Tag Archives: Interceptor

2 February 1970

Convair F-106A Delta Dart of the 71st Fighter Interceptor Squadron, with a Boeing KC-135 Stratotanker, circa 1970. (U.S. Air Force)
Convair F-106A-100-CO Delta Dart 58-0775 of the 71st Fighter Interceptor Squadron with a Boeing KC-135 Stratotanker, circa 1970. This is the same type aircraft flown by Lieutenant Gary Foust, 2 February 1970. (U.S. Air Force)
1st Lt. Gary E. Foust

2 February 1970: At approximately 9:50 a.m., three Convair F-106A Delta Dart supersonic interceptors of the 71st Fighter Interceptor Squadron, 24th Air Division, based at Malmstrom Air Force Base, Montana, were engaged in an air combat training mission.

1st Lieutenant Gary Eugene Foust was flying F-106A-100-CO 58-0787, an airplane usually flown by the squadron’s maintenance officer, Major Wolford.

During the simulated combat, Lt. Foust entered into a vertical climb with his “opponent,” Captain Tom Curtis, who was also flying an F-106, and they both climbed to about 38,000 feet (11,600 meters) while using a “vertical rolling scissors” maneuver as each tried to get into a position of advantage.

Diagram of Vertical Rolling Scissors Maneuver, (Predrag Pavlovic, dipl. ing. and Nenad Pavlovic, dipl. ing.)
Diagram of Vertical Rolling Scissors Maneuver. (Predrag Pavlovic, dipl. ing. and Nenad Pavlovic, dipl. ing.)

Lt. Foust’s interceptor stalled and went in to a flat spin. Captain Curtiss described it: “The aircraft looked like the pitot tube was stationary with the aircraft rotating around it. Very flat and rotating quite slowly.”

Foust tried all the recovery procedures but could not regain control of the Delta Dart. With no options remaining, at about 15,000 feet (4,572 meters), Foust ejected from the apparently doomed airplane.

This F-106A (S/N 58-0787) was involved in an unusual incident. During a training mission, it entered an flat spin forcing the pilot to eject. Unpiloted, the aircraft recovered on its own and miraculously made a gentle belly landing in a snow-covered field. (U.S. Air Force photo)
Convair F-106A Delta Dart 58-0787 made an un-piloted belly landing onto a snow-covered farm field near Big Sandy, Montana, 2 February 1970. (U.S. Air Force)

After the pilot ejected, the F-106 came out of the spin and leveled off.  With its engine still running, -787 continued flying, gradually descending, until it slid in to a landing in a wheat field near Big Sandy, Montana. Eventually the airplane ran out of fuel and the engine stopped at about 12:15 p.m.

Lieutenant Foust safely parachuted into the mountains and was soon rescued.

58-0787 was partially disassembled by a maintenance team from Hill Air Force Base, Utah, and loaded on to a rail car. It was then transported to the Sacramento Air Logistics Center at McClellan Air Force Base, Sacramento, California, where it was repaired and eventually returned to flight status with the 49th Fighter Interceptor Squadron, 21st Air Division, at Griffiss Air Force Base, New York.

After the Convair Delta Dart was retired from active service, 58-0787 was sent to the National Museum of the United States Air Force, Wright-Patterson Air Force Base, Ohio.

This F-106A (S/N 58-0787) was involved in an unusual incident. During a training mission, it entered an flat spin forcing the pilot to eject. Unpiloted, the aircraft recovered on its own and miraculously made a gentle belly landing in a snow-covered field. (U.S. Air Force photo)
Convair F-106A Delta Dart 58-0787 sits in a snow-covered Montana farm field, February 1970. (U.S. Air Force)

The Convair F-106A Delta Dart was the primary all-weather interceptor of the United States Air Force from 1959 to 1988, when it was withdrawn from service with the Air National Guard. It was a single-seat, single-engine delta-winged aircraft capable of speeds above Mach 2.

The airplane was a development of the earlier F-102A Delta Dagger, and was initially designated F-102B. However, so many changes were made that it was considered to be a new aircraft.

The F-106A is 70 feet, 8.78 inches (21.559 meters) long with a wingspan of 38 feet, 3.5 inches (11.671 meters). The total area of the delta wing is 697.83 square feet (64.83 square meters). The angle of incidence was 0° and there was no dihedral. The leading edges were swept aft 60°. The top of the vertical fin was 20 feet, 3.3 inches (6.180 meters) high. The Delta Dart weighs 24,028 pounds (10,899 kilograms) empty, and has a maximum takeoff weight (MTOW) of 39,195 pounds (17,779 kilograms).

Convair F-106A Delta Dart three-view illustration with dimensions. (SDASM)

The F-106 was powered by a Pratt & Whitney J75-P-17 afterburning turbojet engine. The J75-P-17 was a two-spool axial-flow turbojet engine with afterburner. It used a 15-stage compressor section (8 high- and 7 low-pressure stages) and a 3-stage turbine section (1 high- and 2-low pressure stages). The J75-P-17 had a maximum continuous power rating of 14,100 pounds of thrust (62.72 kilonewtons), and military power rating of 16,100 pounds (71.62 kilonewtons) (30-minute limit). It produced a maximum of 24,500 pounds (108.98 kilonewtons) with afterburner (5-minute limit). The engine was 3 feet, 8.25 inches (1.124 meters) in diameter, 19 feet, 9.6 inches long (6.035 meters), and weighed 5,875 pounds (2,665 kilograms).

Convair F-106A Delta Dart 58-0787 sits in a snow-covered Montana farm field, February 1970. (U.S. Air Force)

The interceptor has a cruise speed of 516 knots (594 miles per hour/956 kilometers per hour), and a maximum speed of 1,153 knots (1,327 miles per hour/2,135 kilometers per hour) at 35,000 feet (10,668 meters). The F-106A had a maximum rate of climb of 41,400 feet per minute (210 meters per second) at Sea Level. It could climb to 50,000 feet (15,240 meters) in 5 minutes. The service ceiling was 52,700 feet (16,063 meters). Its combat radius was 426 nautical miles (490 statute miles/789 kilometers) with maximum internal fuel (1,514 U.S. gallons/5,731 liters). The maximum ferry range was 1,571 nautical miles (1,808 statute miles/2,909 kilometers), when carrying an additional 454 gallons (1,719 liters) in two external tanks.

A Convair F-106A Delta Dart launches a Genie air-to-air rocket. (U.S. Air Force)
A Convair F-106A-135-CO Delta Dart, 59-0146, of the 194th Fighter Interceptor Squadron, California Air National Guard, launches an AIM-2 Genie air-to-air rocket. (U.S. Air Force)

The Delta Dart was armed with four GAR-3A radar-homing, or -4A (AIM-4F, -4G) infrared-homing Falcon air-to-air guided missiles, and one MB-1 (AIM-2A) Genie unguided rocket with a 1.5 kiloton W-25 nuclear warhead. The missiles were carried in an internal weapons bay. In 1972, the General Electric M61A1 Vulcan 20mm cannon was added to the rear weapons bay with 650 rounds of ammunition. (The number of gun-equipped Delta Darts is uncertain.)

Convair built 342 F-106 interceptors. 277 were F-106As and the remainder were F-106B two-seat trainers.

Convair F-106A-100-CO Delta Dart 58-0787 in the collection of the National Museum of the United States Air Force, Wright-Patterson AFB, Ohio. (U.S. Air Force)
Convair F-106A-100-CO Delta Dart 58-0787 in the collection of the National Museum of the United States Air Force, Wright-Patterson AFB, Ohio. (U.S. Air Force)

© 2024, Bryan R. Swopes

24 January 1962

Sanford N. ("Sandy") McDonnell hands over the keys to the first F-110A Spectre to the United States Air Force, St. Louis, Missouri, 24 January 1962. (McDonnell Aircraft Corporation)
Sanford N. (“Sandy”) McDonnell hands over the keys to the first F-110A Spectre to the United States Air Force, St. Louis, Missouri, 24 January 1962. (McDonnell Aircraft Corporation)

24 January 1962: The McDonnell Aircraft Corporation delivered the first F-110A Spectre to Colonel Gordon Graham and Colonel George Laven, United States Air Force, at the McDonnell plant at St. Louis, Missouri. The F-110A was soon redesignated as the F-4C Phantom II.

Two Phantoms were delivered to the Air Force for evaluation at Langley Field, Virginia. They were U.S. Navy F4H-1 Phantom IIs, Bureau of Aeronautics serial numbers 149405 and 149406. Initially the aircraft retained the Navy serial numbers but eventually were assigned Air Force numbers 62-12168 and 62-12169. The Air Force bailed them back to McDonnell to develop the YF-4C prototypes.

62-12169 (ex-Bu. No. 149406) was converted to a JF-4B (a special test aircraft). Operated by the McDonnell-Douglas Aircraft Center at Holloman Air Force Base, New Mexico, it suffered an engine explosion, 8 March 1967. McDonnell test pilot Charles (“Pete”) Garrison successfully ejected. The airplane crashed and was destroyed.

McDonnell Aircraft Corporation F-110A Spectre 149405. (McDonnell Aircraft Corporation)
McDonnell Aircraft Corporation F-110A Spectre 149405. (McDonnell Aircraft Corporation)
U.S. Air Force F-110A Spectre with bomb load.
U.S. Air Force F-110A Spectre 149405 armed with AIM-101 Sparrow missiles and Mk.82 500-pound bombs. (McDonnell Aircraft Corporation)
U.S. Air Force F-110A Spectre 149405 armed with AIM-101 Sparrow missiles and Mk.82 500-pound bombs. (NARA)

McDonnell built 5,057 Phantom IIs. They served with the United States Navy and Marine Corps, the U.S. Air Force, and many allied nations. The last Phantom II, an F-4E, was completed 25 October 1979. The U.S. Air Force retired its last operational Phantoms from service 20 December 2004, 42 years, 10 months, 27 days after receiving the first F-110A.

McDonnell F-110A Spectre 149405 (F4H-1, F-4B-9i, and F-4C-15-MC 62-12168).
McDonnell F-110A Spectre 149405 (F4H-1, F-4B-9i-MC, and finally, F-4C-15-MC 62-12168). (McDonnell Aircraft Corporation)
McDonnell F-110A 149406 at Nellis Air Force Base, March 1962. (NARA)
McDonnell F-4C-15-MC Phantom IIs 149405 and 149406, circa 1963. (NARA)
McDonnell F-110A 149405 and 149406 in formation near Lambert Field, St. Louis, Missouri. (NARA)

© 2018, Bryan R. Swopes

31 December 1948

The first production Mikoyan-Gurevich MiG-15 (SV), No. 101003. (Mikoyan Design Bureau)

31 December 1948: One year and one day after the first flight of the MiG I-310 S01 prototype, the first production Mikoyan-Gurevich MiG-15, serial number 101003, made its first flight. The production aircraft were based on the third I-310 prototype, S03. No. 101003 was designated МиГ-15(CB) (MiG-15 SV), and was retained by Mikoyan OKB for testing.

The MiG-15 is a single-seat, single-engine turbojet-powered fighter interceptor, designed to attack heavy bombers. Designed for high-subsonic speed, the wings were swept aft to 35° at 25% chord and had 2° anhedral. The wings were very thin to minimize aerodynamic drag and used “fences” to control air flow. The horizontal stabilizer was swept 40°, and the vertical fin, 55.7°.

Mikoyan-Gurevich MiG-15 (SV), No. 101003. (Mikoyan Design Bureau)

Rolls-Royce Nene Mk.I and Mk.II turbojet engines had been used in the three I-310 prototypes. The British engine was reverse-engineered by Vladimir Yakovlevich Klimov and manufactured at Factory No. 45 in Moscow as the RD-45F. The engine produced a maximum 22.26 kilonewtons of thrust (5,004 pounds of thrust). It was improved and designated VK-1. Most MiG-15s used this engine.

The production fighter was 10.10 meters (33 feet, 2 inches) long, with a wingspan of 10.08 meters (33 feet, 1 inch) and height of 3.17 meters (10 feet, 5 inches). The total wing area was 20.60 square meters (222 square feet). The interceptor’s empty weight was 3,247 kilograms (7,158 pounds), and its takeoff weight was 4,917 kilograms (10,840 pounds).

Mikoyan-Gurevich MiG-15 (SV), No. 101003. (Mikoyan Design Bureau)

The MiG-15 had a cruise speed 974 kilometers per hour (605 miles per hour, 0.79 Mach). Its maximum speed was 1,047 kilometers per hour (565 knots, or 651 miles per hour)—0.99 Mach—at low altitude, and 1,031 kilometers per hour (557 knots, 641 miles per hour, 0.97 Mach) at 5,000 meters (16,404 feet). The maximum rate of climb was 2,520 meters per minute (8,268 feet per minute), and its service ceiling was 15,100 meters (49,541 feet). The fighter had a practical range of 1,335 kilometers (830 miles).

Armament consisted of one Nudelman NS-37 37 mm cannon with 40 rounds of ammunition, and two  Nudelman-Rikhter NR-23 23 mm cannon with 80 rounds per gun.

Mikoyan-Gurevich MiG-15 (SV), No. 101003. (Mikoyan Design Bureau)

The first MiG 15, 101003, was built at Factory No. 1. Full scale production was considered so important that four other aircraft types were discontinued so that their factories could be used to build MiG-15s. They were also license-built in Poland and Czechoslovakia. More than 18,000 MiG-15s have been built. It has served in the air forces of at least 44 countries.

The MiG-15 soon entered combat in the Korean War. It scored its first air-to-air victory, 1 November 1950, when First Lieutenant Fiodor V. Chizh shot down a U.S. Air Force F-51 Mustang.

Soviet technicians service a Mikoyan-Gurevich MiG-15bis of the 351st Fighter Aviation Regiment at Antung Air Base, China, mid-1952. (Unattributed)

© 2018, Bryan R. Swopes

13 December 1958

NASA test pilot Einar K. Enevoldson in the cockpit of a NASA/Lockheed F-104N, N811NA, in 1984. (NASA)
NASA test pilot Einar K. Enevoldson in the cockpit of a NASA/Lockheed F-104N, N811NA, in 1984. (NASA)

13 December 1958: First Lieutenant Einar Knute Enevoldson, U.S. Air Force, set seven Fédération Aéronautique Internationale (FAI) time-to-climb records in a Lockheed F-104A-10-LO Starfighter, serial number 56-762,¹ at Naval Air Station Point Mugu (NTD) (located on the shore of southern California), including Sea Level to 3,000 meters (9,843 feet) in 41.85 seconds; 6,000 meters (19,685 feet) in 58.41 seconds; 9,000 meters (29,528 feet) in 1 minute, 21.14 seconds; 12,000 meters (39,370 feet) in 1 minute, 39.90 seconds; 15,000 meters (49,213 feet) in 2 minutes, 11.1 seconds; 20,000 meters (65,617 feet) in 3 minutes, 42.99 seconds; and 25,000 meters (82,021 feet) in 4 minutes, 26.03 seconds.

Lockheed F-104A Starfighter 56-762 being prepared for a record attempt at NAS Point Mugu. (F-104 Society)
Lockheed F-104A-10-LO Starfighter 56-762 being prepared for a record attempt at NAS Point Mugu, California. (International F-104 Society)

Lieutenant Enevoldson was awarded the Distinguished Flying Cross for these accomplishments.

The Distinguished Flying Cross
The Distinguished Flying Cross

FAI Record File Num #9107 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 3 000 m
Performance: 41.85s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9106 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 6 000 m
Performance: 58.41s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9105 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 9 000 m
Performance: 1 min 21.14s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9104 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 12 000 m
Performance: 1 min 39.90s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9103 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 15 000 m
Performance: 2 min 11.1s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9102 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 20 000 m
Performance: 3 min 42.99s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9080 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 25 000 m
Performance: 4 min 26.03s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

U.S. Air Force Lockheed F-104A-10-LO Starfighter 56-762 on the runaway at Naval Air Station Point Mugu, December 1958. (International F-104 Society)
U.S. Air Force Lockheed F-104A-10-LO Starfighter 56-762 on the runaway at Naval Air Station Point Mugu, December 1958. (International F-104 Society)

Einar Enevoldson later flew as a civilian test pilot for NASA from 1968 to 1986 and was awarded the NASA Exceptional Service Medal. He holds numerous FAI world records.

Lockheed F-104A-10-LO Starfighter 56-762 climbing under Southern California's overcast coastal skies. (International F-104 Society)
Lockheed F-104A-10-LO Starfighter 56-762 climbing under Southern California’s overcast coastal skies. (International F-104 Society)

The Lockheed F-104A Starfighter was a single-place, single-engine supersonic interceptor. It was designed by a team lead by the legendary Clarence L. “Kelly” Johnson. The F-104A was 54 feet, 8 inches (16.662 meters) long with a wingspan of 21 feet, 9 inches (6.629 meters) and overall height of 13 feet, 5 inches (4.089 meters). It had an empty weight of 13,184 pounds (5,980.2 kilograms), combat weight of 17,988 pounds (8,159.2 kilograms), gross weight of 22,614 pounds (10,257.5 kilograms) and a maximum takeoff weight of 25,840 pounds (11,720.8 kilograms). Internal fuel capacity was 897 gallons (3,395.5 liters).

The F-104A was powered by a single General Electric J79-GE-3A engine, a single-spool axial-flow afterburning turbojet, which used a 17-stage compressor and 3-stage turbine. The J79-GE-3A is rated at 9,600 pounds of thrust (42.70 kilonewtons), and 15,000 pounds (66.72 kilonewtons) with afterburner. The engine is 17 feet, 3.5 inches (5.271 meters) long, 3 feet, 2.3 inches (0.973 meters) in diameter, and weighs 3,325 pounds (1,508 kilograms).

The F-104A had a maximum speed of 1,037 miles per hour (1,669 kilometers per hour) at 50,000 feet (15,240 meters). Its stall speed was 198 miles per hour (319 kilometers per hour). The Starfighter’s initial rate of climb was 60,395 feet per minute (306.8 meters per second) and its service ceiling was 64,795 feet (19,750 meters).

Armament was one General Electric M61 Vulcan six-barreled revolving cannon with 725 rounds of 20 mm ammunition. An AIM-9B Sidewinder heat-seeking air-to-air missile could be carried on each wing tip, or a jettisonable fuel tank with a capacity of 141.5 gallons (535.6 liters).

Lockheed built 153 of the F-104A Starfighter initial production version. A total of 2,578 F-104s of all variants were produced by Lockheed and its licensees, Canadair, Fiat, Fokker, MBB, Messerschmitt,  Mitsubishi and SABCA. By 1969, the F-104A had been retired from service. The last Starfighter, an Aeritalia-built F-104S ASA/M of the  Aeronautica Militare Italiana, was retired in October 2004.

The same type aircraft as that flown by Einar K. Enevoldson, this is a Lockheed F-104A-10-LO Starfighter, 56-761. It is carrying both wingtip and underwing fuel tanks. (U.S. Air Force)
The same type aircraft as that flown by Einar K. Enevoldson, this is a Lockheed F-104A-10-LO Starfighter, 56-761. It is carrying both wingtip and underwing fuel tanks. (U.S. Air Force)

¹ 56-762 was one of three F-104As later converted to an NF-104A rocket/turbojet Advanced Aerospace Trainer. It is the same Starfighter that crashed when Chuck Yeager had to eject after it went into an uncontrolled spin during a zoom-climb altitude record attempt, 10 December 1963.

© 2016, Bryan R. Swopes

6 December 1963

Lockheed NF-104A Aerospace Trainer 56-756, with its Rocketdyne LR-121 engine firing during a zoom-climb maneuver. (U.S. Air Force)

6 December 1963: Air Force test pilot Major Robert W. Smith takes the Lockheed NF-104A Aerospace Trainer, 56-0756, out for a little spin. . .

Starting at 0.85 Mach and 35,000 feet (10,668 meters) over the Pacific Ocean west of Vandenberg Air Force Base, California, Bob Smith turned toward Edwards Air Force Base and accelerated to Military Power and then lit the afterburner, which increased the General Electric J79-GE-3B turbojet engine’s 9,800 pounds of thrust (43.59 kilonewtons) to 15,000 pounds (66.72 kilonewtons). The modified Starfighter accelerated in level flight. At Mach 2.2, Smith ignited the Rocketdyne LR121 rocket engine, which burned a mixture of JP-4 and hydrogen peroxide. The LR121 was throttleable and could produce from 3,000 to 6,000 pounds of thrust (13.35–26.69 kilonewtons).

When the AST reached Mach 2.5, Smith began a steady 3.5G pull-up until the interceptor was in a 70° climb. At 75,000 feet (22,860 meters), the test pilot shut off the afterburner to avoid exceeding the turbojet’s exhaust temperature (EGT) limits. He gradually reduced the jet engine power to idle by 85,000 feet (25,908 meters), then shut it off.  Without the engine running, cabin pressurization was lost and the pilot’s A/P22S-2 full-pressure suit inflated.

Lockheed NF-104A Aerospace Trainer 56-756, with its Rocketdyne LR-121 engine firing during a zoom-climb maneuver. (U.S. Air Force)

The NF-104A continued to zoom to an altitude where its aerodynamic control surfaces were no longer functional. It had to be controlled by the reaction jets in the nose and wing tips. 756 reached a peak altitude of 120,800 feet (36,820 meters), before reentering the atmosphere in a 70° dive. Major Smith used the windmill effect of air rushing into the intakes to restart the jet engine.

Lockheed NF-104 Aerospace Trainer zoom-climb profile. (U.S. Air Force via NF-104.com)

Major Smith had set an unofficial record for altitude. Although Lockheed had paid the Fédération Aéronautique Internationale (FAI) license fee, the Air Force had not requested certification in advance so no FAI or National Aeronautic Association personnel were on site to certify the flight.

One of the three Lockheed NF-104A Starfighter Aerospace Trainers, 56-756, in a zoom-climb with the Rocketdyne LR-121 engine firing. (U.S. Air Force)

For this flight, Robert Smith was nominated for the Octave Chanute Award “for an outstanding contribution made by a pilot or test personnel to the advancement of the art, science, and technology of aeronautics.”

Major Robert W. Smith, U.S. Air Force, with a Lockheed F-104 Starfighter. (U.S. Air Force)

Robert Wilson Smith was born at Washington, D.C., 11 December 1928. He was the son of Robert Henry Smith, a clerk (and eventually treasurer) for the Southern Railway Company, and Jeanette Blanche Albaugh Smith, a registered nurse. He graduated from high school in Oakland, California, in 1947. Smith studied at the University of California, Berkeley, and George Washington University.

Robert W. Smith joined the United States Air Force as an aviation cadet in 1949. He trained as a pilot at Goodfellow Air Force Base, San Angelo, Texas, and Williams Air Force Base in Arizona. He was commissioned as a second lieutenant, United States Air Force, 23 June 1950.

Second Lieutenant Robert Wilson Smith married Ms. Martha Yacko, 24 June 1950, at Phoenix, Arizona.

Lieutenant Robert W. Smith and his crew chief, Staff Sergeant Jackson, with Lady Lane, Smith’s North American F-86 Sabre. (Robert W. Wilson Collection)

He flew the F-86 Sabre on more than 100 combat missions with the 334th and 335th Fighter Interceptor Squadrons of the 4th Fighter Interceptor Wing during the Korean War. he named one of his airplanes Lady Lane in honor of his daughter. Smith was credited with two enemy aircraft destroyed, one probably destroyed and three more damaged.

Smith graduated from the Air Force Test Pilot School at Edwards Air Force Base in 1956. He flew more than fifty aircraft types during testing there and at Eglin Air Force Base, Florida. In 1962 he was assigned to the Aerospace Research Test Pilots School at Edwards for training as an astronaut candidate for Project Gemini.

Lieutenant Colonel Robert W. Smith, United States Air Force

After the NF-104A project was canceled, Lieutenant Colonel Smith volunteered for combat duty in the Vietnam War. He commanded the 34th Tactical Fighter Squadron, 388th Tactical Fighter Wing, at Korat Royal Thai Air Force Base, Thailand, flying the Republic F-105D Thunderchief. Bob Smith was awarded the Air Force Cross for “extraordinary heroism” while leading an attack at Thuy Phoung, north of Hanoi, 19 November 1967.

He had previously been awarded the Silver Star, and five times was awarded the Distinguished Flying Cross. Lieutenant Colonel Smith retired from the Air Force on 1 August 1969 after twenty years of service.

Lieutenant Colonel Robert Wilson Smith died at Monteverde, Florida, 19 August 2010. He was 81 years old.

Lockheed F-104A Starfighter 56-756 following a landing accident at Edwards AFB, 21 November 1961. (U.S. Air Force via the International F-104 Society)

56-756 was a Lockheed F-104A-10-LO Starfighter. Flown by future astronaut James A. McDivitt, it had been damaged in a landing accident at Edwards following a hydraulic system failure, 21 November 1961. It was one of three taken from storage at The Boneyard at Davis-Monthan Air Force Base, Tucson, Arizona, and sent to Lockheed for modification to Aerospace Trainers (ASTs). These utilized a system of thrusters for pitch, roll and yaw control at altitudes where the standard aerodynamic control surfaces could no longer control the aircraft. This was needed to give pilots some experience with the control system for flight outside Earth’s atmosphere.

Lockheed NF-104A Aerospace Trainer 56-756. (U.S. Air Force)

The F-104A vertical fin was replaced with the larger fin and rudder from the two-place F-104B for increased stability. The wingspan was increased to 25 feet, 11.3 inches (7.907 meters) for installation of the hydrogen peroxide Reaction Control System thrusters. The fiberglass nosecone was replaced by an aluminum skin for the same reason. The interceptor’s radar and M61 Vulcan cannon were removed and tanks for rocket fuel and oxidizers, nitrogen, etc., installed in their place. The fuselage “buzz number” was changed from FG-756 to NF-756.

The standard afterburning General Electric J79-GE-3B turbojet engine remained, and was supplemented by a Rocketdyne LR121 liquid-fueled rocket engine which produced 3,000 to 6,000 pounds of thrust (13.35–26.69 kilonewtons) with a burn time of 105 seconds.

56-756 was damaged by inflight explosions in 1965 and 1971, after which it was retired. It is mounted for static display at the Air Force Test Pilot School, Edwards Air Force Base, California, marked as 56-760.

Lockheed NF-104 Aerospace Trainer 56-756, marked as 56-760, on display at Edwards Air Force Base. (Kaszeta)

© 2018, Bryan R. Swopes