Convair XB-58 55-0660 in its original paint scheme. (Unattributed)
11 November 1956: At Fort Worth, Texas, Convair’s Chief Test Pilot, Beryl Arthur Erickson, takes the first prototype XB-58, serial number 55-0660, on its first flight.
“Pilot B.A. Erickson is interviewed by NBC after a flight as part of a B-58 Press Show Demonstration. July 10, 1957″—Code One
The B-58 Hustler was a high-altitude Mach 2 strategic bomber which served with the United States Air Force from 1960 to 1970. It was crewed by a pilot, navigator/bombardier and a defensive systems operator, located in individual cockpits. The aircraft is a delta-winged configuration similar to the Convair F-102A Delta Dagger and F-106 Delta Dart supersonic interceptors.
The Hustler is 96 feet, 10 inches (29.515 meters) long, with a wing span of 56 feet, 10 inches (17.323 meters) and an overall height of 31 feet 5 inches (9.576 meters). The fuselage incorporates the “area rule” which resulted in a “wasp waist” or “Coke bottle” shape for a significant reduction in aerodynamic drag. The airplane’s only control surfaces are two “elevons” and a rudder, and there are no flaps.
The B-58’s delta wing has a total area of 1,542.5 square feet (143.3 square meters) and the leading edges are swept back at a 60° angle. The wing has an angle of incidence of 3° and 2° 14′ dihedral (outboard of Sta. 56.5).
The B-58A had an empty weight of 51,061 pounds (23161 kilograms), or 53,581 pounds (24,304 kilograms) with the MB-1 pod. The maximum takeoff weight was 158,000 pounds (71,668 kilograms).
Convair XB-58 Hustler 55-0660. (U.S. Air Force)
The B-58A was powered by four General Electric J79-GE-5 axial-flow afterburning turbojet engines, suspended under the wings from pylons. This was a single-shaft engine with a 17-stage compressor and 3-stage turbine. It had a Normal Power rating of 9,700 pounds of thrust (43.148 kilonewtons). The Military Power rating was 10,000 pounds (44.482 kilonewtons), and it produced a maximum 15,600 pounds (69.392 kilonewtons) at 7,460 r.p.m., with afterburner. The J79-GE-5 was 16 feet, 10.0 inches (5.131 meters) long and 2 feet, 11.2 inches (0.894 meters) in diameter. It weighed 3,570 pounds (1,619 kilograms).
Convair XB-58 Hustler 55-0660 rotates during a high-speed taxi test. (Code One)
The bomber had a cruise speed of 544 knots (626 miles per hour/1,007 kilometers per hour) and a maximum speed of 1,147 knots (1,320 miles per hour/2,124 kilometers per hour) at 67,000 feet (20,422 meters). The B-58A had a combat radius of 4,225 nautical miles (4,862 statute miles/7,825 kilometers). Its maximum ferry range was 8,416 nautical miles (9,685 statute miles/15,586 kilometers).
Convair XB-58 55-0660 carrying at jettisonable fuel/weapon centerline pod. (U.S. Air Force)
The B-58 weapons load was a combination of Mark 39, B43 or B61 thermonuclear bombs. The weapons could be carried in a jettisonable centerline pod, which also carried fuel. The four of the smaller bombs could be carried on underwing hardpoints. There was a General Electric M61 20 mm rotary cannon mounted in the tail, with 1,200 rounds of ammunition, and controlled by the Defensive Systems Officer.
FAI altitiude record setting Convair B-58A-10-CF 59-2456, showing the bomber’s weapons capability. (U.S. Air Force)
116 were built and they served the Strategic Air Command until January 1970 when they were sent to Davis-Monthan AFB, Tucson, Arizona for long-term storage.
Convair XB-58 55-0660 was transferred to Kelly Air Force Base, Texas, 15 March 1960, for use as a ground instruction airframe. It was scrapped some time later.
Convair XB-58 55-0660 touches down on the runway following a test flight. (Unattributed)
Sikorsky YH-19 49-2012 first flight, Bloomfield, Connecticut, 10 November 1949. (Sikorsky, a Lockheed Martin Company)
10 November 1949: At Bloomfield, Connecticut, Dimitry D. (“Jimmy”) Viner, a nephew of Igor Sikorsky and chief test pilot for the Sikorsky Aircraft Corporation, made the first flight of the prototype Sikorsky S-55 helicopter, serial number 55-001, which the U.S. Air Force had designated YH-19 and assigned serial number 49-2012.
Five YH-19 service test aircraft were built. Two were sent to Korea for evaluation in combat. As a result, the United States Air Force placed an initial order for 50 H-19A Chickasaw helicopters. (It is customary for U.S. Air Force and U.S. Army helicopters to be named after Native American individuals or tribes, though there are exceptions.) This was quickly followed by orders for 264 H-19B helicopters.
Sikorsky YH-19 49-2014 in Korea, circa 1951. (U.S. Air Force)
The United States Navy ordered 118 S-55s which were designated HO4S-1 and HO4S-3. The U.S. Coast Guard bought 30 HO4S-1G and HO4S-3Gs configured for rescue operations. The U.S. Marine Corps purchased 244 HRS-1, HRS-2 and HRS-3 helicopters. The U.S. Army ordered 353 H-19C and H-19D Chickasaw utility transports. The remaining 216 Sikorsky-built helicopters were S-55, S-55C and S-55D commercial models.
Cutaway illustration of the Sikorsky S-55/H-19/HO4S/HRS. Note the rearward-facing, angled placement of the radial engine. (Sikorsky Historical Archives)
The S-55 was flown by two pilots in a cockpit placed above the passenger/cargo compartment. The most significant design feature was moving the engine from directly under the main rotor mast to a position at the front of the helicopter. Installed at an angle, the engine turned a drive shaft to the main transmission. The engine placement provided space for a large passenger/cargo compartment. The aircraft was constructed primarily of aluminum and magnesium, with all-metal main and tail rotor blades.
The main rotor consisted of three fully-articulated blades built of hollow aluminum spars, with aluminum ribs. Spaces within the blade were filled with an aluminum honeycomb. The blades were covered with aluminum sheet. The hollow spars were filled with nitrogen pressurized to 10 p.s.i. An indicator at the blade root would change color if nitrogen was released, giving pilots and mechanics an indication that the spar had developed a crack or was otherwise compromised. The main rotor turned counter-clockwise as seen from above. (The advancing blade is on the helicopter’s right.) Flapping hinges were offset from the main rotor axis, giving greater control response and effectiveness. The tail rotor was mounted on the helicopter’s left side in a pusher configuration. It turned clockwise as seen from the helicopter’s left.
The helicopter’s fuselage was 42 feet, 2 inches (12.852 meters). The main rotor had a diameter of 53 feet, 0 inches (16.154 meters) and tail rotor diameter was 8 feet, 8 inches (2.642 meters), giving the helicopter an overall length with all blades turning of 62 feet, 2 inches (18.948 meters). It was 13 feet, 4 inches (4.064 meters) high. The landing gear tread was 11 feet (3.353 meters). The S-55 had an empty weight of 4,785 pounds (2,173 kilograms) and maximum takeoff weight of 7,200 pounds (3,271 kilograms). Fuel capacity was 185 gallons (698 liters).
The YH-19 was powered by an air-cooled, supercharged 1,343.804-cubic-inch-displacement (22.021 liter) Pratt & Whitney R-1340-57 (Wasp S1H2) 9-cylinder radial engine mounted at a 35° angle in the fuselage forward of the crew compartment. This was a direct-drive engine which had a Normal Power rating of 550 horsepower at 2,200 r.p.m. to 8,000 feet (2,438 meters), and 600 horsepower at 2,250 r.p.m. for Take Off.
Later production S-55 commercial and H-19/HO4S and HRS military helicopters used an air-cooled, supercharged 1,301.868-cubic-inch (21.334 liter) Wright Aeronautical Division 871C7BA1 Cyclone 7 (R-1300-3) 7-cylinder radial engine with a compression ratio of 6.2:1. The R-1300-3 was also a direct-drive engine, but was rated at 700 horsepower at 2,400 r.p.m., Normal Power, and 800 horsepower at 2,600 r.p.m. for Take-Off. Both engines incorporated a large cooling fan to circulate air around the cylinders. The R-1300-3 was 49.68 inches (1.261 meters) long, 50.45 inches (1.281 meters) in diameter, and weighed 1,080 pounds (490 kilograms).
Sikorsky Aircraft Corps. YH-19 49-2012 (c/n 55-001) shown with engine “clam shell” doors open. This allowed excellent access to the engine for maintenance. (Sikorsky Historical Archives)
The S-55 had a maximum speed of 95 knots (109 miles per hour, 176 kilometers per hour) at Sea Level. The helicopter’s hover ceiling in ground effect (HIGE) was 7,875 feet (2,400 meters) and out of ground effect (HOGE) is 4,430 feet (1,350 meters). The service ceiling was 11,400 feet (3,475 meters) and range was 405 miles (652 kilometers).
Sikorsky Aircraft Corporation built 1,281 S-55-series helicopters. Another 477 were built under license by Westland Aircraft Ltd., Société Nationale des Constructions Aéronautiques du Sud-Est (SNCASE) and Mitsubishi Heavy Industries.
49-1012 is in the collection of the Smithsonian Institution National Air and Space Museum.
The first of five YH-19 service test helicopters, 49-2012, is on display at the Smithsonian Institution National Air and Space Museum. (NASM)Dimitry D. Viner, circa 1931
Дмитро Дмитрович Вінер (Dimitry Dimitry Viner) was born in Kiev, Ukraine, Imperial Russia, 2 October 1908. He was the son of Dimitry Nicholas Weiner and Helen Ivan Sikorsky Weiner, a teacher, and the sister of Igor Ivanovich Sikorsky.
At the age of 15 years, Viner, along with his mother and younger sister, Galina, sailed from Libau, Latvia, aboard the Baltic-American Line passenger steamer S.S. Latvia, arriving at New York City, 23 February 1923.
“Jimmy” Viner quickly went to work for the Sikorsky Aero Engineering Company, founded by his uncle, Igor Sikorsky.
Dimitry Viner became a naturalized United States citizen on 27 March 1931.
Viner married Miss Irene Regina Burnett. The had a son, Nicholas A. Viner.
A Sikorsky YR-5A flown by Jimmy Viner with Captain Jack Beighle, hoists a crewman from Texaco Barge No. 397, aground on Penfield Reef, 29 November 1945. (Sikorsky Historical Archive)
On 29 November 1945, Jimmy Viner and Captain Jackson E. Beighle, U.S. Army, flew a Sikorsky YR-5A to rescue two seamen from an oil barge which was breaking up in a storm off of Fairfield, Connecticut. This was the first time that a hoist had been used in an actual rescue at sea.
Jimmy Viner made the first flight of the Sikorsky S-51 prototype on 16 February 1946, and in 1947, he became the first pilot to log more than 1,000 flight hours in helicopters.
Dimitry Dimitry Viner died at Stratford, Connecticut, 14 June 1998, at the age of 89 years.
Dimitry D. (“Jimmy”) Viner with a Sikorsky S-51, the civil version of the R-5. (Sikorsky Historical Archive)
Boeing XC-97 43-27470, the first of three Model 367 prototypes. (San Diego Air and Space Museum Archive)
9 November 1944: Boeing’s senior test pilot, Albert Elliott Merrill, and co-pilot John Bernard Fornasero make the first flight of the Boeing Model 367 prototype, XC-97 43-27470.
The airplane was a prototype for a very long range military transport. It used the wings, engines and tail of the B-29 Superfortress heavy bomber.
Boeing XC-97 three-view illustration with dimensions. (Warbird Information Exchange)
The three XC-97 prototypes were 110 feet, 4 inches (33.630 meters) long with a wingspan of 141 feet, 2.76 inches (43.0469 meters) and overall height of 33 feet, 2.8 inches (10.130 meters).
The production C-97A first flew in 1949. It used the more powerfull engines and taller vertical fin of the B-50 Superfortress. The transport had a flight crew of five and could carry 134 troops or 83 litters. The Stratofreighter’s empty weight was 76,143 pounds (34,538 kilograms) and maximum takeoff weight of 175,000 pounds (79,379 kilograms). The maximum cargo capacity was 67,080 pounds (30,427 kilograms).
The KC-97A had a maximum speed of 334 knots (384 miles per hour, or 619 kilometers per hour) at 26,000 feet (7,925 meters). Its ceiling was 34,500 feet (10,516 meters) and the airplane’s combat range was 1,661 nautical miles (1,911 statute miles/3,076 kilometers).
Boeing built 888 C-97 Stratofreighters and KC-97 Stratotankers between 1947 and 1958. The type was finally retired from the U.S. Air Force in 1978. Another 56 Model 377 Stratocruiser civil transports were produced.
Test pilot George Bulman in the cockpit of the prototype Hawker Monoplane F.36/34, K5083.
6 November 1935: The prototype Hawker Monoplane F.36/34, K5083, first flew at the Brooklands Aerodrome, Weybridge, Surrey, with Hawker’s Chief Test Pilot, Flight Lieutenant Paul Ward Spencer (“George”) Bulman, M.C., A.F.C., Royal Air Force Reserve,¹ in the cockpit. The airplane would be named “Hurricane” and become one of the most successful fighter aircraft of World War II.
Designed by Sydney Camm to meet a Royal Air Force Specification for a high speed monoplane interceptor, the airplane was developed around the Rolls-Royce PV-12 engine.
Sir Sydney Camm, C.B.E., F.R.Ae.S. (1893–1966)
The Hurricane was built in the traditional means of a light but strong framework covered by doped linen fabric. Rather than wood, however, the Hurricane’s framework used high strength steel tubing for the aft fuselage. A girder structure covered in sheet metal made up the forward fuselage. A primary consideration of the fighter’s designer was to provide good visibility for the pilot. The cockpit sits high in the fuselage and gives the airplane its characteristic hump back profile. The cockpit was enclosed by a sliding canopy. The landing gear was retractable.
The Rolls-Royce PV-12 (“PV” stood for Private Venture) was a developmental liquid-cooled 1,649-cubic-inch-displacement (27.022 liter) 60° V-12 that would become the legendary Merlin aircraft engine. The PV-12 first ran in 1933 and initially produced 700 horsepower.
The engine was progressively improved and by the time the Hurricane prototype first flew, it was equipped with a supercharged Rolls-Royce Merlin C, Air Ministry serial number 111144. The Merlin C had a Normal Power rating of 1,029 horsepower at 2,600 r.p.m, at an altitude of 11,000 feet (3,353 meters), with +6 pounds per square inch boost. The V-12 engine turned a Watts two-bladed fixed-pitch wooden propeller through a gear reduction drive (possibly 0.420:1).
An Aeroplane and Armament Experimental Establishment (A&AEE) test pilot, Flight Sergeant Samuel (“Sammy”) Wroath (366485), flew K5083 at the Martlesham Heath in early 1936. He wrote, “The aircraft is simple to fly and has no apparent vices.”
In early flight testing, K5083 had a maximum speed of 253 miles per hour (407 kilometers per hour) at Sea Level, an reached 315 miles per hour (507 kilometers per hour) at 16,200 feet (4,938 meters), with the Merlin turning 2,960 r.p.m., with +5.7 pounds of boost (0.39 Bar). The speed exceeded the RAF’s requirement by 5 miles per hour (8 kilometers per hour).
The prototype was able to take off in as little as 795 feet (242 meters) and to climb to 15,000 feet (4,572 meters) in just 5 minutes, 42 seconds. It reached 20,000 feet (6,096 meters) in 8 minutes, 24 seconds. The peak altitude reached was 30,000 feet (9,144 meters). The prototype’s estimated service ceiling was 34,500 feet (10,516 meters)and the estimated absolute ceiling was 35,400 feet (10,790 meters).
In May 1939 Hawker Monoplane F.36/34 K5083 was classified as a ground instruction airframe, with serial number 1112M. Reportedly, it remained in airworthy condition until 1942. Its status after that is not known.
Hawker Monoplane F.36/34 K5083 with “alighting gear” extended. (World War Photos)
The Hawker Hurricane Mk.I was ordered into production in the summer of 1936. The first production airplane, L1547, flew on 12 October 1937. The Hurricane Mk. I retained the wooden fixed-pitch propeller and fabric-covered wings of the prototype, though this would change with subsequent models.
The first production Hawker Hurricane Mk.I, L1547, circa October 1937. This airplane, assigned to No. 312 Squadron, was lost 10 October 1940, when it caught fire during a training flight near RAF Speke. The pilot, Sergeant Otto Hanzliĉek, parachuted from the airplane, but he landed in the Mersey River and drowned.
The Hurricane Mk.I was 31 feet, 5 inches (9.576 meters) long with a wingspan of 40 feet, 0 inches (12.192 meters), and overall height of 13 feet, 3 inches (4.039 meters) in three-point attitude. The wings had a total area of 257.6 square feet (23.9 square meters). Their angle of incidence was 2° 0′, and the outer wing panels had 3° 30′ dihedral. The leading edges were swept aft 5° 6′. The empty weight of the Hurricane I was 5,234 pounds (2,374 kilograms) and maximum gross weight was 6,793 pounds (3,081 kilograms).
The Hurricane Mk.I was powered by a Rolls-Royce Merlin Mk.II or Mk.III. The Mk.III was rated at 1,030 horsepower at 3,000 r.p.m. at 16,250 feet (4,953 meters). The engine turned a propeller with a diameter of 11 feet, 3 inches (3.429 meters).
Hawker Monoplane F.36/34 K5083 (BAE Systems)
The Mk.I’s best economical cruising speed was 212 miles per hour (341 kilometers per hour) at 20,000 feet (6,096 meters), and its maximum speed was 316 miles per hour (509 kilometers per hour) at 17,750 feet (5,410 meters) and 6,440 pounds (2,921 kilograms). The airplane’s range was 585 miles (941 kilometers). The Hurricane Mk.I could climb to 20,000 feet in 9.7 minutes.
The fighter was armed with eight Browning .303 Mark II machine guns mounted in the wings, with 334 rounds of ammunition per gun.
“No. 111 Squadron was responsible for the introduction of the Hurricane to the RAF with the first aircraft arriving at Northolt in December 1937, in advance of the official acceptance date of 1 January 1938. The CO, S/Ldr John Gillan, flew L1555 in record time from Edinburgh to Northolt on 10 February 1938.” (Daily Mail)
Peter Townsend described the Hurricane in his book, Duel of Eagles:
“. . . By December [1938] we had our full initial equipment of sixteen aircraft. The Fury had been a delightful play-thing; the Hurricane was a thoroughly war-like machine, rock solid as a platform for eight Browning machine-guns, highly manoeuverable despite its large proportions and with an excellent view from the cockpit. The Hurricane lacked the speed and glamour of the Spitfire and was slower than the Me. 109, whose pilots were to develop contempt for it and a snobbish preference for being shot down by Spitfires. But figures were to prove that during the Battle of Britain, machine for machine, the Hurricane would acquit itself every bit as well as the Spitfire and in the aggregate (there were more than three Hurricanes to two Spitfires) do greater damage among the Luftwaffe.”
—Duel of Eagles, Group Captain Peter Wooldridge Townsend, CVO, DSO, DFC and Bar, RAF. Cassell Publishers Limited, London, Chapter 13 at Pages 153–154.
Hawker Hurricanes at Brooklands. (BAE Systems)
At the beginning of World War II, 497 Hurricanes had been delivered to the Royal Air Force, enough to equip 18 squadrons. During the Battle of Britain, the Hurricane accounted for 55% of all enemy aircraft destroyed. Continuously upgraded throughout the war, it remained in production until July 1944. The final Hurrican, a Mk.IIc, PZ865, was flown for the first time by P.W.S. Bulman on 24 July 1944. A total of 14,503 were built by Hawker Aircraft Ltd., Gloster Aircraft Company, Austin Motor Company, and the Canadian Car and Foundry Company.
The final Hawker Hurricane, a Mk.IIc, PZ865, “The Last of the Many!” Chief Test Pilot P.W.S. “George” Bulman also took this fighter for its first flight, 22 July 1944. (BAE Systems)P.W.S. Bulman with PZ865, July 1944.Group Captain “George” Bulman flying the final Hawker Hurricane, PZ865, a Mk.IIc.
¹ Later, Group Captain Paul Ward Spencer Bulman, C.B.E., M.C., A.F.C. and Bar.
2 November 1962: Lockheed test pilot Donald Riley Segner takes the Lockheed XH-51A (Model 186), Bu. No. 151262 (s/n 186-1001), for its first flight.
The XH-51A was a response to the U.S. Army and U.S. Navy request for an experimental helicopter to explore rigid rotor technology. A rigid rotor relies of the flexibility of the rotor system to accomplish the functions of pitch, lead-lag and blade flapping that are allowed by hinges in an articulated rotor system. Two XH-51As were built and both were assigned U.S. Navy Bureau of Aeronautics serial numbers (“Bu. No.”). Tests were conducted at Lockheed’s facility at the Oxnard Municipal Airport (OXR), located on the Ventura County coastline of southern California. Later tests took place at the Naval Air Test Center, NAS Patuxent River, Maryland.
Lockheed XH-51 Bu. No. 151262 in flight over Ventura County, California. Lockheed photo # LN 7520. (Lockheed/Vertical Flight Society)
The XH-51A was a two-place, single engine, rigid-rotor light helicopter with retractable skid landing gear. It had an overall length of 42.08 feet (12.826 meters) with all blades turning, and height of 8 feet, 2.5 inches (2.502 meters). The helicopter’s design gross weight was 3,905 pounds (2,041 kilograms).
The helicopter’s main rotor mast tilted 6° forward. The three-blade main rotor diameter was 35 feet, 0 inches (10.668 meters). The blades had a chord of 1 foot, 1.5 inches (0.029 meters) and incorporated 5° of negative twist. There was no taper. They used a NACA 0012 airfoil, which was very common with helicopters at the time. Each main rotor blade weighed 86 pounds (39.0 kilograms). As is common with American helicopters, the rotor turned counter-clockwise as seen from above. (The advancing blade is on the right.) The main rotor turned at 355 r.p.m. A stabilizing “gyro” with a diameter of 6 feet, 5 inches (1.956 meters) was placed above the main rotor. A two-blade tail rotor with a diameter of 6 feet, 0 inches (1.829 meters) was located at the top of a vertical fin/pylon, turning clockwise, as seen from the helicopter’s left side. (The advancing blade is below the axis of rotation.) The tail rotor’s chord was 8.5 inches (0.216 meters). These blades also used the NACA 0012 airfoil, with 4.35° negative twist and no taper. The tail rotor turned at 2,085 r.p.m.
Lockheed XH-51A Bu. No. 151262 (Vertipedia)
The XH-51A was powered by a Pratt & Whitney PT6B turboshaft engine, rated at 450 shaft horsepower at Sea Level (30 minute limit), and 500 shaft horsepower at Sea Level for takeoff (5 minute limit).
A test pilot demonstrates the hovering flight stability of the Lockheed XH-51A with his hands off of the flight controls. (Lockheed)
The maximum speed of the XH-51A attained during the flight test program was 150 knots (173 miles per hour/278 kilometers per hour) in level flight at Sea Level, and 113 knots (209 kilometers per hour) at 7,900 feet (2,408 meters) density altitude. In both cases, engine power was the limiting factor.
A four-blade rigid main rotor was also tested on the XH-51A. This increased the empty weight of the helicopter by 139 pounds (63 kilograms). Power required to hover out of ground effect (HOGE) went up by 30 s.h.p. (Various sources state that excessive vibrations caused Lockheed to switch to a four-blade main rotor. The four-blade design was pre-planned, however. The four-blade system resulted in “excessive structural loads in the main rotor system and excessive cabin vibration levels.” ¹)
XH-51A Bu. No. 151263 was modified as a compound helicopter with an auxiliary wing and a Pratt & Whitney J60-P-2 turbojet installed in a North American Aviation T-39A Sabreliner engine nacelle on the helicopter’s left side. The vertical fin area was increased. Main rotor r.p.m. decreased to 327 r.p.m. In this configuration, it reached 210 knots (242 miles per hour/389 kilometers per hour) in level flight. Engineers predicted that it should be capable of 230 knots.
Both Lockheed XH-51As are at the U.S. Army Aviation Museum, Fort Rucker, Alabama.
Donald Riley Segner with the compound XH-51A. (Test & Research Pilots, Flight Test Engineers)Donald R. Segner (1943 Ceralbus)
Donald Riley Segner was born 14 December 1925 in Los Angeles County, California. He was the third of four children of Oscar W. Segner, an electrician, and Sue Brown Segner, who had been born in Czechoslovakia of Hungarian parents.
Don Segner attended Burbank High School, Burbank, California, graduating with the class of 1943.
Donald R. Segner enlisted in the United States Marine Corps, 20 February 1943. He completed primary flight training at NAS Ottumwa, located northwest of Ottumwa, Iowa, in October 1945. He then moved on to advanced training at the Naval Flight Training Center, NAS Norman, at Norman, Oklahoma. He was awarded the gold wings of a Naval Aviator and commissioned a second lieutenant, United States Marine Corps Reserve, 1 September 1946.
Second Lieutenant Segner was promoted to the rank of first lieutenant, 5 June 1949, and to captain, 25 June 1952.
Captain Segner married Miss Alice Esther Stansfield at Nellis Air Force Base, Nevada, August 1952. They would have three children. Mrs. Segner passed away in 2014.
A Grumman F9F-2 Panther, Bu. No. 123440, assigned to VMF-311. This airplane crashed 16 February 1952 while attempting to land aboard USS Phillppine Sea (CVA-47). Its pilot was killed.
Donald Segner flew 86 combat missions during the Korean War, flying the Grumman F9F-2 Panther with Marine Fighter Squadron 311 (VMF-311). He was awarded the Distinguished Flying Cross for heroism and extraordinary achievement while participating in aerial flight, in action against enemy forces in Korea. He was also awarded the Air Medal with two gold stars (three awards).
On 21 January 1953, while flying a Goodyear Aircraft Corporation FG-1D Corsair, Bu. No. 67063, assigned to Marine Fighter Training Squadron 10 (VMFT-10) at MCAS El Toro, Captain Segner was involved in a Class C accident over MCAS El Centro.
In 1956, Captain Segner was assigned as a test pilot at NAS Patuxent River (“Pax River”), Maryland.
Captain Segner was promoted to the rank of major, 1 July 1957. In 1960 he was the first Naval Aviator to fly a tilt wing vertical takeoff and landing (VTOL) aircraft, the Vertol VZ-2, USAF serial number 56-6943.
Vertol VZ-2 (Model 76), 56-6943. Smithsonian Institution National Air and Space Museum, NASM A19650279000_DSH01)
While remaining in the Marine Corps Reserve, Segner began working as a test pilot at Lockheed in 1962. In 1964, he was assigned to Marine Medium helicopter Squadron 764 at NAS Los Alamitos (SLI), California.
Major Segner was promoted to lieutenant colonel, 1 August 1964. In December 1964, while flying a Sikorsky UH-34D Seahorse, Major Segner flew the 95,000th Ground Controlled Approach (GCA) and landing at Los Alamitos. In 1965, he served as executive officer of Marine Wing Support Group 47 (MWSG-47) at Los Alamitos, California. He retired from the Marine Corps in January 1966.
On 23 September 1966, Segner was elected president of the Society of Experimental Test Pilots (SETP)
On 21 September 1967, Segner made the first flight of the Lockheed AH-56A Cheyenne compound attack helicopter.
1972 American Institute of Aeronautics and Astronautics (AIAA) Octave Chanute Award, for advancing the art, science or technology of aeronautics. That same year he received the Iven C. Kincheloe Award of the Society of Experimental Test Pilots for outstanding professional accomplishment in the conduct of flight testing
After retiring from Lockheed in 1980, President Ronald Reagan appointed Don Segner as Associate Administrator of the Federal Aviation Administration.
Donald Riley Segner died 10 May 2019 at the age of 93 years. His remains were interred at Pacific View Memorial Park, Corona del Mar, California.
¹ “Exploration of High-Speed Flight with the XH-51A Rigid Rotor Helicopter,” by William K. Foulke, U.S. Army Aviation Material Laboratories (USAAML Technical Report 65-25), Page 88