Tag Archives: George Welch

14 October 1947

Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype North American Aviation XP-86. (U.S. Air Force)

14 October 1947: Twenty minutes before Captain Charles E. (“Chuck”) Yeager broke the sound barrier with a Bell X-1 rocketplane, North American Aviation Chief Test Pilot George S. Welch put the swept-wing XP-86 prototype, serial number 45-59597, into a shallow dive from 37,000 feet (11,278 meters) and accelerated. In direct violation of orders from the Secretary of the Air Force to not do so, Welch broke the “sound barrier.”

Witnesses on the ground heard the distinctive “B-BOOM” double-shock as the aircraft exceeded the speed of sound. Welch was the first to observe “Mach jump” as the airspeed indicator momentarily indicated higher due to the compression of air in front of the aircraft.

Estimates are that the XP-86 reached Mach 1.02–1.04 on this flight.

George S. Welch with his MG sports car and the North American XP-86. (Unattributed)
George S. Welch with his MG T-series sports car and North American Aviation  XP-86 45-59597. (Unattributed)

© 2015, Bryan R. Swopes

1 October 1947

North American Aviation test pilot George S. Welch, flying the first of three XP-86 prototypes, serial number 45-59597. (North American Aviation, Inc.)

1 October 1947: After three years development in which 801,386 engineering hours and 340,594 drafting hours had been expended, the first prototype North American Aviation XP-86 (company designation NA-140), serial number 45-59597, was ready for its first flight at Muroc Dry Lake in the high desert, north of Los Angeles, California.

Completed at North American’s Inglewood plant on 8 August 1947, it was trucked to Muroc in mid-September. It was reassembled, everything was checked out, and after a few taxi tests, company test pilot George S. Welch took off for a initial familiarization flight. Chief Test Pilot Bob Chilton flew chase in an XP-82 Twin Mustang with a company photographer on board. The duration of the first flight was 1 hour, 18 minutes.

Recently completed, the first prototype XP-86, 45-59597, waits inside the North American Aviation plant at Inglewood, California, 14 August 1947. (North American Aviation, Inc.)

During this first flight, George Welch climbed to 35,000 feet (10,668 meters):

“In a little more than ten minutes he had reached 35,000 feet. Leveling out, the test pilot smiled as he watched the indicated airspeed accelerate to 320 knots. He estimated that should be 0.90 Mach number. . . Rolling into a 40 degree dive, he turned west. . . The airspeed indicator seemed to be stuck at about 350 knots. The Sabre was behaving just fine. Then at 29,000 feet, there was a little wing roll. Correcting the roll, George pushed into a steeper dive. The airspeed indicator suddenly jumped to 410 knots and continued to rise. At 25,000 feet, he pulled the Sabre into level flight and reduced power. The wing rocked again and the airspeed jumped back to 390.”

Aces Wild: The Race for Mach 1, by Al Blackburn, Scholarly Resources Inc., Wilmington, Delaware, 1998, at Chapter 5, Pages 144–145.

George Welch was the first to report instrument readings that would be referred to as “Mach jump.” It has been argued that George Welch flew the XP-86 beyond Mach 1 during this flight, breaking the “sound barrier” two weeks before Chuck Yeager did with the Bell X-1 rocketplane. During flight testing, it was firmly established that the XP-86 could reach Mach 1.02–1.04 in a dive, so it is certainly possible that he did so on the Sabre’s first flight.

North American Aviation Model NA-140, the first XP-86 prototype, 45-59597, at Muroc AAF, 1947. (U.S. Air Force)
North American Aviation Model NA-140, the first XP-86 prototype, 45-59597, at Muroc AAF, 1947. (U.S. Air Force)

The XP-86 was unlike any airplane before it. It was the first airplane with a swept wing. After analyzing test data from the Messerschmitt Me 262, North American’s engineers designed a wing with a 35° degree sweepback to its leading edge. The wing tapered toward the tips, and its thickness also decreased from the root to the tip. In order to create a very strong but very thin wing, it was built with a two-layered aluminum skin, instead of ribs and spars, with each layer separated by “hat” sections. The wing sweep allowed high speed shock waves to form without stalling the entire wing.

Cutaway illustration of the XP-86. The speed brake configuation was not used for production aircraft. (North American Aviation, Inc.)

The wing also incorporated leading edge “slats” which were airfoil sections that automatically extended below 290 knots, smoothing the air flow over the wing’s upper surface and creating more lift at slow speeds. Above that speed, aerodynamic forces closed the slats, decreasing drag and allowing for higher speeds. Effectively, the wing could change its shape in flight.

Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype XP-86. This photograph was taken 14 October 1947. (U.S. Air Force)
This photograph of the XP-86 shows the 35° wing sweep. Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype XP-86. (North American Aviation, Inc.)

The XP-86 prototypes were 37 feet, 6½ inches (11.443 meters) long with a wingspan of 37 feet, 1–7/16 inches (11.314 meters) and overall height of 14 feet, 9 inches (4.496 meters). The empty weight was 9,730 pounds (4,413.5 kilograms), gross weight, 13,395 pounds (6,075.9 kilograms) and maximum takeoff weight was 16,438 pounds (7,456.2 kilograms).

North American Aviation XP-86 45-59597. (Ray Wagner Collection, San Diego Air & Space Museum Archives, Catalog #: 16_002950)

The XP-86 was initially powered by a General Electric-designed, Chevrolet-built J35-C-3 turbojet which produced 4,000 pounds of thrust. This was soon changed to an Allison J35-A-5. Performance testing was conducted with the Allison engine installed. The J35 was a single-spool, axial-flow turbojet engine with an 11-stage compressor and single-stage turbine. The J35-A-5 was rated at 4,000 pounds of thrust (17.79 kilonewtons) at 7,700 r.p.m. (static thrust, Sea Level). The engine was 14 feet, 0.0 inches (4.267 meters) long, 3 feet, 4.0 inches (1.016 meters) in diameter and weighed 2,400 pounds (1,089 kilograms).

The three North American Aviation XP-86 prototypes. Front to back, 45-59598, 45-59597 and 45-59599. (National Archives and Records Administration)

The maximum speed of the XP-86 at Sea Level was 0.787 Mach (599 miles per hour, 964 kilometers per hour), 0.854 Mach (618 miles per hour, 995 kilometers per hour) at 14,000 feet (4,267 meters) and 575 miles per hour (925 kilometers per hour) at 35,000 feet (10,668 meters)—0.875 Mach.

The prototype fighter was able to take off at 125 miles per hour (201 kilometers per hour) in just 3,020 feet (920.5 meters) of runway. It could climb to 30,000 feet (9,144 meters) in 12.1 minutes and had a service ceiling of 41,300 feet (12,588 meters).

The end of XP-86 45-59597 at Frenchman Flats, 1953.

XP-86 45-59597 was expended as a target during nuclear weapons tests. On 25 May 1953, it was 1,850 feet from ground zero of Upshot Knothole Grable. The only part still intact was the engine, which was thrown 500 feet.

Upshot Knothole Grable (National Nuclear Security Administration CIC 0315864)
George S. Welch, North American Aviation test pilot, wearing his orange flight helmet. An F-86 Sabre is in the background. (San Diego Air and Space Museum Photo Archives)

George Welch was born George Lewis Schwartz, in Wilmington, Delaware, 10 May 1918. His parents changed his surname to Welch, his mother’s maiden name, so that he would not be effected by the anti-German prejudice that was widespread in America following World War I. He studied mechanical engineering at Purdue, and enlisted in the Army Air Corps in 1939.

George S. Welch is best remembered as one of the heroes of Pearl Harbor. He was one of only two fighter pilots to get airborne during the Japanese surprise attack on Hawaii, 7 December 1941. Flying a Curtiss P-40B Warhawk, he shot down three Aichi D3A “Val” dive bombers and one Mitsubishi A6M2 Zero fighter. For this action, Lieutenant General H.H. “Hap” Arnold recommended the Medal of Honor, but because Lieutenant Welch had taken off without orders, an officer in his chain of command refused to endorse the nomination. He received the Distinguished Service Cross.

During World War II, George Welch flew the Bell P-39 Airacobra and Lockheed P-38 Lightning on 348 combat missions. He had 16 confirmed aerial victories over Japanese airplanes and rose to the rank of Major.

Suffering from malaria, George Welch was out of combat, and when North American Aviation approached him to test the new P-51H Mustang, General Arnold authorized his resignation. Welch test flew the P-51, FJ-1 Fury, F-86 Sabre and F-100 Super Sabre. He was killed 12 October 1954 when his F-100A Super Sabre came apart in a 7 G pull up from a Mach 1.5 dive.

North American Aviation F-86-A-NA Sabre 47-630. (North American Aviation, Inc./Chicago Tribune)
An early production aircraft, North American Aviation P-86A-1-NA Sabre 47-630 (s/n 151-38457). (North American Aviation, Inc./Chicago Tribune)

After testing, the North American Aviation XP-86 was approved for production as the F-86A. It became operational in 1949. The first squadron to fly the F-86 held a naming contest and from 78 suggestions, the name “Sabre” was chosen. The F-86 Sabre was in production until 1955 at North American’s Inglewood, California, and Columbus, Ohio, plants. It was also built under license by Canadair, Ltd., Sain-Laurent, Quebec, Canada; the Commonwealth Aircraft Corporation, Port Melbourne, Victoria, Australia; and Mitsubishi Heavy  Industries at Nagoya, Aichi Prefecture, Japan. A total of 9,860 Sabres were built. They served with the United States Air Force until 1970.

XP-86 45-59597 was expended in nuclear weapons tests, Operation Snapper Easy and Snapper Fox, at the Nevada Test Site, Frenchman’s Flat, Nevada, in May 1952. The second and third prototypes, 45-59598 and 45-59599, met similar fates.

© 2017, Bryan R. Swopes

25 May 1953

George S. Welch with North American YF-100A 52-5754. (North American Aviation, Inc.)

25 May 1953: North American Aviation Chief Test Pilot George S. Welch took the YF-100A Super Sabre, U.S. Air Force serial number 52-5754, for its first flight at Edwards Air Force Base. The airplane reached Mach 1.03.

Development of the Super Sabre began with an effort to increase the speed of the F-86D and F-86E Sabre fighters. The wings had more sweep and the airfoil sections were thinner. A much more powerful engine would be needed to achieve supersonic speed in level flight. As design work on the “Sabre 45” proceeded, the airplane evolved to a completely new design. Initially designated XF-100, continued refinements resulted in the first two aircraft being redesignated YF-100A.

North American Aviation Chief Test Pilot George S. Welch in the cockpit of the YF-100A, 52-5754, at Los Angeles International Airport. (North American Aviation, Inc.)
North American Aviation Chief Test Pilot George S. Welch in the cockpit of YF-100A 52-5754 at Los Angeles International Airport. (North American Aviation, Inc.)

The two YF-100As, 52-5754 and 52-5755, were 47 feet, 11¼ inches (14.611 meters) long with a wingspan of 36 feet, 7 inches (11.151 meters) and height of 16 feet, 3 inches (4.953 meters). The wings were swept to 45° at 25% chord, and had 0° angle of incidence and 0° dihedral. The ailerons were placed inboard on the wings to eliminate their twisting effects at high speed. The airplane had no flaps. The pre-production prototypes weighed 18,135 pounds (8,226 kilograms) empty, and had a gross weight of 24,789 pounds (11,244 kilograms).

The new air superiority fighter was powered by a Pratt & Whitney Turbo Wasp J57-P-7 engine. The J57 was a two-spool axial-flow turbojet which had a 16-stage compressor section (9 low- and 7 high-pressure stages) and a 3-stage turbine (2 high- and 1 low-pressure stages). The J57-P-7 had a Maximum Continuous Power rating of 8,000 pounds of thrust (35.586 kilonewtons) at 5,875 r.p.m., N1, and 9550 r.p.m., N2. The engine’s Military Power rating was 9,700 pounds thrust (43.148 kilonewtons) at 6,275 r.p.m./9,900 r.p.m., for 30 minutes; and 14,800 pounds thrust (65.834 kilonewtons) at 6,275 r.p.m./9,900 r.p.m. with afterburner, limited to five minutes. The engine was 20 feet, 9.7 inches (6.342 meters) long, 3 feet, 3.9 inches (1.014 meters) in diameter, and weighed 5,075 pounds (2,303 kilograms). Later production aircraft used a J57-P-39 engine, which had the same ratings.

Cutaway illustration ofa North American Aviation F-100A Super Sabre. (Boeing)
Cutaway illustration of a North American Aviation F-100A Super Sabre. (Boeing)
North American Aviation YF-100 Super Sabre 52-5754. (U.S. Air Force)
North American Aviation YF-100 Super Sabre 52-5754, 19 May 1953. (North American Aviation, Inc.)
The prototype North American Aviation YF-100A Super Sabre, 52-5754, with the North American F-100 team. Chief Test Pilot George S. Welch is in the center of the front row, seated. (North American Aviation, Inc.)

The YF-100A had a maximum speed of 660 miles per hour (1,062 kilometers per hour) at 43,350 feet (13,213 meters). The service ceiling was 52,600 feet (16,033 meters). Range with internal fuel was 422 miles (679 kilometers).

During testing, 52-5754 reached Mach 1.44 in a dive. On 29 October 1953, Colonel Frank K. Everest set a world speed record of 1,215.298 kilometers per hour (755.151 miles per hour) with 754.¹

In service with the United States Air Force, the Super Sabre’s mission changed from air superiority fighter to fighter bomber. It was used extensively during the Vietnam War. North American Aviation, Inc., built 2,294 single and tandem-seat Super Sabres between 1954 and 1959.

The F-100 pushed the State of the Art in the 1950s. There was a very steep learning curve back then. They remained in service with the USAF until 1979, and with the Republic of China Air Force until 1988. They also flew for France and Turkey.

In USAF service, 889 were destroyed in accidents, resulting in the death of 324 pilots. During the Vietnam War, the F-100s flew more combat sorties that all of the 15,000+ P-51 Mustangs during World War II. 186 Super Sabres were shot down by antiaircraft fire, but none were lost to enemy fighters.

North American Aviation YF-100A Super Sabre 52-5754. (U.S. Air Force)
North American Aviation YF-100A Super Sabre 52-5754 over Edwards Air Force Base, California, 25 May 1953. (North American Aviation, Inc.)
North American Aviation YF-100A Super Sabre 52-5754 lands on the dry lake at Edwards Air Force Base, California. (North American Aviation, Inc.)

George Welch was born George Lewis Schwartz, in Wilmington, Delaware, 10 May 1918. His parents changed his surname to Welch, his mother’s maiden name, so that he would not be effected by the anti-German prejudice that was widespread in America following World War I. He studied mechanical engineering at Purdue, and enlisted in the Army Air Corps in 1939.

North American Aviation YF-100A Super Sabre 52-5754 banks away from a chase plane during a flight test. (U.S. Air Force)

George S. Welch is best remembered as one of the heroes of Pearl Harbor. He was one of only two fighter pilots to get airborne during the Japanese surprise attack on Hawaii, 7 December 1941. Flying a Curtiss P-40B Warhawk, he shot down three Aichi D3A “Val” dive bombers and one Mitsubishi A6M2 Zero fighter. For this action, Lieutenant General H.H. “Hap” Arnold recommended the Medal of Honor, but because Lieutenant Welch had taken off without orders, an officer in his chain of command refused to endorse the nomination. He received the Distinguished Service Cross. During the War, Welch flew the Bell P-39 Airacobra and Lockheed P-38 Lightning on 348 combat missions. He had 16 confirmed aerial victories over Japanese airplanes and rose to the rank of Major.

Suffering from malaria, George Welch was out of combat, and when North American Aviation approached him to test the new P-51H Mustang, General Arnold authorized his resignation. Welch test flew the P-51, FJ-1 Fury, F-86 Sabre and F-100 Super Sabre. He was killed 12 October 1954 when his F-100A Super Sabre came apart in a 7 G pull up from a Mach 1.5 dive.

North American Aviation pre-production prototype YF-100A Super Sabre 52-5754 with drag chute deployed on landing at Edwards Air Force Base, California. (U.S. Air Force)
North American Aviation pre-production prototype YF-100A Super Sabre 52-5754 with drag chute deployed on landing at Edwards Air Force Base, California. The extended pitot boom is used to calibrate instruments early in the flight test program. (U.S. Air Force)
North American Aviation YF-100 Super Sabre 52-5754 with external fuel tanks, parked on the dry lake at Edwards Air Force Base, California. (U.S. Air Force)

¹ FAI Record File Number 8868

© 2018, Bryan R. Swopes

26 April 1948

est Pilot George Welch flying the prototype North American Aviation XP-86 Sabre, 45-59597. (U.S. Air Force)
North American Aviation test pilot George S. Welch, flying the first of three XP-86 prototypes, serial number 45-59597. (North American Aviation, Inc.)

26 April 1948: At Muroc Field (now known as Edwards Air Force Base), in the high desert of southern California, North American Aviation test pilot George Welch put the prototype XP-86 Sabre, 45-59597, into a 40° dive and broke the Sound Barrier. It is only the second U.S. aircraft to fly supersonic. The first was the Bell X-1, piloted by Chuck Yeager, only a few months earlier.

Or, maybe not.

In his book, Aces Wild: The Race For Mach 1, fellow North American Aviation test pilot Albert W. Blackburn makes the case that George Welch had taken the prototype XP-86 Sabre supersonic on its first flight, 1 October 1947, and that he had done so three times before Chuck Yeager first broke the Sound Barrier with the Bell X-1 rocketplane, 14 October 1947. Blackburn described two runs through the NACA radar theodolite with speeds of Mach 1.02 and 1.04 on 13 November 1947.

Mr. Blackburn speculates—convincingly, in my opinion—that Secretary of the Air Force W. Stuart Symington, Jr., ordered that Welch’s excursions beyond Mach 1 were to remain secret. However, during a radio interview, British test pilot Wing Commander Roland Prosper (“Bee”) Beamont, C.B.E, D.S.O. and Bar, D.F.C. and Bar, stated that he had flown through the Sound Barrier in the number two XP-86 Sabre prototype (45-59598). Once that news became public, the U.S. Air Force released a statement that George Welch had flown beyond Mach 1 earlier, but gave the date as 26 April 1948.

Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype XP-86. This photograph was taken 14 October 1947. (U.S. Air Force)
Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype XP-86. This photograph was taken 14 October 1947. (U.S. Air Force)

It wasn’t long after the first flight of the XP-86 on October 1, 1947, that Welch dropped into Horkey’s [Edward J. Horkey, an aerodynamicist at North American Aviation] office at the Inglewood plant. He wanted to talk about his recent flight and some “funny” readings in the airspeed indicator. He had made a straight-out climb to more than 35,000 feet. Then, turning back toward Muroc Dry Lake, he began a full-power, fairly steep descent.

“I started at about 290 knots,” Welch was explaining to Horkey. “In no time I’m at 350. I’m still going down, and I’m still accelerating but the airspeed indicator seems stuck like there’s some kind of obstruction in the pitot tube. I push over a little steeper and by this time I’m through 30,000 feet. All of a sudden, the airspeed indicator flips to 410 knots. The aircraft feels fine, no funny noises, no vibration. Wanted to roll off to the left, but no big deal. Still, I leveled out at about 25,000 and came back on the power. The airspeed flicked back to 390. What do you think?”

“. . . You may be running into some Mach effects. . . .”

— Aces Wild: The Race For Mach 1, by Al Blackburn, Scholarly Resources Inc., Wilmington, Delaware, 1999, at Pages 147–148.

The “funny” reading of the airspeed indicator became known as the “Mach jump.” George Welch was the first to describe it.

The Sabre became a legendary jet fighter during the Korean War. 9,860 were built by North American, as well as by licensees in Canada, Australia and Japan.

George Welch had been recommended for the Medal of Honor for his actions as a P-40 Warhawk fighter pilot in Hawaii, December 7, 1941. He was killed while testing a North American Aviation F-100A Super Sabre, 12 October 1954.

Test pilot George S. Welch with a North American Aviation F-86 Sabre. (San Diego Air and Space Museum Archives)

© 2018, Bryan R. Swopes