Tag Archives: First Flight

10 September 1956

North American Aviation North American Aviation F-107A S/N 55-5118 rolling out at Edwards Air Force base. (U.S. Air Force)
North American Aviation F-107A S/N 55-5118 rolling out at Edwards Air Force Base. (U.S. Air Force)
Joel Robert Baker (1920–2011). (Photograph courtesy of Neil Corbett)
Joel Robert Baker (1920–2011). (Photograph courtesy of Neil Corbett)

10 September 1956: North American Aviation test pilot Joel Robert (“Bob”) Baker made the first flight of the F-107A-NA 55-5118, a pre-production tactical fighter bomber, reaching a speed of Mach 1.03. On landing the drogue parachute did not deploy and due to the high speed on rollout, the nose gear strut collapsed, causing minor damage to the new aircraft.

The F-107A was designed as a Mach 2+ fighter bomber capable of carrying nuclear weapons. The plan to carry a Mark 7 bomb in a centerline recess in the aircraft’s belly resulted in the radical appearance of the airplane, with the engine intake mounted above and behind the cockpit.

Based on the F-100 Super Sabre, it was originally designated F-100B, but this was changed to F-107A prior to the first flight.

The North American Aviation F-107A was a single-seat, single-engine supersonic fighter bomber. It was equipped with a very sophisticated stability augmentation system. The F-107A was 61 feet, 10 inches  (18.847 meters) long with a wingspan of 36 feet, 7 inches (11.151 meters) and height of 19 feet, 8 inches (5.994 meters). Its empty weight was 22,696 pounds (10.295 kilograms) and had a maximum takeoff weight of 41,537 pounds (18,841 kilograms).

The airplane was powered by a Pratt & Whitney YJ75-P-11 afterburning turbojet which produced a maximum 24,500 pounds of thrust (108.98 kilonewtons).

This gave the F-107A a maximum speed of 890 miles per hour (1,432 kilometers per hour) at Sea Level, and 1,295 miles per hour (2,084 kilometers per hour) at 36,000 feet (10,973 meters). It could climb at an initial rate of 39,900 feet per minute (202.7 meters per second) and had a service ceiling of 53,200 feet (16,215 meters).

North American Aviation F-107A 55-5118 in flight. (U.S. Air Force)
North American Aviation F-107A 55-5118 in flight. (U.S. Air Force)

The Mark 7 was a variable-yield fission bomb that could be pre-set to detonate with ranges between 8 and 61 kilotons. It weighed approximately 1,700 pounds (771 kilograms).

The second F-107A, 55-5119, was the weapons test aircraft and was armed with four 20mm M39 cannon with 200 rounds per gun.

The F-107A was in competition with Republic’s F-105 Thunderchief, which was selected by the Air Force for production. Only three F-107A test aircraft were built.

After Air Force testing, two F-107s, 55-5118 and 55-5120, were turned over to the NACA High-Speed Flight Station for use as research aircraft. John Barron (“Jack”) McKay was assigned as the project pilot. 55-5118 made only 4 flights for NACA before being grounded. 55-5120 made 42 flights.

Today, 55-5118 is at the Pima Air and Space Museum, Tucson, Arizona. Its sister ship, 55-5119, is at the National Museum of the United States Air Force, Wright-Patterson AFB, Ohio. The third airplane, 55-5120, was damaged on takeoff with test pilot Scott Crossfield in the cockpit, 1 September 1959. It was not repaired.

The second F-107A, 55-5119, turns from downwind to base leg for landing on Runway 4, Edwards Air Force Base. This was the only one of the three prototypes to be equipped with 20 mm M39 cannon.(U.S. Air Force)
The first XF-107, 118 arrives at HSFS, 6 November 1957. (NASA E-57-3192)

© 2015, Bryan R. Swopes

7 September 1997

Lockheed Martin F-22A 91-4001 lands at Dobbins ARB after its first flight, 7 September 1997. (AP/The Hindu)
Lockheed Martin F-22A 91-4001 lands at Dobbins ARB after its first flight, 7 September 1997. (AP/The Hindu)

7 September 1997: At 10:18 a.m., Lockheed Martin Aeronautics Company Chief Test Pilot Alfred P. (“Paul”) Metz took off from Dobbins Air Reserve Base, Marietta, Georgia, flying the first F-22A Block 1 Engineering and Manufacturing Development Prototype, c/n 4001, call sign, “Raptor 01.” The new air superiority “stealth” fighter flew for just under one hour, reaching an altitude of 20,000 feet (6,096 meters). Metz was accompanied by two F-16 chase planes.

Previously employed by Northrop Corporation, in 1990, Paul Metz had also made the first flight of the Raptor’s rival, the YF-23A Advanced Tactical Fighter prototype.

Test pilot Paul Metz with teh second F-22A EMD prototype, 91-4002, at Edwards Air Force Base, California.
Test pilot Paul Metz with the second F-22A EMD prototype, 91-4002, at Edwards Air Force Base, California. (U.S. Air Force)

Alfred Paul Metz was born 21 June 1946 at Springfield, Ohio. In 1968, he graduated form Ohio State University, Columbus, Ohio, with a bachelor’s degree in aeronautical engineering.

Metz entered the U.S. Air Force in 1968. He flew 68 combat missions during the Vietnam War as a pilot of the Republic F-105G Thunderchief (“Wild Weasel”), assigned to the 17th Wild Weasel Squadron, 388th Tactical Fighter Wing, based at Korat Royal Thai Air Force Base, Thailand. He was twice awarded the Distinguished Flying Cross.

Metz graduated from the Air Force Test Pilot School at Edwards Air Force Base, California, in 1976, and remained at Edwards for the next two years. He was then assigned as an instructor at the U.S. Navy Test Pilot School at NATC Patuxent River, Maryland, in 1978.

Metz left the Air Force in 1980 and joined Northrop Aircraft as an engineering test pilot. He became Northrop’s chief test pilot in 1985. After flying as an engineering test pilot for the B-2 stealth bomber, Paul Metz joined Lockheed Martin’s F-22 program in 1992.

Paul Metz continued testing the F-22A for four years before joining the F-35 Joint Strike Fighter program. He was next appointed Vice President for Flight Test. Metz retired in 2006.

A Lockheed Martin F-22A Raptor in flight. (Wikipedia)
A Lockheed Martin F-22A Raptor in flight. (Wikipedia)

The Lockheed Martin F-22A Raptor is a single-seat, twin-engine fighter designed with stealth technology. It is 62 feet, 1 inch (18.923 meters) long with a wingspan of 44 feet, 6 inches (13.564 meters) and height of 16 feet, 8 inches (5.080 meters). The fighter has an empty weight of 43,340 pounds (19,659 kilograms) and a maximum takeoff weight of 83,500 pounds (37,875 kilograms).

The F-22 is powered by two Pratt & Whitney F119-PW-100 afterburning turbofan engines which incorporate thrust vectoring exhaust nozzles to enhance the fighter’s maneuverability.

The F-22A can cruise at Mach 1.82 and has a maximum speed of Mach 2.25. Its service ceiling is greater than 65,000 feet (19,812 meters) and the combat radius is 470 miles (756 kilometers).

The fighter is armed with a 20 mm M61A2 Vulcan 6-barrel cannon with 480 rounds of ammunition, and can carry AIM-9 Sidewinder and AIM-120 AMRAAM air-to-air missiles. The F-22 can also be configured for ground attack.

The F-22A entered service with the U.S. Air Force in 2003, with “initial operational capability” achieved in 2005. Including flight test aircraft, 195 F-22s were produced before the program prematurely ended in 2012.

In 2000, 91-4001 was removed from flight status and used to test battle damage survivability.

The stripped air frame of 91-4001 at Hill AFB, Utah. (f-16.net)
The stripped air frame of 91-4001 at Hill AFB, Utah. (f-16.net)

© 2018, Bryan R. Swopes

7 September 1965

Bell Model 209 prototype, N209J, in flight with skids retracted. (Bell Helicopter Co.)
Bell Model 209, N209J, prototype of the AH-1G Huey Cobra attack helicopter, in flight with landing skids retracted. (Bell Helicopter Company)

7 September 1965: First flight of the prototype Bell Model 209 attack helicopter. Test pilot William Thomas (“Bill”) Quinlan was in command. The duration of the flight was twelve minutes.

The Model 209 was a private venture, built in just seven months and rolled out at Fort Worth, Texas, 2 September 1965. The prototype aircraft combined the drive system, rotors and tail boom of the production UH-1C gunship with a streamlined fuselage which placed the two pilots in tandem.

The prototype was equipped with retractable landing gear which gave the 209 increased speed, but the expense and complexity were enough that this feature was not included on production aircraft.

This helicopter would be developed into the famous AH-1G Huey Cobra.

N209J,the Bell Model 209 prototype, shown in camouflage colors. (Bell Helicopter Company)
N209J, the Bell Model 209 prototype, shown in camouflage colors. (Bell Helicopter Company)

The second prototype, AH-1G 66-15246, was used by the Army for flight testing at Edwards Air Force Base, California, from 3 April to 21 April 1967.

66-15246 had an overall length of 52 feet, 11.65 inches (16.146 meters) with rotors turning. The fuselage was 44 feet, 5.20 inches (13.433 meters) long, and it was 3 feet, 0 inches (0.914 meters) wide. The HueyCobra had a short “stub wing” with a span of 10 feet, 11.60 inches (3.343 meters). Its angle of incidence was 14°. The wing’s area was 27.8 square feet (2.6 square meters). 66-15426 had an empty weight of 5,516 pounds (2,502 kilograms) and maximum gross weight of 9,500 pounds (4,309 kilograms).

Bell Model 209, N209J, prototype of the AH-1G Cobra, with landing skids extended. (U.S. Army)

The two-bladed Model 540 “door-hinge” main rotor was 44 feet, 0 inches (13.411 meters) in diameter. The blades had a chord of 2 feet, 3 inches (0.686 meters) and 10° negative twist. The main rotor turned counter-clockwise when viewed from above. (The advancing blade is on the helicopter’s right.) Normal rotor r.p.m. (power on) was 314–324 r.p.m., and power off, 304–339 r.p.m. The minimum transient rotor speed, power off, was 250 r.p.m.

The two blade tail rotor assembly had a diameter of 8 feet, 6 inches (2.591 meters) with a chord of 8.41 inches (0.214 meters). There was no twist. It was mounted on the left side of the pylon in a pusher configuration and turned counter-clockwise as seen from the helicopter’s left. (The advancing blade is above the axis of rotation.) The tail rotor pylon was cambered to allow aerodynamic forces in forward flight to “unload” the tail rotor.

Bell AH-1G Cobra three-view drawing. (U.S. Army Aviation Systems Test Activity)

The AH-1G was powered by a Lycoming LTC1K-4 (T53-L-13) turboshaft engine rated at 1,400 shaft horsepower, though it was derated to the helicopter’s transmission limit. The T53-L-13 is a two-shaft free turbine with a 6-stage compressor (5 axial-flow stages, 1 centrifugal-flow stage) and a 4-stage axial-flow turbine (2 high-pressure stages, 2 low-pressure power turbine stages). The T53-L-13 is 3 feet, 11.9 inches (1.217 meters) long, 1 foot, 11.0 inches (0.584 meters) in diameter and weighs 549 pounds (249 kilograms).

The speed of the Cobra was effected by the armament configuration, whether “clean,” light or heavy scout, or “heavy hog.” At 5,000 feet (1,524 meters), the cruise speed in the clean configuration was 138.0 knots (158.8 miles per hour, 255.6 kilometers per hour); light scout, 134.0 knots (154.2 miles per hour, 248.2 kilometers per hour); and heavy hog, 127.0 knots (146.2 miles per hour, 235.2 kilometers per hour). The maximum airspeed in level flight was 149.0 knots (171.5 miles per hour, 276.0 kilometers per hour); 144.0 knots (165.7 miles per hour, 266.7 kilometers per hour); and 136.5 knots (157.1 miles per hour, 252.8 kilometers per hour), respectively.

The limiting airspeed (VNE) was 190 knots (KCAS) (219 miles per hour, 352 kilometers per hour) below 3,000 feet (914 meters) density altitude.

In autorotation, the airspeed for the minimum rate of descent was 74.0 knots (85.2 miles per hour, 137.1 kilometers per hour) with the main rotor turning 294 r.p.m., resulting in a rate of descent of 1,750 feet per minute (8.89 meters per second).

Bell AH-1G Cobra. (U.S. Army)

The basic armament for the AH-1G Cobra was an Emerson M28 turret which could be equipped with one or two General Electric M134 Miniguns, or a combination of a Minigun with a Philco Ford M129 automatic grenade launcher, or two grenade launchers. Each Minigun was supplied with 4,000 rounds of 7.62 NATO ammunition, while a grenade launcher had 300 rounds of 40 × 53 millimeter high-velocity explosive ammunition.

Four hardpoints on the stub wing could be loaded with M18 7.62 NATO Minigun pods; XM35 pods, containing a short-barreled General Electric XM195 20 millimeter Gatling gun (a variant of the M61 Vulcan); rocket pods with seven or nineteen 2.75-inch unguided rockets.

The prototype Cobra, Bell Model 209 N209J, is in the collection of the U.S. Army Aviation Museum, Fort Rucker, Alabama, as is the second prototype, 66-15246.

© 2017, Bryan R. Swopes

4 September 1949

The prototype Bristol Type 167, G-AGPW, takes off from Filton Aerodrome, 11:30 a.m., 4 September 1949. Hundred of Bristol employees are lining the runway. (Alfred Thompson)
The prototype Bristol Type 167, G-AGPW, takes off from Filton Aerodrome, 11:30 a.m., 4 September 1949. Hundred of Bristol employees are lining the runway. (Alfred Thompson)

4 September 1949: At 11:30 a.m., Sunday morning, the prototype Bristol Brabazon Mk.I, G-AGPW, made its first flight at Filton Aerodrome. Chief Test Pilot Arthur J. “Bill” Pegg was in command with Walter Gibb as co-pilot. An 8-man flight test crew was also aboard. A crowd of spectators, estimated at 10,000 people, were present.

The flight test crew of the Bristol Brabazon. Bill Pegg is at center. (Unattributed)
The flight test crew of the Bristol Brabazon. Bill Pegg is at center. (Unattributed)

Designed as a transatlantic commercial airliner, development of the Type 167 began in 1943. The Mk.I prototype, G-AGPW, had been rolled out in December 1948. On 3 September 1949, the flight test crew performed a series of taxi tests.

The first flight lasted 26 minutes. The Brabazon had reached 3,000 feet (914 meters) and 160 miles per hour (257 kilometers per hour).

Bristol Brabazon Mk.I G-AGPW runs up its engines. (Unattributed)
Bristol Brabazon Mk.I G-AGPW runs up its engines. (Unattributed)

The Bristol Aeroplane Company Type 167 Brabazon Mk.I was a very large low-wing monoplane, designed to carry 100 passengers on transatlantic flights. it had been named to honor John Theodore Cuthbert Moore-Brabazon 1st Baron Brabazon of Tara, was the first airplane pilot to be issued an aviator’s certificate by the Royal Aero Club of the United Kingdom. He had previously been assigned certificate number 40 of the Fédération Aéronautique Internationale. He was issued Certificate Number 1 in England. He was a very important figure in the development of the British aeronautical industry.

The Bristol Brabazon Mk.I under construction.

The Type 167 was slightly larger than the United States Air Force Convair B-36A intercontinental strategic bomber. It was 177 feet, 0 inches (53.950 meters) long with a wingspan of 230 feet, 0 inches (70.104 meters) and overall height of 50 feet, 0 inches (15.240 meters). The fuselage had a maximum diameter of 25 feet (7.62 meters).

The leading edge of the inboard section of the Brabazon’s wing was swept 4° 16′ and had no dihedral, while the outer section was swept 14° 56′ with 2° dihedral. The wings had an angle of incidence of +3° 30′. The chord narrowed from 31 feet, 0 inches (9.449 meters) at the root, to 10 feet, 0 inches (3.048 meters) at the tip. The wings’ maximum thickness was 6 feet, 6 inches (1.981 meters). The Mk.I’s wing area was 5,317 square feet (494 square meters).

The horizontal stabilizer had a span of 75 feet, 0 inches (22.860 meters). The angle of incidence was +2° and there was no dihedral. The stabilizer’s area was 692 square feet (64.3 square meters).

The airplane’s empty weight was 169,500 pounds (76,884 kilograms), and its maximum takeoff weight of 290,000 pounds (131,542 kilograms). For the first flight, its gross weight was 200,000 pounds (90,718 kilograms).

Bristol Brabazon Mk.I G-AGPW.

The prototype was powered by eight air-cooled, supercharged, 3,271.87-cubic-inch-displacement (53.62 liter) Bristol Centaurus 20 eighteen-cylinder radial engines. They had a cruise power rating of 1,640 horsepower at 22,000 feet (6,706 meters); maximum continuous power and maximum climb power rating of 2,190 horsepower at 5,000 feet (1,524 meters); and 2,500 horsepower for takeoff. Each pair of engines drove a set of coaxial counter-rotating three-bladed Rotol constant-speed wooden propellers with a diameter of 16 feet, 0 inches (4.877 meters).

“Each Bristol Centaurus engine was coupled to a propeller gearbox at a 32-degree angle.” (Airbus, Filton)

Power was transmitted from each engine by an angled drive shaft to separate beveled gears in a dual reduction gear unit. The reduction gear ratio was 0.400:1. For one-engine-out operation, the effected propeller would be feathered, while the other engine of the pair continued to power the other counter-rotating propeller. The propellers were reversible for braking on landing.

Turboprop engines were planned for the Brabazon Mk.II.

Bristol Brabazon Mk.I G-AGPW flying overhead reveals the double sweep of the wings. (BAE Systems)

Estimated performance of the Brabazon Mk.I (before flight testing was completed) was a cruise speed of 250 miles per hour (402 kilometers per hour), and maximum speed of 300 miles per hour (483 kilometers per hour), both at 25,000 feet (7,620 meters), the airplane’s service ceiling.

The maximum fuel capacity of the Mk.I was 13,650 gallons (51,671 liters), giving a maximum range at cruise speed of 5,460 miles (8,787 kilometers). This was sufficient for a flight from London to New York with the required fuel reserve.

Only one Brabazon Mk.I was built. The prototype Mk.II was never completed. The project was cancelled in 1952. The total cost of the Brabazon program was approximately £6,500,000 (estimated at £170,981,807, or $221,489,833 in 2017). G-AGPW was eventually scrapped.

Bristol Brabazon Mk. I G-AGPW landing at Farnborough, September 1950. (BAE Systems)

This British Pathé news film shows the Brabazon in flight:

Thanks to regular “This Day in Aviation” reader, Mr. Lynn Brown, for suggesting this subject.

© 2018 Bryan R. Swopes

31 August 1956

Dix Loesch climbs aboard City of Renton while Tex Johnston waits. (Boeing)

31 August 1956: The first production Boeing KC-135A Stratotanker, 55-3118, named City of Renton, made its first flight with company test pilots Alvin Melvin (“Tex”) Johnston and Richards Llewellyn (“Dix”) Loesch, Jr., on the flight deck.

City of Renton, the first Boeing KC-135A Stratotanker, 55-3118, takes off for the first time. (Seattle Post Intelligencer)

Built as an aerial refueling tanker to support the U.S. Air Force fleet of B-52 strategic bombers, an initial order for 29 tankers was soon followed by three additional orders, bringing the total to 275 airplanes by the end of Fiscal Year 1958.¹ Eventually 732 KC-135As were built by Boeing, and an additional 81 of other versions.

KC-135 City of Renton. (Seattle Post-Intelligencer)
Boeing KC-135A Stratotanker 55-3118, City of Renton, just prior to touchdown. (Seattle Post-Intelligencer)

With the company internal designation of Model 717, the KC-135 was developed from the Model 367-80 proof-of-concept prototype, the “Dash Eighty.” The Stratotanker is very similar in appearance to the Model 707 and 720 airliners but is structurally a different aircraft. It is also shorter than the 707 and has a smaller diameter fuselage.

Boeing Aircraft Co. President Bill Allen talks to test pilots Tex Johnston and Dix Loesch after first flight of the Model-367-80 prototype. (Seattle Post-Intelligencer)
Boeing Aircraft Co. President Bill Allen talks to test pilots Tex Johnston and Dix Loesch after first flight of the Model 367-80, prototype of the KC-135A Stratotanker. (Seattle Post-Intelligencer)

The Stratotanker was originally operated by a flight crew of four: pilot, co-pilot, navigator, and refueling boom operator. Upgrades over the decades have simplified operation and the crew has been reduced to two pilots and the boom operator. The tanker’s maximum transfer fuel load is 200,000 pounds (90,719 kilograms). The KC-135 can carry 83,000 pounds (37,648 kilograms) of cargo, and up to 37 passengers.It can also be configured to carry cargo or up to 32 passengers.

The KC-135A is 136 feet, 3 inches (41.529 meters) long, with a wingspan of 130 feet, 10 inches (39.878 meters) and overall height of 41 feet, 8 inches (12.700 meters). The Stratotanker’s maximum takeoff weight is 322,500 pounds (146,284 kilograms).

The KC-135A was powered by four Pratt & Whitney J57-P-59W turbojet engines. The J57 was a two-spool, axial-flow engine with a 16-stage compressor section (9 low- and 7-high-pressure stages) and a 3-stage turbine section (1 high- and 2 low-pressure stages). These engines were rated at 13,750 pounds of thrust (61.16 kilonewtons), each. The J57-P-59W was 183.5 inches (4.661 meters) long, 38.9 inches (0.988 meters) long and weighed 4,320 pounds (1,920 kilograms).

The Stratotanker fleet has been re-engined with more efficient CFM International CFM56 turbofan engines which produce 21,634 pounds of thrust (96.23 kilonewtons), each. The upgraded aircraft are designated KC-135R.

Boeing KC-135A Stratotanker 55-3118, City of Renton, escorted by the “Dash 80.” (Flight Global)

The tanker has a cruise speed of 530 miles per hour (853 kilometers per hour) at 30,000 feet (9,144 meters). The service ceiling was 50,000 feet (15,240 meters). Its range is 1,500 miles (2,414 kilometers) when carrying 150,000 pounds (68,039 kilograms) of transfer fuel, and the maximum ferry range is 11,015 miles (17,727 kilometers).

Of the 803 KC-135 aircraft built, 396 remain in service with the U.S. Air Force (as of 14 May 2018). It is estimated that the fleet is 33% through their design lifetime limits.

The first production airplane, 55-3118, was used for flight testing. It was later modified into an EC-135K Head Dancer airborne command post. Today, the first Stratotanker is on display at the front gate of McConnell Air Force Base, Kansas.

Boeing KC-135A-BN Stratotanker 55-3118, City of Renton, refuels B-52C-50-BO Stratofortress 54-2676. (U.S. Air Force)

¹ KC-135A-BN: 57-1418–57-1514; 57-2589–57-2609; 58-0001–58-0130; total: 275

© 2018, Bryan R. Swopes