Tag Archives: Hispano-Suiza 8b

27 October 1918

Lieutenant Russell L. Maughan, Air Service, United States Army (FAI)
Lieutenant Russell L. Maughan, Air Service, United States Army (FAI)

27 October 1918:

MAUGHAN, RUSSELL L.

First Lieutenant (Air Service), U.S. Army
Pilot, 139th Aero Squadron, American Expeditionary Forces
Citation:
Distinguished Service Cross

The President of the United States of America, authorized by Act of Congress, July 9, 1918, takes pleasure in presenting the Distinguished Service Cross to First Lieutenant (Air Service) Russell L. Maughan, United States Army Air Service, for extraordinary heroism in action while serving with 138th Aero Squadron, U.S. Army Air Service, A.E.F., near Sommerance, France, 27 October 1918. Accompanied by two other planes, Lieutenant Maughan was patrolling our lines, when he saw slightly below him an enemy plane (Fokker type). When he started an attack upon it he was attacked from behind by four more of the enemy. By several well-directed shots he sent one of his opponents to the earth, and, although the forces of the enemy were again increased by seven planes, he so skillfully maneuvered that he was able to escape toward his lines. While returning he attacked and brought down an enemy plane which was diving on our trenches.

General Orders: War Department, General Orders No. 46 (1919), Amended Supplement 1
Action Date: October 27, 1918
Officers of the 139th Aero Squadron, at Belrain Aerodrome, France, November 1918. 1st Lieutenant Russell L. Maughan is at the center of the photograph, kneeling, in the second row. (U.S. Air Force)
Officers of the 139th Aero Squadron, at Belrain Aerodrome, France, November 1918. 1st Lieutenant Russell L. Maughan is at the center of the photograph, kneeling, in the second row. (U.S. Air Force)

Maughan is credited with four enemy aircraft destroyed while flying a SPAD S.XIII C.I fighter.

Russell Lowell Maughan was born at Logan, Utah, 28 March 1893. He was the sixth of eight children of Peter Weston Maughan, an accountant, and Mary Lucinda Naef Maughan. He attended Utah Agricultural College in Logan and graduated with a bachelor of science degree in 1917.

Maughan was commissioned as a second lieutenant in the U.S. Army Signal Officers Reserve Corps, 28 May 1917. He was promoted to first lieutenant, 8 January 1918. This commission was vacated 10 September 1920 and he was appointed a first lieutenant, Air Service, United States Army, retroactive to 1 July 1920.

On 14 August 1919, Maughan married Miss Ila May Fisher at Logan, Utah. They would have three children, but divorced sometime after 1940. His son, Russell L. Maughan, Jr., would become an cadet at the United States Military Academy (West Point) and be commissioned as an officer in the U.S. Air Force.

Following the War, Lieutenant Maughan became a test pilot at McCook Field, Ohio. In 1921, he was reassigned to the 91st Observation Squadron, based at the Presidio of San Francisco.

On 14 October 1922, Rusell Maughan won the Pulitzer Trophy Race at Selfridge Field, near Mount Clemens, Michigan, before a crowd of 200,000 spectators. He set two World Speed Record during the race with his Curtiss R-6: 330.41 kilometers per hour (205.31 miles per hour) over a distance of 100 kilometers,¹ and 331.46 kilometers per hour (205.96 miles per hour) over a distance of 200 kilometers).² On 29 March 1923, he set another World Speed Record, 380.75 kilometers per hour (236.587 miles per hour),³ again flying a Curtiss R-6.

Major General Mason Patrick, Chief of the Air Service, with Lieutenant Russell L. Maughan, 8 July 1924. (Library of Congress)

On 23 June 1924, Lieutenant Maughan flew a Curtiss PW-8 Hawk from Mitchel Field, Long Island, New York, to the Presidio of San Francisco on the west coast of California, in an elapsed time of 21 hours, 47 minutes including refueling stops enroute. This was the “Dawn-to-Dusk Flight.” For this transcontinental flight, Maughan was awarded the Distinguished Flying Cross.

On 1 October 1930, Maughan was promoted to captain. He served in the Philippine Islands from 1930 to 1935, acting as an advisor to the government until 1932. From 1932 to 1935, he served as the post operations officer. He and his family lived in Manila. They returned to the United States aboard SS Columbus, a Norddeutscher Lloyd passenger liner, arriving at New York City from Southampton, 18 August 1935.

Captain Maughan served as an aviation advisor to the governor general of the Philippine Islands, from 1935 to 1939. On 16 June 1936, Captain Maughan was promoted to major (temporary). That rank was made permanent 12 June 1939. He was promoted to lieutenant colonel, 11 March 1940. Just prior to World War II, Lieutenant Colonel Maughan was sent on a survey tour to identify suitable locations for airfields in Greenland.

During World War II, Lieutenant Colonel Maughan commanded the 60th Troop Carrier Group, a Douglas C-47 unit, 1941–42, and then, with the rank of colonel, he commanded the 51st Troop Carrier Wing during Operation Torch, the Allied invasion of North Africa.

On 25 October 1946, Colonel Maughan married Lois Rae Roylance at Las Vegas, Nevada. She was 21 years his junior. They lived in Portland, Oregon.

Colonel Maughan later commanded Lemoore Army Airfield, California, and Portland Air Force Base, Oregon.

Maughan was discharged from the U.S. Air Force, 30 November 1947, at the U.S. Army Hospital at Valley Forge, Pennsylvania. He died at the U.S. Air Force Hospital, Lackland Air Force Base, San Antonio, Texas, 21 April 1958, at the age of 65 years. He was buried at the Logan City Cemetery, Logan, Utah.

SPAD S.XIII at Air Service Production Center No. 2, Romorantin Aerodrome, France, 1918. (U.S. Air Force)

The Société Pour L’Aviation et ses Dérivés SPAD S.XIII C.1 was a single-seat, single-engine, two-bay biplane designed by Technical Director Louis Béchéreau. The chasseur was first flown by René Pierre Marie Dorme, 4 April 1917. It was constructed of a wooden framework and covered with doped fabric. Sheet metal panels covered the engine and cockpit.

The SPAD S.XIII was 20 feet, 4 inches (6.198 meters) long with the wings having an equal span of 26 feet, 3¾ inches (8.020 meters). It had an overall height of 7 feet, 6½ inches (2.299 meters). The total wing area was 227 square feet (21.089 square meters). The wings each had a chord of 4 feet, 7-1/8 inches (1.400 meters) with 0° dihedral and 1¼° stagger. The vertical gap between the upper and lower wings was 3 feet, 10½ inches (1.181 meters). The upper wing had a 1½° angle of incidence; the lower wing had 1° angle of incidence. There were ailerons on the upper wing only. They had a span of 7 feet, 3½ inches (2.222 meters) and chord of 1 foot, 7½ inches (0.495 meters). The horizontal stabilizer span was 10 feet, 2 inches (3,099 meters. Its maximum chord was 1 foot, 8¾ inches (0.527 meters). The vertical fin height was 2 feet, 7/8-inch (0.876 meters) and it was 3 feet, 11¼ inches (1.200 meters) long at the base. The rudder was 3 feet, 10-5/8 inches (1.184 meters) high with a maximum chord of 2 feet, 2 inches (0.660 meters).

The airplane had fixed wheeled landing gear which used rubber cords (bungie cords) for shock absorption. The wheel track was 4 feet, 10¾ inches (1.492 meters). A fixed skid was used at the tail.

The the S.XIII had an empty weight of 1,464 pounds (663 kilograms) and maximum takeoff weight of 1,863 pounds (845 kilograms).

The SPAD S.XIII C.1 was powered by a water-cooled, normally-aspirated 11.762 liter (717.769-cubic-inch-displacement) left-hand tractor ⁴ Hispano-Suiza 8B single-overhead-cam 90° V-8 engine, with a 5.3:1 compression ratio. The engine drove a fixed-pitch two-bladed laminated wood propeller through a 0.75:1 gear reduction. The Hispano-Suiza 8B was rated at 235 cheval vapeur (231.8 horsepower) at 2,300 r.p.m. It was 1.36 meters (4 feet, 5.5 inches) long, 0.86 meters (2 feet, 9.9 inches) wide, and 0.90 meters (2 feet, 11.4 inches) high. It weighed 236 kilograms (520.3 pounds).
The SPAD’s main fuel tank was behind the engine, with a gravity feed supply tank in the upper wing. The total fuel total capacity was about 30 gallons (114 liters). This was sufficient for two hours endurance at full throttle at 10,000 feet (3,048 meters), including climb.
The SPAD XIII had a maximum speed at Sea Level of 131.5 mph (211.6 kilometers per hour) at 2,300 rpm; and 105 mph (169 kilometers per hour) at its service ceiling of 18,400 feet (5,608 meters), at 2,060 r.p.m. The airplane’s absolute ceiling was 20,000 feet (6,096 meters).
The fighter was armed with two fixed, water-cooled, .303-caliber Vickers machine guns, or two air-cooled .30-caliber Marlin M1917 or M1918 aircraft machine guns, with 400 rounds of ammunition per gun, synchronized to fire forward through the propeller arc.
According to a report by the National Aeronautics and Space Administration,
. . .the SPAD XIII had the most favorable power loading of any of the aircraft considered and a high (for its day) wing loading. These characteristics coupled with a relatively low zero-lift drag coefficient and low drag area gave the SPAD the highest speed of any of the aircraft listed in the table. As shown by the data in figure 2.18, the climb characteristics of the SPAD were bettered only by three of the Fokker aircraft.

A total of 8,742 S.XIII C.1 fighters were built by nine different manufacturers. Only one, Société Kellner Frères Constructeurs serial number 4377, the oldest existing original airplane, is in flyable condition. It is in the collection of the Memorial-Flight Association at L’aérodrome de La Ferté-Alais (LFFQ)

SPAD S.XIII C.1 serial number 7689, Smith IV, after restoration at the Paul E. Garber Center, Smithsonian Institution National Air and Space Museum. (NASM)
The same type fighter flown by Lt. Maughan on 27 October 1918, this is SPAD S.XIII C.1 serial number 7689, Smith IV, after restoration at the Paul E. Garber Center, Smithsonian Institution National Air and Space Museum. (NASM)

¹ FAI Record File Number 15195

² FAI Record File Number 15196

³ FAI Record File Number 15194

⁴ The propeller rotates clock-wise, as seen from the front of the airplane.

© 2017, Bryan R. Swopes

27 April 1921: PERFORMANCE TEST OF SPAD 13 EQUIPPED WITH 220 H.P. WRIGHT ENGINE.

SPAD S.XIII C.1 at Air Service Production Center No. 2, Romorantin Aerodrome, France, 1918. (Rudy Arnold Photographic Collection, Smithsonian Institution National Air and Space Museum, XRA-5380)

27 April 1921: Louis G. Meister, Chief Test Pilot, McCook Field, completes his report on the flight tests of the Société Pour L’Aviation et ses Dérivés SPAD S.XIII C.1, best known, simply, at the “Spad.”

The SPAD S.XIII C.1 was a single-seat, single-engine, two-bay biplane constructed of a wooden framework with a doped fabric covering. Sheet metal covered the engine and cockpit. Designed by Société Pour L’Aviation et ses Dérivés Technical Director Louis Béchéreau and manufactured by SPAD as well as eight other companies,² this was an improved and slightly larger version of the earlier SPAD S.VII C.1. It used a more powerful Hispano-Suiza 8Ba engine instead of the S.VII’s 8Aa, with an increase of 50 horsepower. (Later versions used 8Be engines.) Armament was increased from a single .303-caliber Vickers machine gun to two.

The S.XIII was first flown by René Pierre Marie Dorme, 4 April 1917.

First Lieutenant Edward V. Rickenbacker with his SPAD XIII C.1, 94th Aero Squadron, American Expeditionary Forces, France, 1918. (U.S. Air Force)

The McCook Field test aircraft, designated P-154, was built by Société Pour L’Aviation et ses Dérivés. Its manufacturer’s serial number was 17956, and it was designated A.S. 94101 by the U.S. Air Service. It was surveyed 14 January 1924.

The SPAD was faster than other airplanes of the time and it had a good rate of climb. Though a product of France, it was used by both the Royal Flying Corps and the U.S. Army Air Service. In France, the airplane type now considered a “fighter” was called a chasseur (“hunter”). The letter “C-” in the SPAD’s designation reflects this. The “-.1” at the ending indicates a single-place aircraft.

PILOT’S OBSERVATIONS ON SPAD 13

     This airplane taxies very easily even in high wind, and has no tendency to turn in either direction on the ground. It should be taxied with the control stick held forward to lessen the weight on the tail skid. The tail skid is too straight and has broken on two different occasions while taxying over rough ground.

      It is a difficult airplane to take-off because of a tendency to swing to the right immediately upon opening the throttle, and if given left rudder too fast will swing to the left. In order to make a good fast take-off it is necessary to push the control stick slightly forward to raise the tail from the ground. This feature is noticeable after having flown other pursuit plane of approximately the same power.

     In flight the airplane is very steady, but requires a good deal of left rudder, as the engine torque is very pronounced. It is tail heavy flying level, and also climbing with wide-open throttle, but this tail heaviness is not so pronounced above 15,000 feet.

     The cockpit is very roomy, although the rudder bar is too close to the pilot and tires the legs in a long flight. It is a very warm and comfortable airplane to fly at altitude or on cold days, but not on warm days or low flying with wide-open throttle, such as contact patrol.

     The airplane maneuvers easily and shows no tendency to spin in very tight banks. The visibility is good to either side and above the top wing, but is blind straight ahead and below.

     The constant noise of the geared engine is very annoying and at altitudes above 16,000 feet the engine operates badly. The engine is very susceptible to temperature changes in a glide and cools quickly, so the pilot must control his shutters constantly in changing altitude.

     The engine is not very accessible for maintenance, and the installation could be improved.

     This airplane lands easily, shows no tendency to turn on the ground, and stops short owing to the heavy tail. Even when landed tail high or on a rough field it does not show any tendency to nose over.

Louis G. Meister,

Test Pilot.

AIR SERVICE INFORMATION CIRCULAR, Vol. III, No. 286, October 1, 1921, Page 3

The S.XIII was 20 feet, 4 inches (6.198 meters) long.¹ The upper and lower wings had equal span and chord. The span was 26 feet, 3¾ inches (8.020 meters) and chord, 4 feet, 7-1/8 inches (1.400 meters). The vertical spacing between the wings was 3 feet, 10½ inches (1.181 meters), and the lower wing was staggered 1¼° behind the upper. Interplane struts and wire bracing were used to reinforce the wings. The wings had no sweep or dihedral. The angle of incidence of the upper wing was 1½° and, of the lower, 1°. Only the upper wing was equipped with ailerons. Their span was 7 feet, 3½ inches (2.222 meters), and their chord, 1 foot, 7½ inches (0.495 meters). The total wing area was 227 square feet (21.089 square meters).

Rear view of a SPAD S.XIII C.1 at Air Service Production Center No. 2, Romorantin Aerodrome, France, 1918. Note the airplane’s serial number, 5524, on the right elevator. (Air Service, United States Army)

The horizontal stabilizer had a span of 10 feet, 2 inches (3.099 meters) with a maximum chord of 1 foot, 8¾ inches (0.527 meters). The height of the vertical fin was 2 feet, 7/8-inch (0.876 meters) and it had a maximum length of 3 feet, 11¼ inches (1.200 meters). The rudder was 3 feet, 10-5/8 inches high (1.184 meters) with a maximum chord of 2 feet, 2 inches (0.660 meters).

The SPAD S.XIII C.1 had fixed landing gear with two pneumatic tires. Rubber cords (bungie cords) were used for shock absorption. The wheel track was 4 feet, 10¾ inches (1.492 meters). At the tail was a fixed skid.

The airplane had an empty weight of 1,464 pounds (664 kilograms), and gross weight 2,036 pounds (924 kilograms).

2nd Lieutenant Frank Luke, Jr., 27th Aero Squadron, with his SPAD XIII C.1, 19 September 1918. (Photograph by Lt. Harry S. Drucker, Signal Corps, United States Army)

Initial production SPAD XIIIs were powered by a water-cooled, 11.762 liter (717.769-cubic-inch displacement), La Société Hispano-Suiza 8Ba single overhead cam (SOHC) left-hand-tractor 90° V-8 engine. It was equipped with two Zenith down-draft carburetors and had a compression ratio of 5.3:1. The 8Ba was rated at 150 cheval vapeur (148 horsepower) at 1,700 r.p.m., and 200 cheval vapeur (197 horsepower) at 2,300 r.p.m. It drove a two-bladed, fixed-pitch, wooden propeller with a diameter of 2.50 meters (8 feet, 2.43 inches) through a 0.585:1 gear reduction. (The 8Be engine had a 0.75:1 reduction gear ratio and used both 2.50 meter and 2.55 meter (8 feet, 4.40 inches) propellers.) The Hispano-Suiza 8Ba was 1.36 meters (4 feet, 5.5 inches) long, 0.86 meters (2 feet, 9.9 inches) wide and 0.90 meters (2 feet, 11.4 inches) high. It weighed 236 kilograms (520 pounds).

A Wright-Martin Model E, licensed version of the Hispano-Suiza SOHC V-8 aircraft engine, in the collection of the Smithsonian Institution, National Air and Space Museum. (NASM 2014-04437)

The airplane had a main fuel tank behind the engine, with a gravity tank located in the upper wing. The total fuel capacity was 183 pounds (83 kilograms), sufficient for 2 hours, 30 minutes endurance at full throttle at 10,000 feet (3,048 meters), including climb. There was also a 4.5 gallon (17 liters) lubricating oil tank.

The SPAD S.XIII had a maximum speed of 131.5 miles per hour (213 kilometers per hour) at 6,500 feet (1,981 meters), with the engine turning 2,040 r.p.m., and a service ceiling of 18,400 feet (5,608 meters). The airplane could climb to 6,500 feet in 6.5 minutes, to 15,000 feet (4,572 meters) in 23 minutes, and to the service ceiling in 42.5 minutes. Its absolute ceiling was 20,000 feet. The SPAD’s minimum speed at Sea Level was 65 miles per hour (105 kilometers per hour), and landing speed was 59 miles per hour (95 kilometers per hour).

The chasseur was armed with two fixed, water-cooled, .303-caliber (7.7 mm) Vickers Mk.I machine guns with 400 rounds of ammunition per gun, synchronized to fire forward through the propeller arc. Because of the cold temperatures at altitude, the guns’ water jackets were not filled, thereby saving considerable weight.

This SPAD S.XIII C.I, on display at Terminal 3, Phoenix Sky Harbor International Airport (PHX), Phoenix, Arizona, is painted to represent a fighter flown by Frank Luke. It was assembled from components of several different airplanes and restored by GossHawk Unlimited, Casa Grande, Arizona. (Wikipedia)

Kellner et ses Fils serial number 4377 is the oldest SPAD S.XIII in existence, and the only one in flyable condition. It is at the Memorial-Flight Association at L’aérodrome de La Ferté-Alais (LFFQ).

SPAD S.XIII C.1 4377 (F-AZFP) in flight. (Laurent Quérité)

A NASA publication reported: “. . .the SPAD XIII had the most favorable power loading of any of the aircraft considered and a high (for its day) wing loading. These characteristics coupled with a relatively low zero-lift drag coefficient and low drag area gave the SPAD the highest speed of any of the aircraft listed in the table. As shown by the data in figure 2.18, the climb characteristics of the SPAD were bettered only by three of the Fokker aircraft.”

Quest for Performance: The Evolution of Modern Aircraft, by Laurence K. Loftin, NASA Scientific and Technical Information Branch, 1985, at Chapter 2, Page 32

SPAD S.XIII C.1 serial number 7689, Smith IV, after restoration at the Paul E. Garber Center, Smithsonian Institution National Air and Space Museum. (NASM)
SPAD S.XIII C.1, serial number 7689, Smith IV, which had just undergone restoration at the Paul E. Garber Center, Smithsonian Institution National Air and Space Museum. (Photo by Mark Avino, National Air and Space Museum, Smithsonian Institution)

¹ Dimensions, weights, capacities and performance data cited above refer to SPAD S.XIII C.1 serial number 17956 (A.S. 94101), which was tested at McCook Field, Dayton, Ohio (Project Number P-154), 1921.

² Including  Société Pour L’Aviation et ses Dérivés; Société des Avions Bernard; Kellner et ses Fils; The Blériot and SPAD Manufacturing Company, Ltd., at Addlestone, Surrey, England;     Mann Egerton & Company, Ltd., Norwich, England; and Curtiss Aeroplane and Motor Company’s Elmwood plant at  Buffalo, New York, U.S.A.

© 2022, Bryan R. Swopes