.(U.S. Air Force)

The X-15A-2 suffered considerable damage from this hypersonic flight. It was returned to North American for repairs, but before they were completed, the X-15 Program came to an end. This was 56-6671’s last flight. It was sent to the National Museum of the United States Air Force where it is part of the permanent collection.

In a ceremony at the White House, President Lyndon B. Johnson presented the Harmon International Trophy to Major William J. Knight.

The Harmon International Trophy at the Smithsonian Institution National Air and Space Museum. (NASM)
The Harmon International Trophy at the Smithsonian Institution National Air and Space Museum. (NASM)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

27 September 2008

Sikorsky MH-53M Pave Low IV, 68-8284, prepares for its last combat mission, Iraq, 27 September 2008. (A1C Jason Epley, U.S. Air Force)

27 September 2008: A United States Air Force Sikorsky MH-53M Pave Low IV special operations helicopter, serial number 68-8284, assigned to the 20th Expeditionary Special Operations Squadron, flew its final combat mission before being withdrawn from service and retired after 40 years and 12,066.6 flight hours.

The MH-53M Pave Low IV is a variant of Sikorsky’s S-65 heavy-lift military transport helicopter series. Built by Sikorsky in 1968 as one of 40 HH-53C Super Jolly Green Giants for Combat Search and Rescue (CSAR), 68-8284 has been constantly modernized and upgraded. In the Pave Low IV configuration, it is also used for special operations as well as search and rescue.

The MH-53M is a single main rotor, single tail rotor, twin-engine helicopter. It has a crew of six: 2 pilots, 2 flight engineers and 2 gunners. The Pave Low IV is equipped with terrain-following radar and Forward Looking Infrared (FLIR) for low-level operations in darkness and low visibility.

A Sikorsky HH-53C Super Jolly Green Giant hovers to conduct a hoist rescue of two downed aviators, during the Vietnam War. (U.S. Air Force)
A Sikorsky HH-53C Super Jolly Green Giant hovers to hoist a pararescueman with one downed pilot, while a second waits on the ground, 16 June 1967. The blade tip vortices are visible because of the high humidity. (U.S. Air Force)

The MH-53M fuselage is 67 feet, 2.4 inches (20.483 meters) long, and the helicopter has a maximum length of 91 feet, 11.34 inches (28.025 meters) with rotors turning and the refueling boom extended. The height to the top of the main rotor pylon is 17 feet, 1.68 inches (5.224 meters). The maximum height (rotors turning) is 24 feet, 10.88 inches (7.592 meters).

The articulated 6-blade main rotor has a diameter of 72 feet, 2.7 inches (22.014 meters). The main rotor turns counter-clockwise at 185 r.p.m. (100% Nr), as seen from above. (The advancing blade is on the helicopter’s right.) The main rotor blades are built with titanium spars and have -16° of twist. The semi-articulated four-blade tail rotor has a diameter of 16 feet, 0 inches (4.877 meters) and is positioned on the left side of the tail pylon. It turns clockwise at 792 r.p.m., as seen from the helicopter’s left side. (The advancing blade is below the axis of rotation.) The gap between rotor arcs is just 4.437 inches (11.270 centimeters).

Empty, the MH-53M weighs 32,000 pounds (14,515 kilograms). Its maximum takeoff weight is 46,000 pounds (20,865 kilograms).

Its two General Electric T64-GE-100 axial-flow turboshaft engines have a Normal Continuous Power rating of 3,810 shaft horsepower at 85 °F. (30 °C.), Military Power rating of 4,090 shaft horsepower, and a Maximum Power rating of 4,330 shaft horsepower. The T64-GE-100 is 79 inches (2.007 meters) long, 20 inches (0.508 meters) in diameter and weighs 720 pounds (327 kilograms). Output (100% N2) is 13,600 r.p.m.

Two Sikorsky HH-53C Super Jolly Green Giants of the 39th Aerospace Rescue and Recovery Wing fly in formation over Goose Bay, Canada, 11 June 1978. 68-8284 is the ship closest to the camera, painted gray. (TSgt. Robert C. Leach/U.S. Air Force)
Two Sikorsky HH-53C Super Jolly Green Giants of the 39th Aerospace Rescue and Recovery Wing fly in formation over Goose Bay, Labrador, Canada, 11 June 1978. 68-8284 is the ship closest to the camera, painted gray. (TSgt. Robert C. Leach/U.S. Air Force)

The MH-53M has a maximum speed of 196 miles per hour (315 kilometers per hour) and a service ceiling of 16,000 feet (4877 meters). It carries two 450-gallon (1,703 liter) jettisonable fuel tanks under each sponson.

The MH-53M is armed with two M134 7.62mm miniguns and a GAU-18/A .50 caliber machine gun.

At the time they were retired, the MH-53M was the fastest, heaviest, most powerful helicopter in the United States Air Force inventory.

After leaving Iraq, 68-8284 was transported by C-17 Globemaster III to England. It was loaned to the Royal Air Force Museum Cosford, where it is on display.

Sikorsky MH-53M Pave Low IV 68-8284 leads another Pave Low IV on a night mission in Iraq, 27 September 2008. This would be its last mission after 40 years of service. (U.S. Air Force)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather