Tag Archives: First Flight

6 April 1939

The Bell XP-39 prototype in the original turbosupercharged configuration. The intercooler and waste gates created significant aerodynamic drag. (Bell Aircraft Corporation)
The Bell XP-39 prototype, 38-326, in the original turbosupercharged configuration. The intercooler and waste gates created significant aerodynamic drag. (U.S. Air Force)

6 April 1939: ¹ After being shipped by truck from the Bell Aircraft Company factory at Buffalo, New York, the XP-39 prototype, 38-326, (Bell Model 4) made its first flight at Wright Field, Ohio, with test pilot James Taylor in the cockpit. During the test flight, Taylor flew the XP-39 to 390 miles per hour (628 kilometers per hour) at 20,000 feet (6,096 meters). The service ceiling was 32,000 feet (9,754 meters).

The XP-39 was designed by Bell’s chief engineer, Robert J. Woods, to meet a U.S. Army Air Corps requirement, X-609, issued in March 1937, for a high altitude interceptor. A contract for the prototype was issued 7 October 1937. On 15 April 1939, Assistant Secretary of War Louis Johnson announced that the U.S. Army had purchased the experimental Bell XP-39 and the Seversky XP-41.

The Bell XP-39 Airacobra was a single-place, single-engine prototype fighter with a low wing and retractable tricycle landing gears. The airplane was primarily built of aluminum, though control surfaces were fabric covered.

Bell XP-39 Airacobra 38-326. (U.S. Air Force)

As originally built, the XP-39 was 28 feet, 8 inches (8.738 meters) long with a wingspan of 35 feet, 10 inches (10.922 meters). The prototype had an empty weight of 3,995 pounds (1,812 kilograms) and gross weight of 5,550 pounds (2,517 kilograms).

The Bell XP-39 Aircobra in original configuration. (Allison Engine Historical Society)
The Bell XP-39 Aircobra in original configuration. (U. S. Air Force)

The XP-39 was unarmed, but it had been designed around the American Armament Corporation T9 37 mm autocannon, later designated Gun, Automatic, 37 mm, M4 (Aircraft).² The cannon and ammunition were in the forward fuselage, above the engine driveshaft. The gun fired through the reduction gear box and propeller hub.

The XP-39 was originally powered by a liquid-cooled, turbosupercharged and supercharged 1,710.597-cubic-inch-displacement (28.032 liter) Allison Engineering Co. V-1710-E2 (V-1710-17), a single overhead cam (SOHC) 60° V-12 engine with a compression ratio of 6.65:1. The V-1710-17 had a Maximum Continuous Power rating of 1,000 horsepower at 2,600 r.p.m. at 25,000 feet (7,620 meters), and Takeoff/Military Power rating of 1,150 horsepower at 3,000 r.p.m. at 25,000 feet, burning 91 octane gasoline.

Bell P-39 Airacobra center fuselage detail with maintenance panels open. (U.S. Air Force photo)

The engine was installed in an unusual configuration behind the cockpit, with a two-piece drive shaft passing under the cockpit and turning the three-bladed Curtiss Electric constant-speed propeller through a remotely-mounted 1.8:1 gear reduction gear box. The V-1710-17 was 16 feet, 1.79 inches (4.922 meters) long, including the drive shaft and remote gear box. It was 2 feet, 11.45 inches (0.900 meters) high, 2 feet, 5.28 inches (0.744 meters) wide and weighed 1,350 pounds (612 kilograms).

Allison V-1710 E19 (V-1710-85) with extension drive shaft and remote propeller drive gear unit. (Allison Division of General Motors)

On 6 June 1939 the XP-39 was flown to the National Advisory Committee for Aeronautics (NACA) Langley Memorial Aeronautical Laboratory at Hampton, Virginia, by Lieutenant Mark E. Bradley, Jr. The prototype was tested in the Full-Scale Wind Tunnel. Improvements in aerodynamics were recommended and Bell rebuilt the airplane as the XP-39B with an Allison V-1710-E5 (V-1710-37) engine.

Bell XP-39 Airacobra 38-326 in the NACA Langley Memorial Aeronautical Laboratory Full-Scale Wind Tunnel, Langley Field, Virginia. (NASA)
Bell XP-39 Airacobra 38-326 in the NACA Langley Memorial Aeronautical Laboratory Full-Scale Wind Tunnel, Langley Field, Hampton, Virginia, 9 August 1939. The fuselage has had all protrusions removed. (NASA)
Bell XP-39 Airacobra 38-326 in the NACA Langley Memorial Aeronautical Laboratory Full-Scale Wind Tunnel, Langley Field, Hampton, Virginia. (NASA)

The turbosupercharger had been removed, which reduced the airplane’s power at altitudes above 15,000 feet (4,572 meters). The V-1710-37 had a maximum power of 1,090 horsepower at 3,000 r.p.m. at 13,300 feet (4,054 meters). This resulted in the P-39 being used primarily as a ground-attack weapon.

The XP-39B, with test pilot George Price in the cockpit, was damaged when when its landing gear did not fully extend, 6 January 1940. It was repaired and test flights resumed. On 6 August 1940, Captain Ernest K. Warburton stalled the prototype on landing. The impact resulted in significant structural damage, beyond economic repair. The airplane was later scrapped.

Bell Model 12 (XP-39) prototype 38-326, at Bell Aircraft Co., Buffalo, New York
Bell XP-39B Airacobra prototype, 38-326, at the Bell Aircraft Corporation airfield, Buffalo, New York, 1940. (Bell Aircraft Corporation)

On 27 April 1939, the U.S. Army announced that a contract to Bell Aircraft had been issued in the amount of $1,073,445 for delivery of thirteen YP-39s. 9,584 Bell P-39 Airacobras were built during World War II. More than half were sent to the Soviet Union.

Bell XP-39 prototype, serial number 38-326. (Bell Aircraft Corporation)
Bell XP-39B prototype, serial number 38-326. (Bell Aircraft Corporation)

¹ Reliable sources indicate the date of the first flight as both 6 April 1938 and 6 April 1939. The Bell Helicopter Company web site, “The History of Bell Helicopter: 1935–1949” states 1938. However, contemporary newspaper articles strongly suggest that the date was 1939. The first newspaper references to the XP-39 located by TDiA are dated 16 April 1939.

² The 37-mm Aircraft Gun Matériel M4 is a recoil-operated aircraft weapon designed by John M. Browning. It has an overall length of 7 feet, 5 inches (2.26 meters). The barrel, or “tube,” is 5 feet, 5 inches (1.65 meters) long with a caliber of 1.457 inches (37.0 millimeters) and weighs 55 pounds (25 kilograms). The barrel is part of the recoiling section of the gun and moves rearward 9-5/8 inches (245 millimeters). The weight of the gun with a loaded 30-round magazine is 306.4 pounds (138.98 kilograms). The M4 fires a high-explosive tracer round with a muzzle velocity of 2,000 feet per second (607 meters per second). Each M54 shell is 9.75 inches (248 millimeters) long and weighs 1.93 pounds, of which the projectile makes up 1.34 pounds (0.608 kilograms). The cannon has a cyclic rate of fire of 125–150 rounds per minute.

© 2023, Bryan R. Swopes

4 April 1940

Chief test Pilot H. Lloyd Child (left, wearing goggles and flight suit) with a P-40 Warhawk. (LIFE Magazine)
Chief Test Pilot H. Lloyd Child (left, wearing goggles and flight suit) and Herbert O. Fisher, Chief Production Test Pilot, look at a Curtiss-Wright P-40 Warhawk. (Dmitri Kessel, LIFE Magazine)

4 April 1940: Curtiss-Wright’s Chief Test Pilot H. Lloyd Child took the first production P-40 Warhawk into the air for the first time at Buffalo, New York. The airplane carried the company serial number 13033, and had been assigned Air Corps serial number 39-156.

Curtiss P-40 Warhawk 39-156. (U.S. Air Force)

The Curtiss-Wright Corporation Hawk 81 (P-40 Warhawk) was a single-seat, single-engine pursuit. It was a low-wing monoplane with an enclosed cockpit and retractable landing gear (including the tail wheel). The airplane was of all-metal construction and used flush riveting to reduce aerodynamic drag. Extensive wind tunnel testing at the National Advisory Committee for Aeronautics (NACA) Langley Memorial Aeronautical Laboratory refined the airplane’s design, resulting in a significantly increased top speed.

Curtiss P-40 Warhawk 39-156. (U.S. Air Force)
Curtiss-Wright P-40 Warhawk 39-156. (U.S. Air Force)

The new fighter was 31 feet, 8-9/16 inches (9.666 meters) long with a wingspan of 37 feet, 3½ inches (11.366 meters) and overall height of 9 feet, 7 inches (2.921 meters). The P-40’s empty weight was 5,376 pounds (2,438.5 kilograms) and gross weight was 6,787 pounds (3,078.5 kilograms).

Curtiss Model 81, P-40 Warhawk 39-156. (San Diego Air & Space Museum Archive)

The P-40 was powered by a liquid-cooled, supercharged, 1,710.597-cubic-inch-displacement (28.032 liter) Allison Engineering Co. V-1710-C15 (V-1710-33), a single overhead cam (SOHC) 60° V-12 engine with a compression ratio of 6.65:1. The V-1710-33 had a continuous power rating of 930 horsepower at 2,600 r.p.m. at 12,800 feet (3,901 meters), and 1,040 horsepower at 2,800 r.p.m. for takeoff, burning 100-octane gasoline. It turned a three-bladed Curtiss Electric constant-speed propeller through a 2:1 gear reduction. The V-1710-33 was 8 feet, 2.54 inches (2.503 meters) long, 3 feet, 5.88 inches (1.064 meters) high, and 2 feet, 5.29 inches (0.744 meters) wide. It weighed 1,340 pounds (607.8 kilograms).

A 1939 Allison Engine Company V-1710-33 liquid-cooled, supercharged SOHC 60° V-12 aircraft engine at the Smithsonian Institution National Air and Space Museum. This engine weighs 1,340 pounds (607.8 kilograms) and produced 1,040 horsepower at 2,800 r.p.m. During World War II, this engine cost $19,000. (NASM)
Allison Engineering Co. V-1710-33 V-12 aircraft engine at the Smithsonian Institution National Air and Space Museum Steven F. Udvar-Hazy Center. (NASM)

The cruising speed of the P-40 was 272 miles per hour (438 kilometers per hour) and the maximum speed was 357 miles per hour (575 kilometers per hour) at 15,000 feet (4,572 meters). The Warhawk had a service ceiling of 30,600 feet (9,327 meters) and the absolute ceiling was 31,600 feet (9,632 meters). The range was 950 miles (1,529 kilometers) at 250 miles per hour (402 kilometers per hour).

Curtiss-Wright P-40 Warhawk 39-156.

The fighter (at the time, the Air Corps designated this type as a “pursuit”) was armed with two air-cooled Browning AN-M2.50-caliber machine guns on the engine cowl, synchronized to fire through the propeller arc, with 380 rounds of ammunition per gun. Provisions were included for one Browning M2 .30-caliber aircraft machine gun in each wing, with 500 rounds per gun.

Curtiss-Wright P-40 Warhawk #247. (Dmitri Kessel, LIFE Magazine)

On 26 April 1939, the U.S. Army Air Corps ordered 524 P-40 Warhawks, the largest single aircraft order up to that time. Only 200 of these aircraft were produced in the P-40 configuration. The Army deferred its order to allow Curtiss-Wright to produce Hawk 81A fighters for France, however that nation fell to enemy forces before any could be delivered. 140 of these French contract fighters were taken over by Britain’s Royal Air Force, which designated them as the Tomahawk Mk.I. Another 16 P-40s were delivered to the Soviet Air Force, having been purchased with gold.

Curtiss-Wright P-40 Warhawk #247. (Dmitri Kessel, LIFE Magazine)

The 8th Pursuit Group at Langley Field, Virginia, was the first Army Air Corps unit to be equipped with the P-40.

Curtiss-Wright P-40 Warhawks of the 8th Pursuit Group at Langley Field, Virginia, 1940.

On 30 May 1942, P-40 39-156 was being flown by 2nd Lieutenant Leon Marcel Zele, 55th Fighter Squadron, 20th Fighter Group, based at Morris Field, North Carolina. At approximately 11:00 a.m., the P-40 crashed near Iron Station, North Carolina. Lieutenant Zele was killed when the airplane exploded.

Chief Test Pilot H. Lloyd Child in the cockpit of a Curtiss-Wright P-40 Warhawk, circa 1940. (Rudy Arnold Collection/NASM)

Henry Lloyd Child was born at Philadelphia, Pennsylvania, 25 May 1904, the second of two children of Edward Taggart Child, a consulting engineer in shipbuilding, and Lillian Rushmore Cornell Child. He was baptised at the Church of the  Good Shepherd, Rosemont, Pennsylvania, 22 December 1913. Child graduated from Flushing High School in Flushing, New York, then attended the Haverford School in Philadelphia.

“Skipper” Child majored in mechanical engineering at the University of Pennsylvania where he was a member of the Hexagon Senior Engineering Society and the Phi Sigma Kappa (ΦΣΚ) and Sigma Tau (ΣΤ) fraternities. He was a member of the varsity and all-state soccer team (left halfback), and also played football and tennis. Child graduated with a bachelor of science degree, 15 June 1926.

After graduation from college, Child went to work for the Curtiss-Wright Corporation as an engineer.

Child joined the United States Navy, 23 November 1927. He was trained as a pilot at Naval Air Station Hampton Roads, Norfolk, Virginia, and was commissioned as an Ensign. He was promoted to lieutenant (junior grade), 7 November 1932, and to lieutenant, 11 November 1935.

While maintaining his commission in the Navy, Child returned to Curtiss-Wright as a test pilot. He made the first flight of the P-36 Hawk.

Child became famous as the “World’s Fastest Human” when he put a Hawk 75A demonstrator into a vertical dive from 22,000 feet (6,706 meters) over Buffalo Airport, 24 January 1939. It was believed at the time that he had reached a speed in excess of 575 miles per hour (925 kilometers per hour). A contemporary news report said that the needle of the recording instrument had gone off the edge of the graph paper, and that the actual speed may have been faster than 600 miles per hour (966 kilometers per hour).

H. Lloyd Child worked for Lockheed from 1958 to 1968, when he retired. He died at Palmdale, California, 5 August 1970 at the age of 66 years.

H. Lloyd Child, Curtiss-Wright Corporation chief test pilot. (Test and Research Pilots, Flight Test Engineers)

© 2019, Bryan R. Swopes

1 April 1939

The first prototype Mitsubishi A6M1 Type 0, c/n 201. (Mitsubishi Kokuki K.K.)

1 April 1939: Mitsubishi Kokuki K.K. (Mitsubishi Aircraft Company) Chief Test Pilot Katsuzo Shima made the first flight of the prototype Mitsubishi A6M1 Navy Type 0¹ fighter at the Kagamigahara air field (now, Gifu Airbase).

Completed about ten days earlier, at the Mitsubishi Aircraft Company factory at Nagoya on the island of Honshu, the prototype fighter had been disassembled so that it could be transported by road approximately 22 miles (36 kilometers) to the airfield.

Beginning late in the afternoon with taxi tests and a brief “hop” to check control response, at 5:30 p.m., Shima took off on what would be a successful test flight.

The prototype S12, serial number 201, had been designed in response to an Imperial Japanese Navy requirement for a new, light-weight fighter for operation from aircraft carriers. The design team was led by Dr. Jiro Horikoshi, an engineering graduate from the Aviation Laboratory at the University of Tokyo.

The design team for the Mitsubishi A6M1 Type Zero. Dr. Jiro Horikoshi is second from left. His assistant, Yohtoshi Sone is in the center. (Mitsubishi)
The design team for the Mitsubishi A6M1 Type Zero. Dr. Jiro Horikoshi is at the center. His assistant, Yoshitoshi Sone, is at the left. (Mitsubishi Kokuki K.K.)

The Type 0 (best known as the “Zero”) was a single-place, single-engine, low-wing monoplane with retractable landing gear. It was of very light construction, being primarily built of a special aluminum alloy, although its control surfaces were fabric covered. The empty weight of the first prototype was just 1,565.9 kilograms (3,452.2 pounds). Its test weight on 1 April was 1,928 kilograms (4,251 pounds).

The two prototype A6M1s were powered by an air-cooled, supercharged, 28.017 liter (1,709.7 cubic inch displacement) Mitsubishi MK2C Zuisen 13, a two-row, fourteen cylinder radial engine, rated at 780 horsepower for takeoff. The engine initially drove a two-bladed variable pitch propeller, but during testing this was replaced by a three-bladed Sumitomo constant-speed propeller, which was manufactured under license from Hamilton Standard.

The combination of very light weight and relatively low power made the Zero very maneuverable and capable of long distance flights.

After the success of the A6M1’s initial flight tests, a second prototype, c/n 202, was built and testing continued. In September 1939 the Japanese Navy accepted the new fighter, the Rei Shiki Sento Ki, or “Rei-Sen,” and it was ordered into production with few changes.

A Mitsubishi A6M2 Model 21 "Zero" fighter takes off from an aircraft carrier of the Imperial Japanese Navy.
A Mitsubishi A6M2 Model 21 “Zero” fighter takes off from an aircraft carrier of the Imperial Japanese Navy.

The first production model was the A6M2 Type 0 Model 21. The Mitsubishi engine was replaced by a more powerful Nakajima NK1C Sakae 12. The fighter’s wing tips could be folded upward for a slight improvement in storage aboard aircraft carriers.

Sources vary on the exact dimensions of the Zero fighters. The National Naval Aviation Museum at NAS Pensacola, Florida, which has an A6M2 in its collection, gives the airplane’s length as 29 feet, 8.6 inches (9.058 meters). The wingspan is 39 feet, 4.5 inches (12.002 meters), and the height is 10 feet, 0 inches (3.048 meters). It has an empty weight of 1,680 kilograms (3,704 pounds), and loaded weight of 2,796 kilograms (6,164 pounds), about half the weight of its rivals, the Chance Vought F4U Corsair and Grumman F6F Hellcat.

Mitsubisshi A6M3 Model 22 "Zeke" in the Solomon Islands, 1943. (Imperial Japanese Navy)
Petty Officer 1st Class Hiroyoshi Nishizawa, a leading fighter ace of the Imperial Japanese Navy, flying a Mitsubishi A6M3 Type 0 Model 22 in the Solomon Islands, May 1943. (Imperial Japanese Navy)

The A6M2 Type 0 was powered by an air-cooled, supercharged, 27.874 liter (1,700.962 cubic inch) Nakajima Hikoki K.K. NK1C Sakae 12, a two-row, fourteen-cylinder radial engine which was rated at 925 horsepower, and drove a three-bladed Sumitomo constant-speed propeller through a 1.71:1 gear reduction.

The Model 21 had a cruise speed of 207 miles per hour (333 kilometers per hour). Its maximum speed was 277 miles per hour (446 kilometers per hour) at Sea Level and 335 miles per hour (539 kilometers per hour) at 16,000 feet (4,877 meters). The service ceiling was 37,000 feet (11,278 meters) and maximum range, 1,175 miles (1,891 kilometers).

The A6M2’s armament was manufactured by Dai Nihon Heiki K.K. Two Type 97 7.7 mm (.303-caliber) machine guns were mounted on the forward upper fuselage, synchronized and firing through the propeller arc. These were licensed versions of the Vickers Type E .303 machine gun. There were 600 rounds of ammunition per gun. A Type 99 20 mm autocannon was mounted in each wing with 100 shells per gun. The Type 99 was a licensed version of the Oerlikon FF autocannon.

The Mitsubishi A6M Zero was one of the most successful fighters of World War II. Although its light construction made it vulnerable to the heavy machine guns of American fighters, in skilled hands, the highly maneuverable Zero was a deadly opponent.

The Mitsubishi A6M Type 0 was produced from 1940 through 1945. 10,939 Zeros were built. At the end of World War II, almost all of the surviving fighters were destroyed and only a very few remain.

An A6M2 was captured near Dutch Harbor in the Aleutian Islands in June 1943. Known as the “Akutan Zero,” the fighter was extensively tested by the U.S. Navy and the National Advisory Committee for Aeronautics (NACA) at NAS Anacostia. Under extreme secrecy, the airplane was also tested in the Full Scale Wind Tunnel at NACA’s Langley Memorial Aeronautical Laboratory at Hampton, Virginia.

Lieutenant Commander Eddie Sanders, United States Navy, taxis a captured Mitsubishi A6M2 Navy Type 0 Model 21 “Zero” at NAS San Diego, California, circa September 1942. (U.S. Navy)
Mitsubishi A6M2 Navy Type 0 Model 21 fighter at NACA Langley Memorial Aeronautical Laboratory, 8 March 1943. (NASA)
Mitsubishi A6M2 Navy Type 0 Model 21 fighter at NACA Langley Memorial Aeronautical Laboratory, 8 March 1943. (NASA)
A captured Mitsubishi A6M2 Navy Type 0 Model 21 fighter during flight testing in the United States, circa 1942–1943. (U.S. Navy)
Mitsubishi A6M2 Navy Type 0 Model 21 (U.S. Navy)

¹ The 0 (the numeral zero) in the fighter’s type designation refers to the the final digit of the year 2600 of the Imperial Japanese Calendar, which was 1940 AD by the Gregorian calendar. This gave the A6M2 its most common identification, simply, “the Zero.”

© 2019 Bryan R. Swopes

30 March 1934

Sikorsky S-42 NC822M, Brazilian Clipper, first of three of the initial S-42 variant. (NASM)

30 March 1934: At Bridgeport, Connecticut, Sikorsky Aircraft Company test pilot Boris Vasilievich Sergievsky made the first flight of the prototype Sikorsky S-42, a large, four-engine flying boat which had been designed for long range passenger and cargo flights.

In discussions with Igor Sikorsky, Charles A. Lindbergh, acting as technical advisor to Pan American Airways System, the two aviation icons established the specifications for a new flying boat. The new airplane would be a significant improvement over Sikorky’s previous S-40.

The Hartford Courant reported:

New Giant Sikorsky Tries Its Wings

Sikorsky S-42 (Associated Press Photo)

    Bridgeport.  March 30.—(AP)—America’s greatest passenger plane, the S-42, destined for the South American service, took to the air for the first time and passed two test flights with flying colors.

     Once for 10 minutes, and again for a longer period, the giant flying boat hovered over Long Island Sound and its shore. Captain Boris Sergievsky, accompanied only by a lone mechanic, was at the controls.

     “Congratulations, sir,” Igor Sikorsky, designer of the plane, hailed the pilot as he came ashore after the flights.

     “The congratulations,” Captain Sergievsky replied, “are yours, sir.”

     “I am very pleased with the results,” Sikorsky said. “It was most thrilling to see the ship take off. Everything seems excellent.”

     Frederick W. Neilsen, president of the Sikorsky Aviation Corporation, who watched the flights with Sikorsky and hundreds of residents of Bridgeport and shore towns, said, “The tests were most successful and we are all pleased.”

     The ship, built for Pan American Airways on specifications by Colonel Charles A. Lindbergh, technical advisor for the line, is the first of six such planes to be completed for Pan American.

     Powered with four engines, it is 76 feet long, has a span of 114 feet 2 inches, and a gross weight of 38,000 pounds. It will be fitted with 32 passenger seats, and will have a non-stop range of 1200 miles with a full complement of passengers, five members of the crew and 1000 pounds of mail.

The Hartford Courant, Vol. XCVII, Saturday, 31 March 1934, Page 18, Columns 4 and 5

Interior of a Sikorsky S-42. (NASM)

The Sikorsky S-42 was a four-engine long-range flying boat built for Pan American Airways by the Vought-Sikorsky Aircraft Division of United Technologies at Stratford, Connecticut. It was 67 feet, 8 inches (20.625 meters) long with a wingspan of 114 feet, 2 inches (34.798 meters). The S-42 had an empty weight of 18,236 pounds (8,272 kilograms) and gross weight of 38,000 pounds (17,237 kilograms). It could carry up to 37 passengers.

A Pan American Airways Sikorsky S-42.

The S-42 was powered by four air-cooled, supercharged, 1,690.537-cubic-inch-displacement (27.703 liters) Pratt & Whitney Hornet S1E-G nine-cylinder radial engines with a compression ratio of 6.5:1. The S1E-G had a Normal Power rating of 750 horsepower at 2,250 r.p.m., to 7,000 feet (2,134 meters), and 875 horsepower at 2,300 r.p.m., for Takeoff. The engines drove three-bladed Hamilton Standard constant-speed propellers through a 3:2 gear reduction. The S1E-G was 4 feet, 1.38 inches (1.254 meters) long, 4 feet, 6.44 inches (1.383 meters) in diameter, and weighed 1,064 pounds (483 kilograms).

Boris Vasilievich Sergievsky

The S-42 had a cruise speed 165 miles per hour (266 kilometers per hour) and maximum speed of 188 miles per hour (303 kilometers per hour) at 5,000 feet (1,524 meters). The service ceiling was 16,000 feet (4,877 meters). It could maintain 7,500 feet (2,286 meters) with three engines. Its range was 1,930 miles (3,106 kilometers).

During flight testing of the S-42, Boris Sergievsky, with co-pilot Raymond B. Quick, set three Fédération Aéronautique Internationale world records for payload and altitude.¹  Later, Captain Edwin Musick, with Sergievsky and Charles Lindbergh, flew the S-42 to set eight Fédération Aéronautique Internationale world records for speed.²

Ten Sikorsky S-42, S-42A and S-42B flying boats were built for Pan Am. None remain in existence.

A Pan American Airways Sikorsky S-42, NC16734, moored at Honolulu, Territory of the Hawaiian Islands. (hawaii.gov/hawaiiaviation)

¹ 26 April 1934 FAI Record File Numbers: 11583: Greatest load to 2,000 meters (6,562 feet): 7,533 kilograms (16,652 pounds). 17 May 1934: 11582 and 11978: Altitude with a 5,000 Kilogram (11,023 pounds) Load, 6,220 meters (20,407 feet).

² 1 April 1934 FAI Record File Numbers: 11517: Speed over a closed circuit of 1,000 Kilometers (621.3 statute miles), 253,60 km/h (157.58 m.p.h.); 11518: . . . with a 500 Kilogram (1,102 pounds) Payload, 253,60 km/h (157.58 m.p.h.); 11519: . . . with a 1,000 Kilogram (2,205 pounds) Payload, 253,60 km/h (157.58 m.p.h.); 11520: . . . with a 2,000 kilogram (4,409 pounds) Payload, 253,60 km/h (157.58 m.p.h.); 11521: Speed over a closed circuit of 2,000 Kilometers (1,242.7 statute miles), 253,18 km/h (157.32 m.p.h); 11522: . . . with a 500 Kilogram Payload, 253,18 km/h (157.32 m.p.h.); 11523: . . . with a 1,000 Kilogram Payload, 253,18 km/h (157.32 m.p.h.); 11524: . . . with a 2,000 Kilogram Payload, 253,18 km/h (157.32 m.p.h.).

© 2019, Bryan R. Swopes

25 March 1955

John W. Konrad in the cockpit of the prototype Vought XF8U-1 Crusader, Bu. No. 138899. (Vought Heritage)
John W. Konrad in the cockpit of the prototype Vought XF8U-1 Crusader, Bu. No. 138899. (Vought Heritage)

25 March 1955: Chance Vought Aircraft Corporation experimental test pilot John William Konrad took the first prototype XF8U-1 Crusader, Bu. No. 138899, for its first flight at Edwards Air Force Base in the high desert of Southern California.

The new fighter had been transported from the factory at Dallas, Texas, aboard a Douglas C-124C Globemaster II, on 3 March 1955. It was reassembled and all systems were checked. Taxi tests began on 14 March.

During the first flight on 25 March, the Crusader went supersonic in level flight. It was able to maintain supersonic speeds (not only for short periods in a dive) and was the first fighter aircraft to exceed 1,000 miles per hour in level flight (1,609 kilometers per hour).

Chance Vought test pilot John W. Konrad talks with engineers following the first test flight. (Chance Vought Aircraft Corporation photograph via Bill Spidle’s “Voughtworks” http://voughtworks.blogspot.com)

The F8U Crusader has a unique variable-incidence wing which can be raised to increase the angle of attack. This created more lift at low speeds for takeoff and landing aboard aircraft carriers, but allows the fuselage to remain fairly level for better forward visibility.

The test program went so well that the first production airplane, F8U-1 Crusader Bu. No. 140444, made its first flight just over six months after the prototype’s.

Prototype Vought XF8U-1 Crusader during a test flight, 25 March 1955. (Vought)
Prototype Vought XF8U-1 Crusader Bu. No. 138899 during a test flight, 25 March 1955. (Vought Heritage)

The Chance Vought F8U-1 was nearly identical to the prototype XF8U-1. It was a single-place, single-engine swept-wing fighter designed to operate from the United States Navy’s aircraft carriers. The F8U-1 was 54 feet, 2.75 inches (16.529 meters) long with a wingspan of 35 feet, 8 inches (10.871 meters) and height of 15 feet, 9.1 inches (4.803 meters). With wings folded, the airplane’s width was reduced to 22 feet, 6 inches (6.858 meters).

The Crusader’s wing angle of incidence was adjustable in flight. It had a total area of 375 square feet (34.8 square meters). The leading edges were swept aft to 47°, and the outer panels had a 1 foot, 0.7 inch “dog tooth.” The wings had 5° anhedral, while the horizontal stabilator had 5° 25′ dihedral. The stabilator’s leading edges were swept 50°.

Its empty weight was 15,513 pounds (7,037 kilograms) and maximum takeoff weight was 27,500 pounds (12,474 kilograms).

Prototype Chance Vought XF8U-1 Crusader in landing configuration. (Vought Heritage)

Early production aircraft were powered by a Pratt & Whitney J57-P-4 engine. This was a two-spool, axial-flow turbojet engine with a 16-stage compressor and 3-stage turbine. The J57-P-4 had a normal power rating of 8,700 pounds of thrust (38.70 kilonewtons); military power, 10,200 pounds (45.37 kilonewtons), and a maximum rating of 16,000 pounds (71.17 kilonewtons) with afterburner. The engine was 20 feet, 10 inches (6.350 meters) long and 3 feet, 5 inches (1.041 meters) in diameter.

The F8U-1 had a cruising speed of 494 knots (569 miles per hour/915 kilometers per hour). Its maximum speed was 637 knots (733 miles per hour/1,180 kilometers per hour) at Sea Level—0.95 Mach—and 860 knots (990 miles per hour/1,180 kilometers per hour) at 35,000 feet (10,668 meters)—Mach 1.50.  It had a service ceiling of 42,300 feet (12,893 meters) and combat range of 1,280 nautical miles miles (1,473 statute miles/2,371 kilometers).

The F8U Crusader was known as “The Last of the Gunfighters” because it was the last American fighter aircraft to be designed with guns as the primary armament. It carried four Colt Mark 12 20-mm autocannon with 500 rounds of ammunition. It could also carry two AIM-9 Sidewinder infrared-homing air-to-air missiles.

Because of a high accident rate, the Crusader has also been called “The Ensign Killer.”

Vought XF8U-1 Crusader parked on Rogers Dry Lake, Edwards Air Force Base. (Vought)
Vought XF8U-1 Crusader Bu. No. 138899 parked on Rogers Dry Lake, Edwards Air Force Base. (Vought Heritage)

The Vought F8U Crusader was in production from 1955 through 1964 with a total of 1,261 built in both fighter and photo reconnaissance versions.

Vought XF8U-1 Crusader Bu. No. 138899 parked on Rogers Dry Lake, Edwards Air Force Base. (Vought Heritage)

During five years of testing, Bu. No. 138899 made 508 flights. It was donated to the Smithsonian Institution in 1960. The restored prototype is now at The Museum of Flight, Seattle, Washington.

According to information recently discovered by The Museum of Flight, fighter pilot, test pilot and future astronaut John Herschel Glenn, Jr., made his first flight in a Crusader when he flew Bu. No. 138899 on 4 May 1956. According to Glenn’s logbook, he made two flights in the prototype on that date, totaling 2 hours of flight time. Many thanks to Mike Martinez, a docent for the museum for providing this information.

The Vought XF8U-1 has been restored by The Museum of Flight at Paine Field, Stattle, Washington. (The Museum of Flight)
The first of two prototypes, Chance Vought XF8U-1 Crusader, Bu. No. 138899, has been restored by The Museum of Flight at Paine Field, Seattle, Washington. The Crusader’s variable incidence wing is in the raised take-off/landing position. (The Museum of Flight)

John William Konrad was born 25 November 1923 at San Diego, California. He was the second of three children of  William Konrad, a salesman, and Emma Louise Stensrud Konrad.

Konrad became interested in aviation at an early age, learning to fly in a Piper Cub at the age of 15. After graduating from high school, he enlisted as a private in the U.S. Army Air Corps at San Diego, 26 February 1943. Konrad was 5 feet, 3 inches (1.60 meters) tall and weighed 118 pounds (53.5 kilograms). He trained as a pilot and flew Boeing B-17 Flying Fortress heavy bombers with the 305th Bombardment Group (Heavy), stationed at RAF Chelveston, during World War II. He later flew Douglas C-47 Skytrains during the Berlin Airlift.

Konrad married Miss Harriet Marilyn Hastings at Clearwater, Florida, 11 February 1945. They would have two children.

Following the War, Konrad was selected for the first test pilot training class at Wright Field, then was assigned to Muroc Army Airfield (Edwards Air Force Base) in California, where he graduated from the Air Force Experimental Flight Test Pilot School, Class 51-C, 19 May 1952.

Konrad resigned from the Air Force in 1953 and joined the Chance Vought Aircraft Corporation in Dallas, Texas, as a test pilot. In addition the the XF8U-1 Crusader, he also made the first flight of the Ling-Temco-Vought A-7 Corsair II, and the experimental LTV XC-142 tiltwing V/STOL transport in 1964. He was appointed Director Test Operations in 1965. Konrad retired from Vought in 1988 after 25 years with the company.

After retiring, John Konrad continued to fly a Goodyear FG-1D Corsair with Commemorative Air Force.

John William Konrad, Sr., Captain, United States Air Force, died 20 September 2006 at Dallas, Texas. He is buried at the Dallas–Fort Worth National Cemetery.

John William Konrad. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

© 2019, Bryan R. Swopes