Tag Archives: Hero of the Soviet Union

Guards Lieutenant Natalya Fedorovna Meklin, Hero of the Soviet Union

Guards Lieutenant Natalya Fedorovna Meklin, Hero of the Soviet Union. (Colorized by Olga Shirnina: “Color by Klimbim”)

23 February 1945: Guards Lieutenant Natalya Fedorovna Meklin, a senior pilot with the 46th Guards Night Bomber Aviation Regiment, 325th Night Bomber Aviation Division, 4th Air Army, was awarded the title Hero of the Soviet Union by decree of the Supreme Soviet of the Union of Soviet Socialist Republics. This was in acknowledgement of the 840 combat missions that Lieutenant Meklin had flown to date. She was also awarded the Order of Lenin with Gold Star. The medals were presented to her by Marshal Konstantin Rokossovsky, 8 March 1945, while she was on duty in Poland. By the end of The Great Patriotic War, she had flown 982 combat sorties.

Natalya Fedorovna Meklin, circa 1940

Natalya Fedorovna Meklin was born 8 September 1922, at Lubny, Poltava, Ukraine. As a teenager, she attended High School No. 79 in Kiev, where she participated in gymnastics and competitive small-bore rifle and pistol shooting. She graduated in 1940.

Following high school, Natalya Fedorovna learned to fly at the Kiev Young Pioneer Palace glider school. In 1941 she went to the Moscow Aviation Institute. During July and August the students were sent to Bryansk to dig tank traps as defense against the Nazi invasion.

Inspired by famed Soviet pilot Marina Mikailovna Raskova, in October 1941 Natalya Fedorovna joined the women’s aviation regiments being formed by Raskova. She was sent to the Engels Military Aviation School, near Saratov, Russia, where she spent seven months in training as a pilot and navigator. Graduating in May 1942, Lieutenant Meklin was assigned to the 588th Night Bomber Aviation Regiment as chief of communications. The unit was then fighting on the southern Caucasian Front.

The women in the night bomber regiments made night attacks behind enemy lines flying the Polikarpov U-2 light bomber. They often approached their target at very low altitude and made gliding attacks. Their effect was to demoralize enemy soldiers and keep them awake. The Germans called them die Nacthexen (the Night Witches).

Lieutenant Meklin circa April 1943. She is wearing the Order of the Red Star and Order of the Patriotic War.

Lieutenant Meklin was awarded the Order of the Red Star on 19 October 1942. In 1943, she became a member of the Communist Party of the Soviet Union. Comrade Melkin flew 380 combat sorties as a navigator, and was then assigned as a pilot.

In February 1943, the 588th Aviation Regiment was redesignated the 46th Guards Night Bomber Aviation Unit. On 27 April 1943, Guards Lieutenant Meklin was awarded the Order of the Patriotic War, Second Class.

The following year, 14 April 1944, Lieutenant Meklin was awarded the first of three Orders of the Red Banner. A second followed on 14 December 1944, and the third, 15 June 1945.

Following The Great Patriotic War, Lieutenant Meklin’s status became that of a reserve officer. For the next two years, she studies at Moscow University, then in 1947, returned to active duty. She rose to the rank of major. She attended the Military Institute of Foreign Languages, graduating in 1953, and served as a translator in the 6th Directorate of the Ministry of Defense, where she was involved in the development of proposals for the production of various types of nuclear weapons, and preparation and coordination of tactical and technical requirements of nuclear weapons.

In January 1956, Major Meklin married  Yuri Fedorovich Kravtsov, and she assumed the name Kravtsova.

Major Natalya F. Kravtsova retired from the Air Force in September 1957. She was employed as a supervising editor at the Publishing House of Military Technical Literature in 1960, and then in 1961 as a translator/editor inn the Bureau of Foreign Military Literature.

On 11 March 1985, Natalya Fedorovna was awarded the Order of the Patriotic War, First Class.

Natalya Fedorovna Kravtsova with her son, circa 1960.

Comrade Kravtsova was the author of many articles and books, the last being We Were Called Night Witches (published in 2005).

Natalya Fedorovna Kravtsova, Hero of the Soviet Union, died 5 June 2005, in Moscow. Her remains were interred at the Troyekurovskoye Cemetery in Moscow.

Three-view illustration with dimensions in millimeters. (Самолет У-2 manual)
Михаи́л Миха́йлович Гро́мов

The Самолет У-2 (Airplane U-2) was designed by Nikolai Nikolaevich Poliparkov as a basic trainer. It made its first flight 7 January 1928 with test pilot M.M. Gromov. The airplane was produced in two- and three-place variants, some with an enclosed rear cabin. A float plane was also built.

Airplane U-2 was a single-engine, single bay biplane, constructed of a wire-braced wood framework, covered with fabric. There were ailerons on upper and lower wings. It was 8.170 meters (26 feet, 9.7 inches) long, with an upper wing span of 11.400 meters (37 feet, 4.8 inches), and lower span of 10.654 meters (34 feet, 10.9 inches). The wings’ chord was 1.650 meters (5 feet, 5 inches). The vertical gap between wings was 1.777 meters (5 feet, 10 inches), and the lower wing was staggered 0.800 meters (2 feet, 7.5 inches) behind the upper wing. The wings had 2° dihedral, and an angle of incidence of 2° 20′.

The U-2 was powered by a normally-aspirated, air-cooled, 8.590 liter (524.212-cubic-inch-displacement) Shvetsov M-11 five-cylinder radial engine, driving a two-bladed fixed-pitch wooden propeller. The engine produced 90 horsepower at 1,520–1,560 r.p.m.; 100 horsepower from 1,580–1,600 r.p.m.; and a maximum 110 horsepower at 1,650–1,670 r.p.m. The M-11 weighed 165 kilograms (364 pounds).

The U-2 was first armed in 1941. It could carry 350 kilograms (771 pounds) of bombs. A single 7.62×54mmR Shpitalny-Komaritskie (ShKAS) revolver machine gun was mounted in the rear cockpit.

The U-2 was redesignated Polikarpov Po-2 following the War. It was in production from 1928 to 1952. Sources vary as to the number built, ranging from 20,000 to 40,000.

Группа легких бомбардировщиков У-2 271-й ночной бомбардировочной авиационной дивизии летит на задание (“A group of U-2 light bombers of the 271st Night Bomber Aviation Division is flying on a mission.”)

© 2021, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

2 February 1982

An Aeroflot Mil Mi-26 at Farnborough, 1984.
An Aeroflot Mil Mi-26 at Farnborough, 1984. (MilborneOne)

2–4 February 1982: Over a three-day period, several flight crews set a series of Fédération Aéronautique Internationale (FAI) payload-to-altitude world records at Podmoskovnoe. They flew an OKB Mil Design Bureau Mi-26 heavy lift helicopter.

Летчик-испытатель Г.Р.Карапетян в кабине вертолета Ми-26. (Test pilot GR Karapetyan in the cockpit of the Mi-26 helicopter.)

On 2 February, Gurgen Rubenovich Karapetian and Y. Chapaev flew to 6,400 meters (20,997 feet) with a 10,000 kilogram (22,046.2 pound) payload.¹

The OKB Mil Design Bureau’s Mi-26 is the world’s largest helicopter. It is a twin-engine, single main rotor/tail rotor helicopter with fixed tricycle landing gear. It is normally operated by two pilots, a navigator, flight engineer and flight technician, and can carry as many as 90 passengers.

The Mi-26 has an overall length with rotors turning of 40.025 meters (131 feet, 3.8 inches) and height of 8.145 meters (26 feet, 8.7 inches). The main rotor has a diameter of 32.00 meters (104 feet, 11.8 inches). The helicopter has an empty weight of 28,200 kilograms (62,170 pounds) and maximum takeoff weight of 56,000 kilograms (123,459 pounds).

The eight-blade fully-articulated main rotor system turns clockwise at 132 r.p.m. (the advancing blade is on the left). A five-blade tail rotor is mounted on the right side of a pylon in a pusher configuration. The tail rotor turns clockwise as seen from the helicopter’s left side (the advancing blade is below the axis of rotation).

Power is supplied by two Lotarev D-136 turboshaft engines producing 8,500 kW (11,399 shaft horsepower), each.

The cruise speed of the Mi-26 is 255 kilometers per hour (158 miles per hour) and maximum speed is 295 kilometers per hour (183 miles per hour). The hover ceiling, out of ground effect (HOGE), is 1,800 meters (5,905 feet), and the service ceiling is 4,600 meters (15,092 feet), though on 2 February 1982, test pilot Gurgen Karapetyan, who flew with Grishchenko at Chernobyl, flew an Mi-26 to 6,400 meters (20,997 feet) carrying a 10,000 kilogram (22,046 pound) payload.¹ The maximum payload is 20,000 kilograms (44,092 pounds). The helicopter’s range, carrying an 18,000 kilogram (39,683 pounds) payload is 670 kilometers (416 miles).

The Mi-26 first flew in 1977. Production began in 1980. The helicopter remains in service with both military and civil operators.

Gurgen Rubenovich Karapetyan, Hero of the Soviet Union
Gurgen Rubenovich Karapetyan, Hero of the Soviet Union.

Gurgen Rubenovich Karapetyan (Гурген Рубенович Карапетян) was born 9 December 1936 in what is now Ekaterinberg, Sverdlovsk, Russia. He learned to fly a Polikarkpov Po-2 (NATO identifier, “Mule”) at the Sverdlovsk flying club at the age of 15.

Karapetyan served in the Soviet Air Force from 1956 to 1963. His rank was first lieutenant. An uncle advised him to attend the Moscow Aviation Institute, and he graduated in 1961. He worked as an engineer at Mil Design Bureau and then attended test pilot school. From 1962 to 1993, Karapetyan was a test pilot for the Mil Moscow Helicopter Plant, becoming the chief test pilot in 1974.

Gurgen Rubenovich Karapetyan

In April 1986, along with Anatoly Demyanovich Grishchenko, Gurgen Karapetyan flew a Mil Mi-26 helicopter dropping loads of sand and wet cement on the wreckage of the Chernobyl Reactor Number 4, which had been destroyed by an explosion. Carrying 15 ton loads suspended from an 800-foot (244 meters) cable, they made repeated trips while flying through the radioactive gases released from the plant. Grishchenko later died as a result of radiation exposure.

On 24 January 1993, President Mikhail Gorbachev named Karapetyan a Hero of the Soviet Union. He was twice awarded the Order of Lenin, and is an Honored Test Pilot of the Soviet Union.

Gurgen Karapetyan has set 10 world records in helicopters. He has flown more than 5,500 hours in 39 helicopter types. Now retired, he lives in Moscow.

¹ FAI Record File Number 9902

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

30 January 1934

Osoaviakhim-1, 30 January 1934. (RIA Novosti/Science Source)
П. Ф. Федосеенко (Pavel Fyodorovich Fedoseyenko)

30 January 1934: At approximately 9:00 a.m. a large gas balloon lifted off from Matilovo, near Moscow, and ascended toward the stratosphere. Three aeronauts were aboard: Pavel Fyodorovich Fedoseyenko, Ilya Davydovich Usyskin, and Andrei Bogdanovich Vasenko. The balloon was named Osoaviakhim 1.

Buoyancy was provided by gaseous hydrogen. When fully expanded, the balloon had a volume of approximately 25,000 cubic meters (882,867 cubic feet) and a diameter of 177 feet (54.95 meters).

The three passengers and scientific instruments were carried in a welded sheet metal sphere hanging from cables below the envelope. The gondola was considered air-tight, and with its passengers, equipment and ballast, weighed about 2,000 kilograms (4,409 pounds).

The equipment and experiments carried aboard Osoaviakhim 1 were provided by the Main Physical Observatory, Ioffe Physical-Technical Institute, and the State Radium Institute, all located in Leningrad, Russian Soviet Federative Socialist Republic. They were designed to measure cosmic rays, determine the makeup of the upper atmosphere, and measure magnetic effects. Photographs of the ground were also to be taken.

А.Б.Васенко (Andrei Vasenko)

As the balloon rose, the crew maintained radio contact with ground stations. At about 11:45, they reported that they had reached about 67,600 feet (20,600 meters). At 12:23, Osoaviakhim 1 had reached its peak altitude, 22,000 meters (72,178 feet).

While in the stratosphere, sunlight was not damped as it would have been in the lower, denser troposphere. It caused the hydrogen within the envelope to heat to approximately 54 °C. (129 °F.) above the temperature of the surrounding air. The hydrogen expanded the envelope beyond its limits and was released through pressure relief valves.

During the descent, the remaining hydrogen cooled and contracted. The balloon gradually lost buoyancy and the rate of descent increased. The crew had released all of the ballast in order to reach the peak altitude and now had no way to lighten ship to slow the balloon’s descent. After passing through 12,000 meters (39,370 feet), the rate of descent began to dramatically increase, and by 8,000 meters (26,247 feet), the balloon was torn away from the spherical gondola, which then entered a free fall.

И.Д.Усыскин (Il’ia Usyskin)

Osoaviakhim 1 struck the ground near Potijsky Ostrog, about 470 kilometers (292 miles) east of Matilovo. All three men were killed. A watch belonging to Vasenko was stopped at 4:23. Presumably, this was the time at which the impact occurred.

A state funeral was held 2 February. The ashes of the three aeronauts were interred in the Kremlin wall. The three urns were carried by the most prominent leaders of the Communist state, Joseph Vissarionovich Stalin, General Secretary of the Communist Party of the Soviet Union; Kliment Yefremovich Voroshilov, People’s Commissar for Defense; and Vyacheslav Mikhailovich Molotov, Chairman of the Council of People’s Commissars.

Fedoseyenko, Usyskin, and Vasenko were named Heroes of the Soviet Union.

Although Osoaviakhim 1 rose higher than than the 18,665 meter record ¹ set by Century of Progress (Commander Thomas Greenhow Williams Settle, United States Navy, and Major Chester Fordnay, United States Marine Corps), 20 November 1933, its peak altitude was not recognized as a record by the Fédération Aéronautique Internationale (FAI). At the time, the Union of Soviet Socialist Republics was not a member nation of the FAI.

Osoaviakhim stratospheric balloon. (Georgy N. Bibikov/The State Russian Museum)

¹ FAI Record File Number 10645

2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

22 November 1955

Tupolev Tu-16 (NATO codename "Badger")
Tupolev Tu-16 (NATO codename “Badger”). (Federation of American Scientists)
Major Fedor Pavlovich Golovashko, Hero of the Soviet Union.
Major Fedor Pavlovich Golovashko, Hero of the Soviet Union (1923–1981)

22 November 1955:  The Soviet Union’s first thermonuclear weapon, RDS-37, was air-dropped at the Semipalatinsk Test Site, approximately 150 kilometers west of the city of Semipalatinsk, Kazakh S.S.R. (now, Kazakhstan). The bomber, a Tupolev Tu-16A, and its crew were under the command of Senior Test Pilot Major Fedor Pavlovich Golovashko.

The RDS-37 was a two-stage radiation-implosion thermonuclear bomb, what was called at the time a “hydrogen bomb.” (RDS stands for Rossiya delaet sama—meaning, in effect, that “Russia does it itself.” This three-letter prefix was applied to atomic tests since the first, RDS-1, 29 August 1949.)

This was the Soviet Union’s twenty-fourth nuclear weapons test, but its first true thermonuclear bomb, and it was the world’s first air-dropped “H bomb.” (The United States’ first air-drop of a thermonuclear weapon, Redwing Cherokee, took place six months later, 20 May 1956. Great Britain’s Grapple I/Short Granite test occurred 15 May 1957.)

Major Golovashko and his crew had made a previous attempt with the RDS-37. Two days earlier, 19 November, the loading of the bomb began at 6:45 a.m. Four hoists were used to lift it into the bomber’s weapons bay. The process took about two hours.

In this still frame from a film recording shows teh RDS-37 bomb being position under the Tupolev Tu-16A ("Badger-A") bomber.
In this still frame from a cine film recording, the RDS-37 bomb is shown being positioned under the Tupolev Tu-16A bomber for loading into the bomb bay.

At 9:30 a.m., the Tu-16 took off from Zhana Semey Airport (PLX), about 8 kilometers (5 miles) south of the city of Semipaltinsk. It began climbing to an altitude of 12,000 meters (39,370 feet) as it flew toward the test site. Golovashko’s bomber was escorted by pairs of Mikoyan-Gurevich MiG-17 fighters to prevent the theft of the test weapon.

Although the weather had been forecast to be good, it unexpectedly began to deteriorate. The Tu-16 was above a cloud layer with the test area obscured. As the crew prepared to bomb by radar, the radar equipment failed and all attempts to repair it were unsuccessful.

Test conductors were very concerned about landing the Tupolev back at Semipalatinsk with a fully-armed nuclear bomb still on board. There was consideration of dropping the RDS-37 over remote mountains, but there was no certainty of being able to avoid villages or towns, and if the bomb were to only partially detonate there could be widespread contamination by its radioactive fuel.

There was a delay in making a decision and the Tupolev’s fuel was getting low. Finally it was decided to have the bomber return to Semipaltinsk with the bomb. The landing was uneventful and the technicians removed the RDS-37 for servicing before the next test attempt.

Андре́й Дми́триевич Са́харов

It was normal procedure for bomber crews to rotate, but the decision was made to have Major Golovashko’s crew make the second test flight. On 22 November the weapon loading began at 4:50 a.m., with takeoff at 8:34 a.m. Again the Tupolev Tu-16A was escorted by pairs of MiG-17s. Once again, the bomber arrived over the test site at 12,000 meters, flying at 870 kilometers per hour (541 miles per hour).

Soviet nuclear weapons designer Andrei Dmitrievich Sakaharov, whose “other idea”—radiation-implosion—was used in the design of the RDS-37, was at an observation site about 70 kilometers from the test target. He watched the Tu-16 as it flew overhead and described it as, “dazzling white with its sweptback wings and slender fuselage extending far forward, it looked like a sinister predator poised to strike.” He also noted that the color white is “often associated with death.”

Sakharov's "white bomber."
Sakharov’s “sinister predator.”

After being released from Major Golovashko’s Tupolev, the RDS-37 was retarded by parachute to allow time for the bomber to get away. It detonated at 1,550 meters (5,085 feet) above the ground. The flight crew described seeing a blue-white flash that lasted 10 to 12 seconds. The shock wave of the detonation, spreading at the speed of sound, hit the bomber 3 minutes, 44 seconds after the drop. The Tu-16 experienced accelerations of 2.5Gs, and was lifted to higher altitude. It was not damaged.

5–7 minutes following the detonation the distinctive mushroom cloud had reached to a height of 13–14 kilometers (8–8.7 miles) and its diameter was 25–30 kilometers (15.5–18.6 miles).

The RDS-37 detonated with a reported yield varying between 1.6 and 1.9 megatons (depending on source). The bomb had a designed yield of 3 megatons but this had been intentionally reduced for this test.

The bomb detonated under a temperature inversion layer which reflected a large proportion of the explosive force back to the ground. A small town about 75 kilometers (47 miles) away suffered significant destruction. A small child was killed when a building collapsed. At another location, a soldier in an observation was killed when the trench caved in from the shock. Nearly 50 others were injured. Windows were broken as far as 200 kilometers (124 miles) away.

Several videos of this test are available on YouTube.

The Tu-16 has a normal bomb load of 3,000 kilograms (6,614 pounds), but can carry up to 9,000 kilograms (19,842 pounds). It has seven Afanasev Makarov AM-23 23mm autocannons for defense, mounted in three pairs which are remotely operated by the gunners, and a single gun in the nose. These guns fire at a rate of 900 rounds per minute.

The Tupolev Tu-16 was built in bomber, cruise missile carrier, electronic counter measures, aerial tanker, and electronic and photographic reconnaissance versions, at three factories in the Soviet Union: Kazan Plant N22, Kuibyshev N18 and Voronezh N64. 1,507 Tu-16s were built before production ended in 1961. 453 of these were the Tu-16A nuclear weapons version. Another 120 were built under license in China by Harbin Aircraft. These are designated H-6.

Фёдор Павлович Головашко

Fedor Pavlovich Golovashko was born at Byokovo, Novosibirsk, 22 June 1923. He was educated through the 9th grade before being drafted into the Soviet Army in 1941. He was trained as a pilot at the Novosibirsk Military Aviation School, graduating in 1943.

He was assigned to a Long Range Aviation regiment (Dalnyaya Aviatsiya) under the command of Alexander Ignatyevich Molodchy, twice a Hero of the Soviet Union.

Golovashko’s final missions of the Great Patriotic War (World War II) were flown against Berlin.

Fedor Golovashko remained in the Air Force following the war and soon was in command of a squadron. He became a test pilot in 1954 and was assigned to the Semipalatinsk Test Site.

Senior Test Pilot Major Fedor Pavlovich Gorovashko was named a Hero of the Soviet Union, 11 September 1956. He reached the rank of Colonel before retiring from the Air Force in 1961. He had been awarded the Order of Lenin, Order of the Red Banner (two awards), Order of the Patriotic War 1st Degree, and the Order of the Red Star (two awards).

After retiring, Colonel Golovashko lived in Odessa. He died there, 19 April 1981.

Major Golovashko’s bomber was a Tupolev Tu-16A (NATO codename “Badger-A”). This was a two-engine turbojet-powered long-range medium bomber. It was normally operated by a flight crew of seven.

OKB Tupolev test pilot Nikolai Stepanovich Rybko, Hero of the Soviet Union (1911–1977)

Developed from the Tupolev Design Bureau Project 88, the prototype Tu-16 made it’s first flight at Zhukovsky Airfield (Ramenskoye Airport), southeast of Moscow, on 27 April 1952. The test pilot was Nikolai Stepanovich Rybko. This was the Soviet Union’s first swept-wing bomber. It was designated Tu-16 and entered production in 1954.

The Tu-16A was designed specifically to carry nuclear weapons and had a strengthened fuselage and heated bomb bay. The Tupolev Tu-16 is 34.8 meters (114.2 feet) long with a wingspan of 33 meters (108.3 feet) and overall height of 10.36 meters (34 feet). The wings are mounted at mid-fuselage and have a compound sweep. The inner portion has a leading edge sweep of 40.5°, and the outer wing is swept to 35°. t has an empty weight of 37,200 kilograms (82,012 pounds) and maximum takeoff weight of 79,000 kilograms (174,165 pounds).

Power is supplied by two large turbojet engines mounted in the wings at the fuselage, similar to the de Havilland Comet, though they are angled slightly outward to direct the exhaust away from the airplane’s skin panels. The Tu-16A variant is equipped with two Mikulin RD-3M-200 turbojets which produce 21,835 pounds of thrust, each.

The Tu-16A has a maximum speed of 992 kilometers per hour (610 miles per hour) and a service ceiling of 12,800 meters (41,995 feet). Its maximum range is 6,400 kilometers (3,977 miles).

Screen Shot 2015-11-21 at 16.05.37© 2017, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

30 October 1961

Tupolev Tu 95 carrying Tsar Bomba
Tupolev Tu-95V No. 5800302 carrying the RDS-220 bomb.

30 October 1961: At 9:30 a.m., specially modified Tupolev Tu-95V “Bear A” bomber, No. 5800302, under the command of Major Andrey Ergorovich Durnovtsev of the 409th Heavy Bomber Air Regiment, departed Olenegorsk Air Base, 92 kilometers (57 miles) south of Murmansk, at 9:30 a.m. The bomber carried a nine-man crew, including navigator Major Ivan Nikoforovich Mite.

The Tu-95 was accompanied by a Tupolev Tu-16 instrumentation ship (No. 3709), under the command of Colonel Vladimir Fedorovich Martynenko. Some sources say that the two bombers were escorted by a flight of fully-armed fighters.

Major Durnovtsev’s mission was to carry out the Soviet Union’s 130th nuclear weapons test. The Tu-95 carried a single RDS-220, a three-stage radiation-implosion thermonuclear bomb. It was 8 meters (26.25 feet) long, with a diameter of 2.1 meters (6.89 feet), and weighed approximately 27,000 kilograms (59,525 pounds). The bomb was variously known as “Big Ivan” or “Tsar Bomba” (King of Bombs).

Fully assembled RDS-220 three-stage radiation implosion thermonuclear bomb, with retarding parachute in place, at Arzamas-16 .

The Tu-95 dropped the RDS-220 from an altitude of 10,500 meters (34,449 feet) over the D-II test range, 15 kilometers (9 miles) north of the Mityushikha Strait on Novaya Zemlya. The bomb was retarded by parachute to allow the Bear time to escape the blast effects. After falling for 3 minutes, 8 seconds, at 11:33 a.m., the bomb detonated 4,000 meters (13,123 feet) above the surface of Novaya Zemlya. A bright flash of light lasted for 30 seconds and finally faded away after 70 seconds.

45 seconds after detonation, the nuclear cloud reached a height of 30 kilometers (19 miles), then spread outward, reaching a maximum diameter of 95 kilometers (59 miles).

Major Durnovtsev's Tupolev Tu-95N Bear A, carrying the RDS-220 bomb to the target. A Tu-16 instrumentation aircraft is just behind, on the bomber's left quarter.
Major Durnovtsev’s Tupolev Tu-95V “Bear A,” carrying the RDS-220 bomb to the target. A Tu-16 instrumentation aircraft is just behind, on the bomber’s left quarter.
The RDS-220 bomb just after drop. The retarding parachute is beginning to deploy.
“Big Ivan” with first stage parachute deployed.

Major Durnovtsev’s Tu-95 was approximately 39 kilometers (24 miles) away for “ground zero” at the time of the explosion. As it continued to fly away from the blast, the shock waves finally caught up to bomber at a distance of 115 kilometers (71 miles), 8 minutes, 20 seconds after they had released the bomb.

At the same time, a secret United States Air Force Boeing JKC-135A Stratotanker instrumentation aircraft, Speed Light Bravo, 55-3127, had flown closer to ground zero to gather data about the air burst. It was so close that its special anti-radiation paint was scorched. (55-3127 was later converted to the NKC-135A airborne laboratory configuration to support the Limited Test Ban Treaty of 1963. It was returned to tanker configuration in the 1980s. Later, 55-3127 served as a test bed aircraft for the Aeronautical Systems Division at Wright-Patterson  It was retired to Davis-Monthan Air Force Base in 1992.)

Speed Light Bravo, Boeing JKC-135A Stratotanker 55-3127.

After the nuclear explosion data was analyzed by the Foreign Weapons Evaluation Panel (the “Bethe Panel”) the RDS-220 yield was estimated at 57 megatons. This was the largest nuclear weapon detonation in history. It was also the “cleanest,” with 97% of the energy yield produced by fusion. Relative to the size of the explosion, very little fallout was produced.

Tsar Bomba fireball over Novaya Zemlya, 11:32 a.m., 30 October 1961. The fireball has reached a diameter of 5 miles (8 kilometers). Shock waves reflecting off of the ground caused the slight flattening of the bottom of the fireball.

All buildings in the town of Severny, 55 kilometers (34.2 miles) from Ground Zero, were destroyed. Wooden buildings as far as 200 kilometers (124 miles) were destroyed or heavily damaged.

A visible shock wave in the air was seen at a distance of 700 kilometers (435 miles). The shock wave from the explosion traveled around the world three times.

The mushroom cloud of Tsar Bomba climbs into the stratosphere.

Following the test, Major Durnovtsev was promoted to the rank of Lieutenant Colonel and named Hero of the Soviet Union.

The crater created by the Tsar Bomba test, 30 October 1961.

Bear No. 5800302 was ordered in 1955 and completed in 1956. The Tupolev Tu-95 is a long range strategic bomber. It is 151 feet, 6 inches (46.2 meters) long with a wingspan of 164 feet, 5 inches (50.10 meters). The wings are swept at a 35° angle. The bomber is powered by four Kuznetsov NK-12M turboprop engines, producing 14,800 shaft horsepower, each, and turning 8-bladed counter-rotating propellers. It weighs 90,000 kilograms (198,416 pounds) empty, with a maximum takeoff weight of 188,000 kilograms (414,469 pounds). The Bear has a maximum speed of 920 kilometers per hour (572 miles per hour) and an unrefueled range of 15,000 kilometers (9,321 miles). (The Bear A is capable of inflight refueling.) Service ceiling is 13,716 meters (45,000 feet).

Approximately 72 of these aircraft remain in service with the Russian Federation. The current variant is the Tupolev Tu-95MS “Bear H.” Recently, individual bombers have been taken out of service to be modernized by the Beriev Aircraft Company at Taganrog, Russia. The modernized Bear is designated Tu-95MSM. It is expected that 20 Tu-95s will be upgraded.

A current production Tupolev Tu-95 Bear-H strategic bomber. (U.S. Air Force)
A current production Tupolev Tu-95MS Bear H strategic bomber. (Royal Air Force)

Андрей Егорович Дурновцев (Andrey Ergorovich Durnovtsev) was born 14 January 1923 at Verkhney, a village in the Krasnoyarsk Krai of Siberia. He graduated from high school in 1940.

Durnovtsev was inducted into the Red Army 19 July 1942 and sent to the Irkutsk Military School of Aviation Mechanics, graduating in November 1943. He was promoted to sergeant. Sergeant Durnovtsev request assignment for pilot training, and was sent to the 8th Military Aviation School for initial flight training. In August 1945, he was sent to complete training in long-range bombers at the Engels Military Aviation Pilot School (VAUL). He graduated in 1948.

Lieutenant Durnovtsev next attended the Ryazan Higher Officers’ School, studying the combat application of long-ranger bombers. He was assigned as a pilot with the 330th Bomber Aviation Regiment. Durnovtsev served as an aircraft commander, detachment commnder, then deputy squadron commander.

Lieutenant Colonel Durnovtsev was named Hero of the Soviet Union by decree of the Presidium of the Supreme Soviet, 7 March 1962, “for courage and bravery shown in the development of new military equipment.”

Lieutenant Colonel Drnovtsev retired in 1965. During his military career, he had been awarded the Gold Star Medal, the Order of Lenin, the Order of the Red Star, and the Medal for Military Merit.

Lieutenant Colonel Andrey Ergorovich Durnovtsev, Hero of the Soviet Union, died in Kiev, 24 October 1976, at the age of 53 years.

Майор Андрей Дурновцев

A recently declassified 40-minute video of the test can be viewed on YouTube at:

© 2020, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather