Tag Archives: Gloster Aircraft Co. Ltd.

5 March 1943

Fifth of eight F9/40 prototypes, Gloster Meteor DG206/G was the first to fly, 5 March 1943. (BAE Systems)

5 March 1943: Gloster test pilot Neill Michael Daunt took Gloster Meteor DG206/G for its first flight at RAF Cranwell in Lincolnshire, England. DG206/G was the fifth of eight F9/40 prototypes, but first to fly. (The “/G” in the identification indicated that the aircraft was to be guarded at all times.)

Designed by Wilfred George Carter, Gloster’s Chief Designer, the Meteor was a single-place, twin-engine, low-wing monoplane with tricycle landing gear. It was powered by two turbojet engines.

Gloster F9/40 DG205/G, the first prototype Meteor to fly. Left to Right: Test pilot John A. Crosby-Warren; test pilot Neill Michael Daunt; Frank McKenna, Managing Director, Gloster Aircraft Co.; Air Commodore Frank Whittle, RAF; and Wilfred George Carter, Chief Designer, Gloster. (Mary Evans Picture Library)
Test pilot Neill Michael Daunt, center, with a Gloster Meteor. (Test & Research Pilots, Flight Test Engineers)

Before the Meteor’s first flight, more than 100 Meteors had been ordered. The Mk.I was the first operational model with 20 built, but these were quickly upgraded to the Mk.III.

The Meteor Mk.III was 41 feet, 0 inches (12.497 meters) long with a wingspan of 43, feet 0 inches (13.106 meters) and overall height of 13 feet, 0 inches (3.962 meters). The wings had an angle of incidence of 1°. The center wing section had 0° 52½’ dihedral, while outboard of the engine nacelles, the wings had 6°. The total wing area was 374.0 square feet (34.8 square meters).

DG206 was initially intended to be powered by two Power Jets W.2 turbojet engines, however, when these were not ready, the Halford H.1 was substituted. The Halford H.1 turbojet which produced 2,300 pounds of thrust (10.231 kilonewtons) at 9,300 r.p.m. This engine was produced by de Havilland and named Goblin.

Cutaway illustration of the Halford H.1B Goblin turbojet engine. (Flight)

The Goblin is a linear descendant of the early Whittle units. It comprises a single-sided centrifugal compressor delivering air to sixteen combustion chambers grouped symmetrically around the axis of the unit and leading to the nozzle of the single-stage axial turbine which drives the compressor. Compressor impeller and turbine rotor are coupled by a tubular shaft to form a single rotating assembly which is mounted on only two ball bearings. The maximum diameters of the engine, around the compressor casing, is 50in., [1.27 meters] and with a jet pipe of minimum length fitted the overall length is about 8ft. [2.438 meters] Equipped with a jet pipe and all the necessary engine auxiliaries the dry weight of the complete unit is 1,500 lb. [680 kilograms] Fuel consumption is at the rate of 1.23 lb. / hr. per lb. thrust.

FLIGHT and AIRCRAFT ENGINEER, No. 1923. Vol. XLVIII. Thursday, 1 November 1945 at Page 472, Column 2

The first fifteen Mk.IIIs were powered by Rolls-Royce Welland W.2B/23 engines, while subsequent airplanes were equipped with Rolls-Royce Derwent B.37 which produced 1,800 pounds of thrust (80 kilonewtons).

The Meteor Mk.III had a maximum speed at Sea Level of 435 miles per hour (700 kilometers per hour) and 465 miles per hour (748 kilometers per hour) at 30,000 feet (9,144 meters). Its critical mach number (Mcr) was 0.74. The maximum permissible speed (VNE) of 500 miles per hour (805 kilometers per hour) up to an altitude of 6,500 feet (1,981 meters). The airplane could maintain a rate of climb of at least 1,000 feet per minute (5 meters per second) until 31,000 feet (9,449 meters). At 20,000 feet (6,096 meters) with two 180 gallon (681 liters) drop tanks its range was 581 miles (935 kilometers).

The Meteor was armed with four Hispano Mk.II 20 mm autocannon grouped together in the nose, with 180 rounds of ammunition per gun. Total duration of fire was 15 seconds.

First operational sortie by a Meteor was flown from RAF Manston, by Flying Officer William H. McKenzie, RCAF, 1430, 27 July 1944, patrolling for inbound V-1s.

Gloster Meteor F Mk.I EE227, YQ Y, No. 616 Squadron, RAF Manston. (Flight Lieutenant Miller, RAF Official Photographer/Imperial War Museums CL 2926)

© 2023, Bryan R. Swopes

7 November 1945

Gloster Meteor F Mk.IV, EE455, Brittania, 1945. (Gloster Aircraft Co., Ltd.)

7 November 1945: Wing Commander Hugh Joseph Wilson, A.F.C. and Two Bars, Royal Air Force, Commandant of the Empire Test Pilots’ School at RAF Cranfield, set the first world speed record with a jet-propelled airplane, and the first speed record by an airplane in excess of 600 miles per hour (965.606 kilometers per hour), when he flew the Gloster Meteor F Mk.IV, EE454, to 975.68 kilometers per hour (606.26 miles per hour)—0.80 Mach—at an altitude of 75 meters (246) above Sea Level.

The course was an 8 mile (12.9 kilometers) straight away from the Herne Bay Pier to Reculver Point, along the south coast of the Thames Estuary. This was a new Fédération Aéronautique Internationale (FAI) record for speed over a 3 kilometer course. ¹

Gloster Meteor Mk.III EE457, sistership of the two record-setting Mk.IV prototypes. (Unattributed)
Gloster Meteor F Mk.III EE457, sister ship of the two record-setting Mk.IV prototypes. (Unattributed)

Months of preparation by both the Royal Air Force, which formed a special “flight,” and Gloster Aviation Co., Ltd., went into the speed record effort. Two Meteor F Mk.III fighters, EE454 and EE455, were modified to the new Mk.IV version to attempt the speed record.

Gloster Meteor F Mk.III EE455 prior to modification to Mk.IV. © IWM (ATP 15305D)

The standard B.37 Rolls-Royce Derwent Series I turbojet engines were replaced with Derwent Series V turbojets and lengthened jet nacelles. The wings were shortened, the tips reshaped and the canopy was cut down and strengthened. All trim tabs on flight control surfaces were disabled and their edges sealed. Landing gear and gear door up-latches were strengthened to prevent them from being sucked open at high speed. The airplanes were lightened and all armament deleted. The surfaces were smoothed and painted in a gloss finish. EE454 retained the standard camouflage pattern, while EE455 was painted in a distinctive yellow-gold color.

Many hours of flight testing were performed to ensure that the airplanes would be stable enough at high speeds while flying at the very low altitude required by the Fédération Aéronautique Internationale‘s rules. The slightest deviation from smooth flight could have disastrous results.

Group Captain Hugh J. Wilson CBE AFC with Gloster Chief Test Pilot Eric Stanley Greenwood OBE. (Photograph courtesy of Neil Corbett, Test & Research Pilots, Flight Test Engineers)
Wing Commander Hugh Joseph Wilson, A.F.C. and Two Bars, with Gloster Chief Test Pilot Eric Stanley Greenwood. (Photograph courtesy of Neil Corbett, Test & Research Pilots, Flight Test Engineers)

EE454 was flown by Wing Commander Hugh Joseph Wilson, A.F.C. and Two Bars (three awards), and EE455 by Gloster Chief Test Pilot Eric Stanley Greenwood. Each airplane was required to make four passes over the 3 kilometer (1.8641 statute miles) course, with two runs in each direction. The airplanes were required to remain at or below 75 meters (246 feet) during the runs over the course, and during the turns at the end of each run, below 400 meters  (1,312 feet).

On the day of the speed runs, the weather was marginal. It was cold and overcast, and visibility varied from 7 to 12 miles 11–19 kilometers) along the course. The wind was 8–12 miles per hour (3.6–5.4 meters per second) from the northwest.

Wilson made four passes over the course. His speeds for each run were 604, 608, 602 and 611 miles per hour (972, 978, 969, and 983 kilometers per hour). Greenwood made his speed runs an hour later. His runs were 599, 608, 598 and 607 miles per hour (964, 978, 962 and 977 kilometers per hour).

Wilson’s average speed was the higher of the two. His official FAI-homologated record speed is 975.68 kilometers per hour (606.26 miles per hour). Greenwood’s average speed was 970.63 kilometers per hour (603.122 miles per hour.).² Both pilots are credited with official FAI world speed records.

Color photograph of Gloster Meteor Mk.IV EE455 (RAF Museum)

Post-flight inspections revealed that the sheet metal of the Meteors’ engine intakes had significantly distorted by the intense pressure differentials experienced during the speed runs.

The B.37 Rolls-Royce Derwent Series V, interestingly, was not a direct development of the preceding Derwent Series I–IV engines. Instead, it was a scaled-down version of the RB.41 Nene, which was in turn, a scaled-up and improved Derwent I. The Derwent V had a single-stage, two-sided, centrifugal-flow compressor and a single-stage axial-flow turbine. The compressor impeller and turbine rotor were mounted on a single shaft which was supported on each end by roller bearings, and in the center by a ball bearing. The Derwent V used nine combustion chambers, and burned aviation kerosene. Engine lubricating oil was added to the fuel at a 1:100 ratio, by volume. The Series V had a Normal Power rating of 3,000 pounds of thrust (13.345 kilonewtons) at 14,000 r.p.m., and a Take-off or Military Power rating of 3,500 pounds of thrust (15.569 kilonewtons) at 14,600 r.p.m. (There was no time limit for this power setting.) The engine produced a maximum 4,000 pounds of thrust (17.793 kilonewtons) at 15,000 r.p.m. at Sea Level. During the speed runs, thrust was restricted to 3,600 pounds (16.014 kilonewtons) on both Meteors. The Derwent V engine was 7 feet, 4.5 inches (2.248 meters) long, 3 feet, 7 inches (1.092 meters) in diameter and weighed 1,280 pounds (581 kilograms).

(Rolls-Royce named its piston aircraft engines after predatory birds, e.g., Kestrel, Merlin, but its turbine engines were named after rivers.)

Gloster Meteor Mk. IV EE455 on jack stands. (Unattributed)
Gloster Meteor F Mk. IV EE455 on jack stands. (Unattributed)
Gloster Meteor F Mk. IV EE455 on jack stands. (Unattributed)

British Pathé news film of the speed runs can be seen at:

Group Captain Wilson was born at Westminster, London, England, 28 May 1908, the only son of Alfred Wilson and Jessie Wood Young Wilson. He was educated at the University School, Hastings, and the Merchant Taylors’ School, London.

Wilson received a short service commission as a Pilot Officer in the Royal Air Force, 13 September 1929 and was assigned to the No. 5 Flight Training School, at RAF Sealand, Flintshire, Wales. Pilot Officer Wilson was then assigned to 111 Squadron at Hornchurch, Essex, 1930–1932. He was promoted to Flying Officer, 13 March 1931. From 1932 to to 1934, “Willie” Wilson was assigned to the School of Naval Co-operation and Air Navigation at Lee-on-Solent, Hampshire.

On the completion of his five-year short service, Wilson was transferred to the Reserve Air Force Officers list. He qualified in flying boats and acted as a flight instructor for the RAF Reserve School. Wilson was promoted to Flight Lieutenant 1 April 1937, with seniority retroactive to 1 April 1936.

Flying Officer Wilson in the cockpit of a Blackburn Roc fighter.
Flying Officer Hugh Wilson in the cockpit of a prototype Blackburn Roc fighter, RAF Northolt, 22 May 1939.

While a reserve officer, Wilson was a test pilot for Blackburn Aircraft Ltd., and made the first flight of the Blackburn Roc. He then became a civil test pilot at the Royal Aircraft Establishment, Farnborough.

In 1939 Flight Lieutenant Wilson was recalled to active duty. He was assigned as Commanding Officer, Aerodynamic Flight, RAE Farnborough, and also flew with No. 74 Fighter Squadron at Biggin Hill. On 1 September 1940, Wilson was promoted to the rank of Squadron Leader. In 1941, Wilson was appointed chief test pilot at the Royal Aircraft Establishment and was responsible for testing all captured enemy aircraft. He was promoted to Wing Commander, 20 August 1945.

Squadron Leader Hugh J. Wilson, AFC and Bar, in teh cocpit of a captured Focke-Wulf Fw 190A3, Werke Number 313, in RAF markings as MP499. (Royal Air Force)
Squadron Leader Hugh J. Wilson, A.F.C. and Bar, in the cockpit of a captured Focke-Wulf Fw 190A 3, W.Nr. 313, in RAF markings as MP499, August 1942. (Detail from Imperial War Museum photograph)
CBE medal with Military ribbon.
Commander of the Order of the British Empire Medal with Military Division Ribbon. (Wikipedia)

Wing Commander Hugh Joseph Wilson, A.F.C. and Two Bars, Royal Air Force, was named Commander of the Most Excellent Order of the British Empire (C.B.E.) in the King’s Birthday Honours List, 13 June 1946.

On 22 February 1947, Wing Commander Wilson married the former Thom Isobel Moira Sergeant (Mrs. Moira Garnham). They had one son. On 4 December 1959, he married Miss Patricia Frances Stanley Warren. They had two children.

Wing Commander Hugh J. Wilson retired from the Royal Air Force at his request 20 June 1948, with the rank of Group Captain. He died at Westminster, London 5 September 1990 at the age of 82 years.

Gloster Chief Test Pilot Eric Stanley “Terry” Greenwood (29 November 1908–February 1979) was the first pilot to exceed 600 miles per hour, while test flying the Meteors. He was appointed an Officer of the Most Excellent Order of the British Empire (O.B.E.) in the King’s Birthday Honours List, 13 June 1946.

¹ FAI Record File Number 9847

² FAI Record File Number 9846

© 2023 Bryan R. Swopes

12 September 1934

Gloster SS.37 G7, prototype Gloster Gladiator
The Gloster G.37, prototype of the Gloster Gladiator Mk.I (Gloster Aircraft Co., Ltd.)

12 September 1934: Hawker Aircraft Company test pilot Flying Officer Phillip Edward Gerald Sayer made the first flight of the Gloster G.37, a prototype fighter for the Royal Air Force, designed to reach a speed of 250 miles per hour (402 kilometers per hour) while armed with four machine guns. The flight took place at Gloster’s private airfield at Brockworth, Gloucestershire.

The Gladiator was a single-place, single-engine, single-bay biplane, with fixed landing gear. The airplane was primarily of metal construction, though the aft fuselage, wings and control surfaces were fabric covered.

The production Gladiator Mk.I was 27 feet, 5 inches (8.357 meters) long with a wingspan of 32 feet, 3 inches (9.830 meters) and overall height of 11 feet, 9 inches (3.581 meters). It had an empty weight of 3,217 pounds (1,459 kilograms) and gross weight of 4,594 pounds (2,084 kilograms).

Gloster SS.37 prototype, right profile
Gloster G.37 prototype, right profile

The G.37 was equipped with a left-hand tractor, air-cooled, supercharged, 1,519.083 cubic-inch-displacement (24.893 liters) Bristol Mercury IV-S2 nine cylinder radial engine. With a compression ratio of 5.3:1, the IV-S2 was rated at  505 horsepower at 2,250 r.p.m., and 540 h.p. at 2,600 r.p.m., both at 13,000 feet (3,962 meters). It developed a maximum 560 horsepower at 2,600 r.p.m. at 16,000 feet (4,877 meters). The engine had a take-off power rating of 530 horsepower at 2,250 r.p.m., at Sea Level (3-minute limit). The IV-S2 drove a two-bladed fixed-pitch propeller through a 0.655:1 gear reduction. This engine weighed 920 pounds (417 kilograms).

The G.37 was repowered with a Bristol Mercury VI-S engine, which had a 6:0:1 compression ratio and a 0.5:1 gear reduction ratio. This engine produced a maximum of 636 horsepower at 2,750 r.p.m. at 15,500 feet.

The prototype was armed with two synchronized, air-cooled Vickers .303-caliber machine guns, firing forward through the propeller arc, and two .303-caliber Lewis guns mounted under the bottom wing.

With the upgraded engine and armament, the G.37 reached 242 miles per hour (389 kilometers per hour).

The Gloster Gladiator Mk.I with an enclosed cockpit and a Bristol Mercury IX engine had a maximum speed of 257 miles per hour (414 kilometers) per hour) at 14,600 feet (4,450 meters).

This production Gloster Gladiator Mk.I, K6131, shows the cockpit enclosure. (This airplane, the second production Gladiator Mk.I, was damaged beyond repair when it ran out of fuel near RAF Church Fenton, 26 March 1938.) (Royal Air Force)
Gloster Gladiator Mk.I L8032. (SDASM)

The Gladiator Mk.I entered service with the Royal Air Force in February 1937. It was the last biplane fighter to do so, and was the first fighter with an enclosed cockpit. Beginning with No. 72 Squadron, eight fighter squadrons were equipped with the type, though by the beginning of World War II, these were being phased out by more modern airplanes like the Hawker Hurricane and Supermarine Spitfire.

A total of 737 Gloster Gladiators, Mk.I and Mk.II, were built. In addition to the Royal Air Force, there were operated by several other countries in Europe, the Mediterranean and the Middle East.

Prototype Gloster Gladiator in flight, now marked K5200.
Prototype Gloster Gladiator G.37 in flight, now marked K5200. A .303-caliber Lewis machine gun is visible under the right wing. (Royal Air Force)
Phillip E.G. Sayer, O.B.E. (Flight)

Phillip Edward Gerald Sayer was born at Colchester, England, 2 February 1905. He was the second of three children of Edward James Sayer, a retired British Army officer and Ethel Jane Hellyar Sayer.

Sayer was granted a short service commission in the Royal Air Force as a Pilot Officer on probation, 30 June 1924. His rank was confirmed 23 May 1925. He was promoted to Flying Officer 30 March 1926. Flying Officer Sayer was transferred to the R.A.F. Reserve, 2 March 1929.

In 1930, Gerry Sayer joined Hawker Aircraft Company as a test pilot. When Hawker took over Gloster Aircraft Co., Ltd. in November 1934, he was appointed Chief Test Pilot of Gloster.

Flight Lieutenant Sayer completed his service and relinquished his commission, 2 March 1937. He was permitted to retain his rank.

On 15 May 1941, Sayer made the first flight of the Gloster-Whittle E.28/39, a prototype jet fighter.

Chief Test Pilot Phillip Edward Gerald Sayer, Esq., was appointed an Officer of the Most Excellent Order of the British Empire (OBE) in the New Years Honours list, 30 December 1941.

Gerry Sayer was flying a Hawker Typhoon from RAF Acklington, 22 October 1942, to the Druridge Bay gunnery range. He never returned.

© 2018, Bryan R. Swopes