Tag Archives: Interceptor

4 March 1954

Lockheed XF-104 prototype, 53-7786, photographed 5 March 1954. (Lockheed Martin)

4 March 1954: Lockheed test pilot Anthony W. LeVier takes the prototype XF-104 Starfighter, 53-7786, for its first flight at Edwards Air Force Base in the high desert of southern California. The airplane’s landing gear remained extended throughout the flight, which lasted about twenty minutes.

Lockheed XF-104 53-7786 on Rogers Dry Lake, Edwards Air force Base, California. (U.S. Air Force)
Lockheed XF-104 53-7786 rolling out on Rogers Dry Lake, Edwards Air Force Base, California. This photograph shows how short the XF-104 was in comparison to the production F-104A. Because of the underpowered J65-B-3 engine, there are no shock cones in the engine inlets. (U.S. Air Force via Jet Pilot Overseas)

Designed by the legendary Kelly Johnson, the XF-104 was a prototype Mach 2+ interceptor and was known in the news media of the time as “the missile with a man in it.”

Tony LeVier was a friend of my mother’s family and a frequent visitor to their home in Whittier, California.

Legendary aircraft designer Clarence L. “Kelly” Johnson shakes hands with test pilot Tony LeVier after the first flight of the XF-104 at Edwards Air Force Base. (Lockheed via Mühlböck collection)

There were two Lockheed XF-104 prototypes. Initial flight testing was performed with 083-1001 (USAF serial number 53-7786). The second prototype, 083-1002 (53-7787) was the armament test aircraft. Both were single-seat, single-engine supersonic interceptor prototypes.

The wing of the Lockheed XF-104 was very thin, with leading and trailing edge flaps and ailerons. (San Diego Air & Space Museum)

The XF-104 was 49 feet, 2 inches (14.986 meters) long with a wingspan of 21 feet, 11 inches (6.680 meters) and overall height of 13 feet, 6 inches (4.115 meters). The wings had 10° anhedral. The prototypes had an empty weight of 11,500 pounds (5,216 kilograms) and maximum takeoff weight of 15,700 pounds (7,121 kilograms).

Lockheed XF-104 53-7786 (San Diego Air & Space Museum)

The production aircraft was planned for a General Electric J79 afterburning turbojet but that engine would not be ready soon enough, so both prototypes were designed to use a Buick-built J65-B-3, a licensed version of the British Armstrong Siddeley Sapphire turbojet engine. The J65-B-3 was a single-shaft axial-flow turbojet with a 13-stage compressor section and 2-stage turbine. It produced 7,200 pounds of thrust (32.03 kilonewtons) at 8,200 r.p.m. The J65-B-3 was 9 feet, 7.0 inches (2.921 meters) long, 3 feet, 1.5 inches (0.953 meters) in diameter, and weighed 2,696 pounds (1,223 kilograms).

On 15 March 1955, XF-104 53-7786 reached a maximum speed of Mach 1.79 (1,181 miles per hour, 1,900 kilometers per hour), at 60,000 feet (18,288 meters).

XF-104 53-7786 was destroyed 11 July 1957 when the vertical fin was ripped off by uncontrollable flutter. The pilot, William C. Park, safely ejected.

Lockheed XF-104 53-7786 with wingtip fuel tanks. (Lockheed Martin)
Lockheed XF-104 55-7786. (Lockheed Martin)
Lockheed XF-104 53-7786 with wingtip fuel tanks. Compare these finned tanks to those in the image above. (Lockheed Martin)

Lockheed Martin has an excellent color video of the XF-104 first flight on their web site at:

http://www.lockheedmartin.com/us/100years/stories/f-104.html

© 2019, Bryan R. Swopes

29 February 1964

Lockheed YF-12A 60-6934, the first of three prototype Mach 3+ interceptors. (U.S. Air Force)
Lockheed YF-12A 60-6934, the first of three prototype Mach 3+ interceptors. (U.S. Air Force)

29 February 1964: President Lyndon B. Johnson publicly revealed the existence of the Top Secret Lockheed YF-12A, a Mach 3+ interceptor designed and built by Clarence L. “Kelly” Johnson’s “Skunk Works.” President Johnson referred to the interceptor as the “A-11.”

The following day, the Los Angeles Times ran two lengthy articles on its front page:

Johnson Discloses New Jet Secretly Developed by U.S.

Manned Aircraft Flies at 3 Times Speed of Sound; Military Potential Great

By ROBERT C. TOTH

Times National Science Correspondent

     WASHINGTON—President Johnson disclosed Saturday the secret five-year development of an experimental jet aircraft whose performance “far exceeds that of any other aircraft in the world today.”

     Several of the craft, designated A-11, have been “tested in sustained flight” at speeds greater than 2,000 m.p.h. and at heights over 70,000 ft., he said.

     The craft has been made possible “by major advances in aircraft technology of great significance to both military and commercial application,” Mr. Johnson told a press conference.

     Tests are under way at Edwards AFB, Cal., to determine the capability of the airplanes as long-range interceptors of enemy bombers. The plane was developed by Lockheed Aircraft Corp. of Burbank as a special project.

     “Appropriate members of the Senate and the House have been kept fully informed on the program since its day of inception” in 1959, Mr. Johnson said.

     Costs of the A-11 were not revealed, and the President said detailed performance information on the aircraft “will remain strictly classified.” Personnel working on the project have been told to keep quiet, he added.

     Why the project has been wrapped in secrecy was not immediately clear. All that a White House spokesman would say, in answer to a question, was the A-11 represents “a new plateau in aircraft potential”—of such great potential that the military wanted to “explore it in secrecy.”

     The A-11’s development also will aid in building a supersonic transport for commercial airlines, Mr. Johnson said. Like A-11, the transport would fly about Mach 3, or three times the speed of sound.

     One of the most important technological achievements of the A-11 project, the President said, has been the mastery of the problem of using titanium metal on aircraft.

Great Heats

     The aluminum used in today’s airplanes wears out in sustained flight at speeds greater than about Mach 2.2. This is due to the great heats generated by friction as air rushes over the surfaces of the aircraft, particularly the leading edges of the wings.

     “The existence of this (A-11) program is being disclosed today to permit the orderly exploitation of this advanced technology in our military and commercial planes,” Mr. Johnson said.

     High performance aircraft like the controversial TFX multi-service airplane and the Navy’s Phantom fighter will have speeds up to about Mach 2.5—about 1,600 m.p.h. These high speeds are possible for relatively short duration, however.

     Funds for the A-11 were presumably buried in other appropriations, conceivably in part in Air Force appropriations for the B-70.

     Dimensions of the A-11 were not revealed although an in-flight picture of the side view of the plane was distributed. It suggests the A-11 is more than 100 ft. long, based on the size of the pilot’s head in the cockpit.

     The front half of the A-11 looks very similar to that of the X-15 rocket plane which has flown at speeds over 4,000 m.p.h. The characteristic tail surfaces of the X-15, extending both above and below the fuselage, also were obvious.

     The A-11’s engine, a J-58 from Pratt & Whitney, occupies the rear third of the vehicle.

     The experimental fire control and air-to-air missile system was developed by the Hughes Aircraft Co. The “A” in the aircraft’s designation suggests an “attack” function.

Number of Questions

     Announcement of the project raises a number of questions, some of which Presidential Press Secretary Pierre Salinger answered at a subsequent briefing.

     For example, why did the Pentagon object to the Boeing Aircraft Co.’s proposal to use titanium in the TFX if the A-11 had proved that the metal can be used?

     “The technical knowledge obtained in the A-11 program made it possible to evaluate Boeing’s proposal,” Mr. Salinger said, and the Pentagon concluded that the titanium in the TFX represented a “High development risk.”

Technical Justification

     This seemed to be further technical justification for the choice of General Dynamics over Boeing for the TFX, a choice which raised a political furor in Congress.

The economic meaning of the A-11 was another question put to Mr. Salinger. While the project makes a major contribution to Mach 3 flight, he replied, “It cannot be converted into a transport. A major independent development program is still necessary to produce a supersonic transport.”

Los Angeles Times, Vol. LXXXIII, Sunday, 1 March 1964, Page 1, Columns 7–8, and Page 6, Columns 3–4

The second Times article identifies the designer as Clarence L. (“Kelly”) Johnson:

NEW PLANE GREAT FEAT OF SECURITY

BY MARVIN MILES

Times Aerospace Editor

     President Johnson’s announcement of a new triple-sonic interceptor Saturday disclosed on of the best kept secrets in military annals, a security feat comparable in many ways to that achieved with the atomic bomb.

     Apparently even the House Armed Services Committee didn’t know of the project for it recommended $40 million for an improved manned interceptor, a fund approved by the full House just 10 days ago.

     The Senate, however, must have had more information, for it made no provision for the new interceptor studies in approving aircraft funding last Thursday, including $52 million for an advanced bomber.

     The secret of Lockheed’s new A-11 interceptor was kept far better than that of the same company’s U-2 reconnaissance plane that was eventually shot down on a sky-spy flight over Russia.

     Dozens of reports on the mysterious U-2 from various sections of the world had filtered into the news before the international incident over Russia.

     The Times learned the new A-11 was spurred by the same aircraft genius who headed development of the U-2 and Lockheed’s famed F-104 Starfighter interceptor, Clarence (Kelly) Johnson, vice president for advanced development projects.

     Johnson and his crew work in a carefully-guarded area at the Lockheed Burbank factory known as the “Skunk Works.”

     Pierre Salinger, White House press officer, told newsmen the A-11 was funded and managed by the Air Force in the normal manner for a classified project.

     Inasmuch as the new plane was started in 1959, this gave rise to speculation as to why a similar plane, the F-108, was canceled in that year.

     The F-108 was a North American Aviation project in the same time era that the company’s triple-sonic B-70 bomber was started.

     Like the A-11, it was to have had a speed of Mach 3 (about 2,000 m.p.h.) with a range of about 2,000 miles, plus combat time.

     Reason for canceling the F-108 was largely budgetary, according to reports in 1959, with the Defense Department declaring that of the two North American projects, the B-70 bomber was a more urgent program than the F-108.

     Some estimates of the A-11 can be drawn from the F-108. The North American plane was to have been powered by two engines, and one considered was the Pratt & Whitney J-58, the engine that will power the A-11.

     This indicates the new Lockheed interceptor will have two engines also. The J-58 has never been used, either militarily or commercially, as far as The Times could determine. It has a thrust of about 30,000 lb.

     Another indication from the F-108 relates to the armament of the A-11. The canceled North American interceptor was to have been armed with Hughes GAR-9 nuclear-tipped rockets.

     The A-11 has a Hughes fire control system and its armament could well be the same guided, air-to-air rocket or an advancement of it.

     The new interceptor will answer fears expressed by many military experts that Russia’s bomber fleet poses a greater threat to North America than her intercontinental missiles.

     The A-11 will have the speed to intercept high speed bombers and shoot them down at ranges that would precluded their launching air-to-ground missiles against U.S. targets.

     In appearance, the A-11 looks something like the X-15 rocket plane, a long, slim craft with sharp pointed nose section similar to that of the F-104 Starfighter.

     It has both ventral and dorsal fins and appears to be about 90 ft. long over-all.

Los Angeles Times, Vol. LXXXIII, Sunday, 1 March 1964, Page 1, Columns 7–8 and Page 6, Column 5–6

The YF-12A first flew 7 August 1963.

Clarence L. (“Kelly”) Johnson, Director of Lockheed’s Advanced Development Projects (“the Skunk Works”) with the first YF-12A interceptor, 60-6934. (Lockheed Martin)

Intended as a replacement for Convair’s F-106 Delta Dart, three pre-production YF-12As were built for testing. On 1 May 1965, a YF-12A set a speed record of 2,070.103 miles per hour (3,331.507 kilometers per hour) and reached an altitude of 80,259 ft (24,463 meters).

The reason for President Johnson’s announcement of the existence of the YF-12A prototypes was to conceal the existence of the Central Intelligence Agency’s fleet of Lockheed A-12 Oxcart reconnaissance aircraft based at Groom Lake, Nevada. Any sightings of these aircraft could be attributed to test flights of the YF-12As based at Edwards Air Force Base, 160 miles (258 kilometers) to the southwest.

Lockheed A-12 Oxcarts and YF-12As at Groom Lake, Nevada. (Central Intelligence Agency)
Lockheed A-12 Oxcarts and YF-12As at Groom Lake, Nevada. (Central Intelligence Agency)

The YF-12A interceptor is very similar to its A-12 Oxcart and SR-71A Blackbird stablemates. It is a large twin-engine delta wing aircraft, flown by a pilot and weapons system operator. Because of the altitudes that the F-12 operates, the crew wears S901F full-pressure suits produced by the David Clark Company. The A-12 is 101.6 feet (30.97 meters) long with a wingspan of 55.62 feet (16.953 meters) and overall height of 18.45 feet (5.624 meters). It has a zero fuel weight of 54,600 pounds (24,766 kilograms) and a maximum ramp weight of 124,600 pounds (56,518 kilograms). ¹

Lockheed YF-12A three-view illustration. (NASA)

The YF-12A is powered by two Pratt & Whitney J58 (JT11D-20A) engines. These are single rotor bleed-bypass turbojets with a 9-stage compressor section and 2-stage turbine. They have a static thrust rating of 31,500 pounds (140.118 kilonewtons), each, at Sea Level with afterburning. The J58s use a unique JP-7 fuel.

Pratt & Whitney J58 test. (Central Intelligence Agency)
Pratt & Whitney J58 test. (Central Intelligence Agency)

The YF-12A has a maximum speed of Mach 3.35 (2,232 miles per hour/3,342 kilometers per hour) at 80,000 feet (24,384 meters). The A-12 has a normal operating cruise speed of Mach 3.1. Its maximum operating altitude is 85,000 feet (25,908 meters) and it has a range of 3,000 miles (4,828 kilometers). Unlike most fighters, the A-12 has a maximum load factor of 2.5 gs. Its maximum bank angle when above Mach 2.5 is 30°.

The United States Air Force ordered 93 production F-12B aircraft, which would have been armed with three Hughes AIM-47A Falcon air-to-air missiles in enclosed bays in the bottom of the fuselage. However, Secretary of Defense Robert S. McNamara refused to release the funds for the purchase for three consecutive years and eventually the project was cancelled.

AIM-47A missile ready for loading into the weapons bay of a Lockheed YF-12A. (U.S. Air Force)
Hughes AIM-47A guided missile ready for loading into the weapons bay of a Lockheed YF-12A. (U.S. Air Force)

The first YF-12A, 60-6934, seen in the top photograph, was extensively damaged by a brake system fire on landing at Edwards AFB, 14 August 1966. It was salvaged and rebuilt as SR-71C 61-7981. The third YF-12A, shown in the photograph below, was lost due to an inflight fire 24 June 1971. The crew safely ejected.

The only existing YF-12A, 60-6935, is in the collection of the National Museum of the United States Air Force at Wright-Patterson Air Force Base, Ohio.

Lockheed YF-12A 60-6936, holder of three World Absolute Speed Records and the World Absolute Altitude Record. (U.S. Air Force)
Lockheed YF-12A 60-6936, holder of three World Absolute Speed Records and the World Absolute Altitude Record, at Edwards Air Force Base, California. (U.S. Air Force)

¹ The Lockheed SR-71A has a length of 107.4 feet (32.74 meters). Wingspan and height are the same. Its zero fuel weight varied from 56,500–60,000+ pounds (25,628–27,216+ kilograms) and the gross weight had a range of approximately 135,000–140,000+ pounds (61,235–63,503+ kilograms).

© 2023, Bryan R. Swopes

2 February 1970

Convair F-106A Delta Dart of the 71st Fighter Interceptor Squadron, with a Boeing KC-135 Stratotanker, circa 1970. (U.S. Air Force)
Convair F-106A-100-CO Delta Dart 58-0775 of the 71st Fighter Interceptor Squadron with a Boeing KC-135 Stratotanker, circa 1970. This is the same type aircraft flown by Lieutenant Gary Foust, 2 February 1970. (U.S. Air Force)
1st Lt. Gary E. Foust

2 February 1970: At approximately 9:50 a.m., three Convair F-106A Delta Dart supersonic interceptors of the 71st Fighter Interceptor Squadron, 24th Air Division, based at Malmstrom Air Force Base, Montana, were engaged in an air combat training mission.

1st Lieutenant Gary Eugene Foust was flying F-106A-100-CO 58-0787, an airplane usually flown by the squadron’s maintenance officer, Major Wolford.

During the simulated combat, Lt. Foust entered into a vertical climb with his “opponent,” Captain Tom Curtis, who was also flying an F-106, and they both climbed to about 38,000 feet (11,600 meters) while using a “vertical rolling scissors” maneuver as each tried to get into a position of advantage.

Diagram of Vertical Rolling Scissors Maneuver, (Predrag Pavlovic, dipl. ing. and Nenad Pavlovic, dipl. ing.)
Diagram of Vertical Rolling Scissors Maneuver. (Predrag Pavlovic, dipl. ing. and Nenad Pavlovic, dipl. ing.)

Lt. Foust’s interceptor stalled and went in to a flat spin. Captain Curtiss described it: “The aircraft looked like the pitot tube was stationary with the aircraft rotating around it. Very flat and rotating quite slowly.”

Foust tried all the recovery procedures but could not regain control of the Delta Dart. With no options remaining, at about 15,000 feet (4,572 meters), Foust ejected from the apparently doomed airplane.

This F-106A (S/N 58-0787) was involved in an unusual incident. During a training mission, it entered an flat spin forcing the pilot to eject. Unpiloted, the aircraft recovered on its own and miraculously made a gentle belly landing in a snow-covered field. (U.S. Air Force photo)
Convair F-106A Delta Dart 58-0787 made an un-piloted belly landing onto a snow-covered farm field near Big Sandy, Montana, 2 February 1970. (U.S. Air Force)

After the pilot ejected, the F-106 came out of the spin and leveled off.  With its engine still running, -787 continued flying, gradually descending, until it slid in to a landing in a wheat field near Big Sandy, Montana. Eventually the airplane ran out of fuel and the engine stopped at about 12:15 p.m.

Lieutenant Foust safely parachuted into the mountains and was soon rescued.

58-0787 was partially disassembled by a maintenance team from Hill Air Force Base, Utah, and loaded on to a rail car. It was then transported to the Sacramento Air Logistics Center at McClellan Air Force Base, Sacramento, California, where it was repaired and eventually returned to flight status with the 49th Fighter Interceptor Squadron, 21st Air Division, at Griffiss Air Force Base, New York.

After the Convair Delta Dart was retired from active service, 58-0787 was sent to the National Museum of the United States Air Force, Wright-Patterson Air Force Base, Ohio.

This F-106A (S/N 58-0787) was involved in an unusual incident. During a training mission, it entered an flat spin forcing the pilot to eject. Unpiloted, the aircraft recovered on its own and miraculously made a gentle belly landing in a snow-covered field. (U.S. Air Force photo)
Convair F-106A Delta Dart 58-0787 sits in a snow-covered Montana farm field, February 1970. (U.S. Air Force)

The Convair F-106A Delta Dart was the primary all-weather interceptor of the United States Air Force from 1959 to 1988, when it was withdrawn from service with the Air National Guard. It was a single-seat, single-engine delta-winged aircraft capable of speeds above Mach 2.

The airplane was a development of the earlier F-102A Delta Dagger, and was initially designated F-102B. However, so many changes were made that it was considered to be a new aircraft.

The F-106A is 70 feet, 8.78 inches (21.559 meters) long with a wingspan of 38 feet, 3.5 inches (11.671 meters). The total area of the delta wing is 697.83 square feet (64.83 square meters). The angle of incidence was 0° and there was no dihedral. The leading edges were swept aft 60°. The top of the vertical fin was 20 feet, 3.3 inches (6.180 meters) high. The Delta Dart weighs 24,028 pounds (10,899 kilograms) empty, and has a maximum takeoff weight (MTOW) of 39,195 pounds (17,779 kilograms).

Convair F-106A Delta Dart three-view illustration with dimensions. (SDASM)

The F-106 was powered by a Pratt & Whitney J75-P-17 afterburning turbojet engine. The J75-P-17 was a two-spool axial-flow turbojet engine with afterburner. It used a 15-stage compressor section (8 high- and 7 low-pressure stages) and a 3-stage turbine section (1 high- and 2-low pressure stages). The J75-P-17 had a maximum continuous power rating of 14,100 pounds of thrust (62.72 kilonewtons), and military power rating of 16,100 pounds (71.62 kilonewtons) (30-minute limit). It produced a maximum of 24,500 pounds (108.98 kilonewtons) with afterburner (5-minute limit). The engine was 3 feet, 8.25 inches (1.124 meters) in diameter, 19 feet, 9.6 inches long (6.035 meters), and weighed 5,875 pounds (2,665 kilograms).

Convair F-106A Delta Dart 58-0787 sits in a snow-covered Montana farm field, February 1970. (U.S. Air Force)

The interceptor has a cruise speed of 516 knots (594 miles per hour/956 kilometers per hour), and a maximum speed of 1,153 knots (1,327 miles per hour/2,135 kilometers per hour) at 35,000 feet (10,668 meters). The F-106A had a maximum rate of climb of 41,400 feet per minute (210 meters per second) at Sea Level. It could climb to 50,000 feet (15,240 meters) in 5 minutes. The service ceiling was 52,700 feet (16,063 meters). Its combat radius was 426 nautical miles (490 statute miles/789 kilometers) with maximum internal fuel (1,514 U.S. gallons/5,731 liters). The maximum ferry range was 1,571 nautical miles (1,808 statute miles/2,909 kilometers), when carrying an additional 454 gallons (1,719 liters) in two external tanks.

A Convair F-106A Delta Dart launches a Genie air-to-air rocket. (U.S. Air Force)
A Convair F-106A-135-CO Delta Dart, 59-0146, of the 194th Fighter Interceptor Squadron, California Air National Guard, launches an AIM-2 Genie air-to-air rocket. (U.S. Air Force)

The Delta Dart was armed with four GAR-3A radar-homing, or -4A (AIM-4F, -4G) infrared-homing Falcon air-to-air guided missiles, and one MB-1 (AIM-2A) Genie unguided rocket with a 1.5 kiloton W-25 nuclear warhead. The missiles were carried in an internal weapons bay. In 1972, the General Electric M61A1 Vulcan 20mm cannon was added to the rear weapons bay with 650 rounds of ammunition. (The number of gun-equipped Delta Darts is uncertain.)

Convair built 342 F-106 interceptors. 277 were F-106As and the remainder were F-106B two-seat trainers.

Convair F-106A-100-CO Delta Dart 58-0787 in the collection of the National Museum of the United States Air Force, Wright-Patterson AFB, Ohio. (U.S. Air Force)
Convair F-106A-100-CO Delta Dart 58-0787 in the collection of the National Museum of the United States Air Force, Wright-Patterson AFB, Ohio. (U.S. Air Force)

© 2024, Bryan R. Swopes

24 January 1962

Sanford N. ("Sandy") McDonnell hands over the keys to the first F-110A Spectre to the United States Air Force, St. Louis, Missouri, 24 January 1962. (McDonnell Aircraft Corporation)
Sanford N. (“Sandy”) McDonnell hands over the keys to the first F-110A Spectre to the United States Air Force, St. Louis, Missouri, 24 January 1962. (McDonnell Aircraft Corporation)

24 January 1962: The McDonnell Aircraft Corporation delivered the first F-110A Spectre to Colonel Gordon Graham and Colonel George Laven, United States Air Force, at the McDonnell plant at St. Louis, Missouri. The F-110A was soon redesignated as the F-4C Phantom II.

Two Phantoms were delivered to the Air Force for evaluation at Langley Field, Virginia. They were U.S. Navy F4H-1 Phantom IIs, Bureau of Aeronautics serial numbers 149405 and 149406. Initially the aircraft retained the Navy serial numbers but eventually were assigned Air Force numbers 62-12168 and 62-12169. The Air Force bailed them back to McDonnell to develop the YF-4C prototypes.

62-12169 (ex-Bu. No. 149406) was converted to a JF-4B (a special test aircraft). Operated by the McDonnell-Douglas Aircraft Center at Holloman Air Force Base, New Mexico, it suffered an engine explosion, 8 March 1967. McDonnell test pilot Charles (“Pete”) Garrison successfully ejected. The airplane crashed and was destroyed.

McDonnell Aircraft Corporation F-110A Spectre 149405. (McDonnell Aircraft Corporation)
McDonnell Aircraft Corporation F-110A Spectre 149405. (McDonnell Aircraft Corporation)
U.S. Air Force F-110A Spectre with bomb load.
U.S. Air Force F-110A Spectre 149405 armed with AIM-101 Sparrow missiles and Mk.82 500-pound bombs. (McDonnell Aircraft Corporation)
U.S. Air Force F-110A Spectre 149405 armed with AIM-101 Sparrow missiles and Mk.82 500-pound bombs. (NARA)

McDonnell built 5,057 Phantom IIs. They served with the United States Navy and Marine Corps, the U.S. Air Force, and many allied nations. The last Phantom II, an F-4E, was completed 25 October 1979. The U.S. Air Force retired its last operational Phantoms from service 20 December 2004, 42 years, 10 months, 27 days after receiving the first F-110A.

McDonnell F-110A Spectre 149405 (F4H-1, F-4B-9i, and F-4C-15-MC 62-12168).
McDonnell F-110A Spectre 149405 (F4H-1, F-4B-9i-MC, and finally, F-4C-15-MC 62-12168). (McDonnell Aircraft Corporation)
McDonnell F-110A 149406 at Nellis Air Force Base, March 1962. (NARA)
McDonnell F-4C-15-MC Phantom IIs 149405 and 149406, circa 1963. (NARA)
McDonnell F-110A 149405 and 149406 in formation near Lambert Field, St. Louis, Missouri. (NARA)

© 2018, Bryan R. Swopes

31 December 1948

The first production Mikoyan-Gurevich MiG-15 (SV), No. 101003. (Mikoyan Design Bureau)

31 December 1948: One year and one day after the first flight of the MiG I-310 S01 prototype, the first production Mikoyan-Gurevich MiG-15, serial number 101003, made its first flight. The production aircraft were based on the third I-310 prototype, S03. No. 101003 was designated МиГ-15(CB) (MiG-15 SV), and was retained by Mikoyan OKB for testing.

The MiG-15 is a single-seat, single-engine turbojet-powered fighter interceptor, designed to attack heavy bombers. Designed for high-subsonic speed, the wings were swept aft to 35° at 25% chord and had 2° anhedral. The wings were very thin to minimize aerodynamic drag and used “fences” to control air flow. The horizontal stabilizer was swept 40°, and the vertical fin, 55.7°.

Mikoyan-Gurevich MiG-15 (SV), No. 101003. (Mikoyan Design Bureau)

Rolls-Royce Nene Mk.I and Mk.II turbojet engines had been used in the three I-310 prototypes. The British engine was reverse-engineered by Vladimir Yakovlevich Klimov and manufactured at Factory No. 45 in Moscow as the RD-45F. The engine produced a maximum 22.26 kilonewtons of thrust (5,004 pounds of thrust). It was improved and designated VK-1. Most MiG-15s used this engine.

The production fighter was 10.10 meters (33 feet, 2 inches) long, with a wingspan of 10.08 meters (33 feet, 1 inch) and height of 3.17 meters (10 feet, 5 inches). The total wing area was 20.60 square meters (222 square feet). The interceptor’s empty weight was 3,247 kilograms (7,158 pounds), and its takeoff weight was 4,917 kilograms (10,840 pounds).

Mikoyan-Gurevich MiG-15 (SV), No. 101003. (Mikoyan Design Bureau)

The MiG-15 had a cruise speed 974 kilometers per hour (605 miles per hour, 0.79 Mach). Its maximum speed was 1,047 kilometers per hour (565 knots, or 651 miles per hour)—0.99 Mach—at low altitude, and 1,031 kilometers per hour (557 knots, 641 miles per hour, 0.97 Mach) at 5,000 meters (16,404 feet). The maximum rate of climb was 2,520 meters per minute (8,268 feet per minute), and its service ceiling was 15,100 meters (49,541 feet). The fighter had a practical range of 1,335 kilometers (830 miles).

Armament consisted of one Nudelman NS-37 37 mm cannon with 40 rounds of ammunition, and two  Nudelman-Rikhter NR-23 23 mm cannon with 80 rounds per gun.

Mikoyan-Gurevich MiG-15 (SV), No. 101003. (Mikoyan Design Bureau)

The first MiG 15, 101003, was built at Factory No. 1. Full scale production was considered so important that four other aircraft types were discontinued so that their factories could be used to build MiG-15s. They were also license-built in Poland and Czechoslovakia. More than 18,000 MiG-15s have been built. It has served in the air forces of at least 44 countries.

The MiG-15 soon entered combat in the Korean War. It scored its first air-to-air victory, 1 November 1950, when First Lieutenant Fiodor V. Chizh shot down a U.S. Air Force F-51 Mustang.

Soviet technicians service a Mikoyan-Gurevich MiG-15bis of the 351st Fighter Aviation Regiment at Antung Air Base, China, mid-1952. (Unattributed)

© 2018, Bryan R. Swopes