Tag Archives: Issy-les-Moulineaux

8 February 1908

Gastambide-Mengin Monoplane
Louis Boyer, 1910

8 February 1908: The Gastambide-Mengin Monoplane made its first flight at Parc de Bagatelle, Paris, France, flown by the company’s mechanic, Louis Boyer. Financed by Jules Adrien Gastambide (1846–1944) and designed by Gabriel Mengin (some sources say it was designed by Léon Levavasseur, who also designed its engine).

The airplane rolled approximately 30 meters before taking of, then climbed to a height of 4–5 meters, covering just a few meters distance before the pilot switched off the ignition and it came down hard. The propeller and landing gear were damaged, but Boyer was not hurt. The fuselage and wings were undamaged. Repairs were made quickly.

This engine, of which the Aerophile of January 1, 1908 published the characteristics and sketches, after some preliminary tests, made its first flight on February 8, in the morning, at the Bagatelle training ground where Santos-Dumont made his unforgettable debut as an aviator.
Under the thrust of its propeller activates a 50 horsepower Antoinette engine, the device, mounted by the mechanic Boyer, after having rolled about thirty meters, took off, rose to 4 to 5 meters in height, crossing a few meters during the flight. But, almost immediately, he reared up; the mechanic cut the ignition and the airplane came back hard to the ground.
The propeller and the undercarriage were false, but the aviator had no harm; the wings and engine were intact. In this experiment, it is important to note the brevity of the momentum necessary for the rise.
Repairs were made quickly. A new wooden carrier frame with two large 2-roller wheels replaced the old steel tube frame. The experiments resumed at Bagatelle on February 12. After a first attempt without taking off, the left wheels left the ground for a moment, the airplane pivoted on its right wing and stopped; but the chassis was dislocated.
The next day, the success was clear. The aircraft took off easily, made a turn in full flight and traveled 100 meters in the morning and 150 meters in the afternoon, in the presence of MM. Gastambide, Mengine, Paul Tissandier, Ernest Zens, Andres Fournier, etc.
Finally, on February 14, the aircraft, which can be described well, made a few small flights to begin, but on returning from Polo to the Puteaux bridge, the airplane flew away over a distance of about 60 meters, climbing to 6 or 7 meters high. At this moment, the pilot, wanting to avoid the clump of trees in the middle of the lawn at Bagatelle, gave a rather sudden jerk of the rudder which caused the aircraft to tilt slightly.
At the same time, he reduced the ignition advance a little too abruptly. The airplane came into contact with the ground fairly quickly, following an inclined plane.
A side wheel having yielded, the front of the aircraft struck the ground, and the aircraft, although having only a low speed, turned over and overturned.
The mechanic Boyer, who mounted him, protected by the wings and the body, had, fortunately, no harm.
The 50 HP Antoinette engine, which powered the aircraft, was completely unharmed, as were the wings and the body.
Only the tail, one wheel and part of the wheel frame were broken. Repairs could be done quickly.

l’Aérophile, 16° Année.—N° 5, 1 Mars 1908, Page 86–87

l’Aerophile, 16° Annee.—No. 3, 1 Janvier 1908, Page 12

°

THE NEW MONOPLANE OF GASTAMBIDE AND MENGIN.

By M. Mengin

     The construction of an aeroplane by M. Robert Gastambide and myself, announced some time ago, has now been completed.

     We are partisans with MM. Santos-Dumont and Bleriot in the type of machine, monoplane, and have decided on that type.

     The wings have a total spread of 10 meters and are attached to the body by a system of grooves which makes them easily detachable. They are held, on the other hand, to this same body by a new and original system of girders which are made up of thin sheets of steel which offer, in addition to less resistance to the air, greater solidity than those means heretofore employed. The chassis is fitted with wheels having a certain amount of play longitudinally and transversely, designed especially to minimize the shock of landing. The body of the apparatus, which is 5 meters long, carries in front a 50 h.p. 8 cyl. Antoinette motor, with one propeller mounted in front directly on the shaft. In the middle of the “cage” sits the aviator and at the extreme rear there is a tail for stability, serving as the sole means of governing the direction.

     After a number of trials with small models we have thought it would be sufficient to give the apparatus an invariable angle of resistance and to rely only on the mobility of the 8 cylinder motor to modify the speed of the machine and, consequently, the form of its trajectory. We have thus abolished totally any governor for raising and lowering.

     The total weight of the airplane will not exceed 400 kilograms. Trials of the propeller on the motor, made on the block of special construction, we found that we can easily count on 140 kilograms of thrust and we think we ought to bring the speed up to 55 kilometers per hour.

    After a well deserved rest we will begin trials with the apparatus. The apparatus was put on its feet in less than three weeks.

     [The screw has a diameter of 2 meters, 1.3 meters pitch. The total surface is 24 square meters.—Ed.]

Aeronautics: The American Magazine of Aerial Locomotion, Vol. II, No. 2,  Page 35

The Gastembide-Mengin Monoplane rebuilt as the  Antoinette II. (ND Phot.)

Length 7.90 meters, wing span 10.00 meters, surface area 24.00 meters, mass 350 kg

     The Gastambide-Mengin monoplane made its first trial on the 8th. The machine had risen about 5 metres and progressed horizontally about as far when it started to capsize. The driver, Boyer, saw the movement and shut off the power just in time.

     On the 12th it was brought out and made short runs in the Bois de Boulogne, The machine seemed to behave very well. At the first trial it made a distance of 60 metres at a height of 6 metres. To avoid a clump of bushes a quick turn was given the rudder and the machine came down. One wheel struck an obstruction and the machine turned over. M. Boyer, the aviator, was uninjured. Considerable damage was done. The general impression concerning the Gastambide aeroplane is that a similar accident will happen regularly as long as the constructors refuse to fit a horizontal rudder or headpiece, whereby height and angle of the machine may be controlled when in the air. With the aeroplane, as it was yesterday, once the ground has been left the only means possessed by the driver to control upward and downward movement is the motor.

Aeronautics: The American Magazine of Aerial Locomotion, Vol. II, No. 3, Page 27

Gastambide & Mengin (Photo Branger)

Antoinette V-8, 7,273.6 cc, length 750 mm, width 600 mm, height 600 mm, bore: 15 mm, stroke, 105 mm, weight 60 kg 40/50 h.p. @ 1,400 r.p.m.

l’Aerophile

The Gastambide-Mengin Monoplane was powered by a steam-cooled, normally-aspirated, 7.274 liter (443.861 cubic inch displacement) Antoinette 8V 90° overhead valve V-8 engine which produced approximately 45–50 chaval-vapeur (44.4–49.3 horsepower) at 1,400 r.p.m. This engine was considerably smaller and lighter than Levavasseur’s previous V-8s. Because the compression ratio was increased, the aluminum cylinder heads were replaced with forged steel heads. Carburetors were used instead of direct injection, which was prone to clogging. The 8V was a direct-drive engine. The V-8 engine was 0.750 meters (2 feet, 5.5 inches inches) long, 0.600 meters (1 foot, 11.6 inches) wide and (0.600 meters (1 foot, 11.6  inches) high. It weighed 60 kilograms (132 pounds), dry, and 85 kilograms (187 pounds) in running order.

l’aerophile 1 Janvier 1908, pages 12–13:

Two well-known sportsmen, members of the Board of Directors of the "Antoinette" extra-light aviation engine company, MM. Gastambide and Mengin have just joined their efforts to tackle the direct practice of aviation.
They built an airplane of the monoplane type, of which here are the main characteristics: Total wingspan of the wings, from one end, body included: 10 m. 50, these wings having in horizontal projection the shape of a trapezium whose height is 5 m. and the bases respectively of 3 meters on the side of the body and of 1 m. 70 at the opposite end. The body is quadrangular with a length of 5 meters.
The driving part consists of a 50 hp engine. 8 cylinders "Antoinette" of course, which directly drives a propeller 2 meters in diameter and 1 m. 30 paces, seat in front.
The total lifting surface of this airplane is 24 square meters, its weight 350 kg. approximately, including the airman. He therefore took off at a speed of 16 meters per second, or about 55 to 60 kilometres. on time.
The airplane will bear the name Aeroplane Gastambide-Mengin and its first tests will take place soon, probably at Bagatelle to start.
Good luck to the new pioneers of aviation.

23 January 1909

The Blériot XI in flight, May 1909. (Library of Congress Prints and Photographs Division)
Louis Charles Joseph Blériot. (Library of Congress)
Louis Charles Joseph Blériot. (Library of Congress)

23 January 1909: The Blériot XI made its first flight at Issy-les-Moulineaux, near Paris, France. The airplane was flown by Louis Charles Joseph Blériot. It was designed by Raymond Saulnier and was a development of the earlier Blériot VIII.

Saulnier later founded Morane-Saulnier Aviation—Sociètè Anonyme des Aèroplanes Morane-Saulnier—with the Morane brothers, Léon and Robert.

The Blériot XI was a single-seat, single-engine monoplane. It was 26.24 feet (7.998 meters) long with a wingspan of 25.35 feet (7.727 meters) and overall height of 8 feet (2.438 meters). It had an empty weight of 507 pounds (229.9 kilograms).

Raymond Saulnier

(Sources give conflicting specifications for the Blériot XI, probably because they were often changed in an effort to improve the airplane. Dimensions given here are from the three-view drawings, below.)

In its original configuration, the airplane was powered by an air-cooled, 3.774 liter (230.273 cubic inches) R.E.P.  two-row, seven-cylinder fan engine (or “semi-radial”) which produced 30 horsepower at 1,500 r.p.m., driving a four-bladed paddle-type propeller. The R.E.P. engine weighed 54 kilograms (119 pounds). This engine was unreliable and was soon changed for an air-cooled 3.117 liter (190.226 cubic inch) Alessandro Anzani & Co., 60° three-cylinder “fan”-type radial engine (or W-3) and a highly-efficient Chauvière Intégrale two-bladed propeller. The Anzani engine produced 25 horsepower at 1,400 r.p.m.

Blériot Type XI, front view.
Blériot Type XI, side view.
Blériot Type XI, top view.

The Blériot XI had a maximum speed of 76 kilometers per hour (47 miles per hour) and its service ceiling was 1,000 meters (3,281 feet).

Just over six months from its first flight, on 25 July 1909, Louis Blériot flew his Blériot XI across the English Channel from Calais to Dover. He flew the 25 mile (40 kilometer) distance in 36 minutes. The airplane was slightly damaged on landing.

Blériot’s original airplane is in the collection of the Musee des Arts et Metiers, Paris, France.

The Blériot XI was a successful and influential design. It was widely used by both civilian and military aviators.

The original Blériot XI at Musee des Arts et Metiers (PHGCOM. Use authorized.)
The original Blériot XI at Musee des Arts et Metiers (PHGCOM. Use authorized.)

© 2019, Bryan R. Swopes

13 January 1908

Henry Farman and the Voisin-Farman I win the Grand Prix de l’aviation, for flying a circular course of more than one kilometer, 13 January 1908. (Library of Congress)
Henry Farman and the Voisin-Farman I win the Grand Prix de l’aviation, for flying a circular course of more than one kilometer, 13 January 1908. (Library of Congress)

13 January 1908: Henry Farman flew a circular one kilometer course at Issy-les-Moulineaux, France, in 1 minute, 28 seconds to win the Grand Prix de l’aviation, a prize of 50,000 francs, which had been offered by Henri Deutsch de la Meurthe in 1904.

Henri Deutsch de le Muerth, portrait by Leon Joseph Florentin Bonnat, 1913. (Musee Bonnat, Bayonne, France)
Henri Deutsch de le Muerthe, portrait by Leon Joseph Florentin Bonnat, 1913. (Musee Bonnat, Bayonne, France)

Henri Deutsch de le Muerthe (1846–1919) was a wealthy French businessman with a strong interest in aviation. He was one of the founders of the Aéro-Club de France. Along with Ernest Archdeacon, he sponsored a series of prizes to promote advances in flight.

The biplane was built by brothers Charles and Gabriel Voisin, and was very similar to the Voisin-Delagrange I which they had built several months earlier. Henry Farman had requested some slight modifications. He first flew the airplane 30 September 1907.

Farman had previously won the Coupe d’Aviation Ernest Archdeacon (Ernest Archdeacon Cup) when he flew his Henri Farman nº 1 a distance of approximately 771 meters (2,530 feet) in 52 seconds, 26 October 1907.

Two-view illustration of l’Aeroplane Henri Farman nº. 1, with dimensions. (l’Aérophile, 16º Année, No. 3, 1 February 1908, at Page 38)

The Henri Farman nº 1 (also known as the Voisin-Farman I) was a single-place, single-engine, two-bay biplane with the elevator forward and a “box kite” tail. It was 10.500 meters (34 feet 5.4 inches) long, with a wingspan of 10.000 meters (32 feet, 9.7 inches). The chord of each wing was 2.000 meters (6 feet, 6.7 inches), and vertical gap between the upper and lower wings was 1.500 meters (4 feet, 11.0 inches). There was no sweep or dihedral.

The complete airplane weighed 530 kilograms (1,169 pounds).

The airplane was powered by a steam-cooled, direct-injected, 487.14 cubic-inch-displacement (7.983 liter) Société Antoinette 8V 90° V-8 direct-drive engine ,designed by Léon Levavasseur. It produced 38 horsepower at 1,050 r.p.m. The engine turned a two-bladed pusher propeller, which had a diameter of 2.30 meters (7 feet, 6.6 inches). The engine was 1.120 meters (3 feet, 8 inches) long, 0.630 meters (2 feet, 1 inch) wide and (0.540 meters (1 foot, 9 inches) high. It weighed 95 kilograms (209 pounds).

Charles Voisin and Henry Farman, 1907
Charles Voisin and Henry Farman, 1907. (Unattributed)

© 2019, Bryan R. Swopes

26 October 1907

Winning the Archdeacon Cup. (Wright Brothers Aeroplane Co.)
Henry Farman winning the Archdeacon Cup with his Voisin-Farman I. (Wright Brothers Aeroplane Co.)
Coupe d'Aviation Ernest Archdeacon
Coupe d’Aviation Ernest Archdeacon

26 October 1907: At Issy-les-Moulineaux, France, Henry Farman flew his Voisin-Farman I airplane a distance of approximately 771 meters (2,530 feet) in 52 seconds to win the Coupe d’Aviation Ernest Archdeacon (Ernest Archdeacon Cup) for the longest flight of the year.

The single-place single-engine biplane was built by brothers Charles and Gabriel Voisin, and was very similar to the Voisin-Delagrange I which they had built several months earlier. Henry Farman had requested some slight modifications. He first flew the airplane 30 September 1907.

The Voisin-Farman I was 44 feet, 2 inches (13.462 meters) long, with a wingspan of 35 feet, 5 inches (10.795 meters) and weighed 705 pounds (319.8 kilograms) and gross weight of 1,213 pounds (550 kilograms).

The airplane was powered by a steam-cooled, direct-injected, 487.14 cubic-inch-displacement (7.983 liter) Société Antoinette 8V 90° V-8 direct-drive engine producing 53 horsepower at 1,100 r.p.m. The engine turned a two-bladed pusher propeller. It was designed by Léon Levavasseur. The engine was 1.120 meters (3 feet, 8 inches) long, 0.630 meters (2 feet, 1 inch) wide and (0.540 meters (1 foot, 9 inches) high. It weighed 95 kilograms (209 pounds).

Charles Voisin and Henry Farman, 1907. (Unattributed)

© 2016, Bryan R. Swopes

6 June 1955

Massif du Mont-Blanc depuis le sommet du Brévent, 2006. Mont Blanc, north face from Brevant. (Yann via Wikipedia)
Massif du Mont-Blanc depuis le sommet du Brévent, 2006. Mont Blanc, north face from Brevant. (Yann via Wikipedia)

6 June 1955: Mont Blanc (the “White Mountain”), at 4.808,73 mètres (15,776.67 feet), is the highest mountain in the Alps, and second highest in Europe. (Because the summit consists of ice and snow, the actual elevation of the summit varies from year to year, and season to season. This is the 2013 measurement.)

Jean Moine, chief pilot of Fenwick Aviation S.A., flew a new Bell Aircraft Corporation Model 47G-2 helicopter from the company’s base at Issy-les-Moulineaux, southwest of Paris, to Chamonix in southeastern France, and then on to the village of Le Fayet. This village is located northwest of the Mont Blanc massif at an elevation of 584 meters (1,916 feet) above Sea Level.

Jean Moine, Capitaine, Com
Jean Moine in the cockpit of a Bell Model 47 helicopter. (Hélico-Fascination)

The helicopter, registered F-BHGJ, with manufacturer’s serial number 1342, was the very first Bell Model 47G-2 to be built.

Some items not necessary for the planned flight to the summit were removed from the helicopter to reduce weight: the left fuel tank, battery, generator and seat cushions. The right fuel tank contained just 40 liters (10.6 gallons) of gasoline.

At 5:15 a.m. the following morning, 6 June, Jean Moine and his passenger, André Contamine, an Alpine guide, lifted off from Le Fayet and began a long climb to the Dôme du Goûter, 2 kilometers (1¼ miles) northwest of the summit of Mont Blanc, at 4,304 meters (14,121 feet). After 32 minutes, Moine landed there at 5:43 a.m.

Jean Moine with Bell 47G-2 F-BHGJ
Jean Moine with the first Bell Model 47G-2, F-BHGJ, probably at Dôme du Goûter, 6 June 1955. The helicopter’s left fuel tank and battery have been removed. (Hélico-Fascination)

After remaining at Dôme du Goûter for five minutes, Moine and Contamine again took off, and seven minutes later, landed atop Mont Blanc at 5:55 a.m. Moine estimated the wind speed at 25 knots (13 meters per second). After four minutes at the summit, Moine again lifted off and this time, returned to Chamonix, where the helicopter landed at 6:15 a.m.

Although the Bell 47G-2 has a hover ceiling in ground effect (HIGE) of 10,000 feet (3,048 meters), with winds of 20–25 knots (10.3–12.9 meters per second), the helicopter, while stationary, was actually in translational lift. Combined with very cold temperatures (probably lower than -14.7 °C./5.5 °F.) which reduced the density altitude from ISA standard conditions, the helicopter was easily able to land and takeoff, requiring only 14 inches (0.47 bar) of manifold pressure.

This was the highest landing and takeoff by a helicopter up to that time.

Later that morning, Moine and the Bell 47G-2 made two more flights to Dôme du Goûter, first with Pierre Voisin (?) and again with Contamine.

 Jean Moine and F-BHGJ at the summit of Mont Blanc, just before 6:00 am, 6 June 1955. (André Contamine via Hélico-Fascination)
Jean Moine and F-BHGJ at the summit of Mont Blanc, just before 6:00 am, 6 June 1955. (André Contamine via Hélico-Fascination)

Two short articles in FLIGHT and Aircraft Engineer mention the Mont Blanc landing:

. . . Lands High . . .

FLYING a Bell 47G, M. Jean Moine, accompanied by the guide Contamine, took off from Le Fayet airfield (1,905ft) on Monday and landed first on the Dôme du Goûter (14,116ft) and, seven minutes later, on the summit of Mont Blanc (15,782ft). On the same day S.N.C.A.S.E. claimed the world’s helicopter height record when the Alouette II, powered by a Turboméca Artouste, reached 27,100ft. The machine took off from Buc, near Paris, climbed for 42 min and landed at Montesson. The pilot was M. Jean Boulet.

FLIGHT and AIRCRAFT ENGINEER, No. 2420 Vol. 67. Friday, 10 June 1955, at Page 784

. . . and:

. . . There followed, on June 6th, a landing by Jean Moine in a Bell 47-G2 on Mont Blanc, altitude 15,781 feet, now the highest landing by a rotating wing aircraft. . .

     The actual machine which landed on the summit of Mont Blanc , the Bell 47G2, powered by a 260 h.p. Lycoming engine de-rated to 200 h.p. was seen at Le Bourget. The use of a de-rated engine, the makers claim, increases considerably the engine overhaul life and also engine maintenance problems.

      According to the pilot, Jean Moine, the mountain landing was made without difficulty, in spite of no little turbulence caused by a 20 knot wind, and there was a sufficient reserve of power, with a passenger aboard, to enable the machine to hover in the ground cushion in the normal way before touching down.

FLIGHT and AIRCRAFT ENGINEER, No. 2424 Vol. 68. Friday, 8 July 1955 at Page 54

Logbook entries of Mount Blanc flight
Entries in Jean Moine’s logbook of the Mount Blanc flight, 6 June 1955.

Jean Moine was born at Paris, France at 1915. He studied at Lycée Condorcet, a high school in Paris. In 1935, he learned to fly in a Potez 36 two-place trainer at l’aéro-club at Orly. In 1937 joined the Armée de l’air (the French Air Force). With the fall of France in 1939, Capitaine Moine continued to serve with the Forces Aériennes Françaises Libres (the Free French Air Force.) Assigned to Groupe Bretagne (GB II/20) he flew 46 combat missions with the Glenn L. Martin Co. B-26 Marauder, a twin-engine medium bomber.

Glenn L. Martic Co. B-26 Marauder.
Forces Aériennes Françaises Libres (Free French Air Force) Glenn L. Martin Company B-26G-11-MA Marauder 43-34594, nº 29, Groupe Bretagne. (Collection J. Moulin)

Captain Moine was awarded the Croix de Guerre and the Médaille de la Résistance (Medal of the Resistance). He was appointed Commandeur Ordre national de la Légion d’honneur.

Following World War II, Jean Moine served as chief pilot for a small regional airline, Lignes Aériennes du Sud-Ouest. In 1950, Moine joined Fenwick Aviation S.A., Paris, France, as chief pilot and general manager. The company sold and operated aircraft produced by several American manufacturers, including the Bell Aircraft Corporation. He learned to fly helicopters at the Bell plant at Buffalo, New York. While there, he also studied Bell’s flight school operation. Returning to France, he organized Fenwick Aviation’s flight school at Issy-les-Moulineaux.

Moine rose to vice president and chief executive officer. He served as Fenwick’s president from 1966 to 1976.

Bell Model 47 helicopters at Fenwick Avaition,
Bell Model 47 helicopters at Fenwick Aviation, a major distributor for Bell Aircraft Corporation in Europe. (Hélico-Fascination)

Leaving Fenwinck, he joined Transair Helicopters Group. One of the missions this company performed was transporting marine pilots by helicopter to ships at sea, flying an Aérospatiale Alouette III based at Cherbourg.

In December 1975, HRH Prince Charles awarded the Berguet Trophy of the Royal Aero Club and the Aero Club of France to Moine for his outstanding contributions to rotary wing flight.

Moine served as president of l’Aéro-Club de France from 1982–1986.

When Jean Moine retired, he had accumulated a total of 7,000 flight hours, about equally divided between fixed-wing and rotary-wing aircraft.

Jean Moine, Commandeur Ordre national de la Légion d’honneur, died 7 March 2002 at the age of 86 years.

This advertisement for the Bell 47G-2 shows an early production aircraft painted yellow. This may be c/n 1342. (Bell Helicopter Company)
This advertisement for the Bell Model 47G-2 shows an early production aircraft painted yellow and black, the standard paint scheme. (Bell Helicopter Company)

The Bell Model 47, designed by Arthur M. Young, of the Bell Aircraft Corporation, Buffalo, New York, was the first helicopter to receive civil certification from the Civil Aviation Administration, predecessor of the Federal Aviation Administration. On 8 March 1946, the aircraft received CAA Type Certificate H-1.

The Bell 47G was the first helicopter manufactured by the Bell Aircraft Corporation at the company’s new plant at Fort Worth, Texas. It was also produced under license by Agusta, Kawasaki and Westland.

The Bell Model 47G and 47G-2 Trooper are nearly identical, essentially differing only in the engine used. It is a 3-place, single-engine light helicopter, operated by a single pilot. The helicopter has dual flight controls and can be flown from either the left or right. The airframe is constructed of a welded tubular steel framework with a sheet metal cockpit. The landing gear consists of two lateral, horizontal tubular cross tubes, and two longitudinal “skids,” curved upward at the front. Ground handling wheels are attached to the skids. The most distinctive feature of the Bell 47 is the large plexiglass “bubble” windshield. The main rotor flight controls use a system of bell cranks and push-pull tubes. The cyclic is hydraulically boosted. The tail rotor is controlled by pedals and stainless steel cables.

With rotors turning, the Bell 47G-2 has an overall length of 41 feet, 4.75 inches (12.618 meters). From the forward tip of the skids to the aft end of the tail rotor guard, the fuselage is 31 feet, 5.40 inches long (9.586 meters). The main rotor has a diameter of 35 feet, 1.50 inches (10.706 meters). The tail rotor diameter is 5 feet, 8.125 inches (1.730 meters). Height to top of main rotor mast is 9 feet, 3.613 inches (2.835 meters).

The Bell 47G-2 has an empty weight of approximately 1,564 pounds (709 kilograms), depending on installed equipment. Its maximum gross weight is 2,450 pounds (1,111 kilograms), a 100 pound (45 kilogram) increase over the Franklin-powered Model 47G.

The main rotor, in common to all American-designed helicopters, rotates counter-clockwise as seen from above. (The advancing blade is on the helicopter’s right.) The anti-torque (tail) rotor is mounted to the right side of an angled tail boom extension, in a tractor configuration, and rotates counter-clockwise as seen from the helicopter’s left. (The advancing blade is above the axis of rotation.)

This photograph of a Bell 47 presents a good view of the stabilizer bar, pitch links and hydraulic dampers.
This photograph of a Lycoming-powered Bell 47G-2 hovering in ground effect presents a good view of the stabilizer bar, pitch links and hydraulic dampers. (Wikipedia)

The main rotor is a two-bladed, under-slung, semi-rigid assembly that would be a characteristic of helicopters built by Bell for decades. The main rotor system incorporates a stabilizer bar, positioned below and at right angles to the main rotor blades. Teardrop-shaped weights are placed at each end of the bar, on 100-inch (2.540 meters) centers. The outside diameter of the stabilizer bar is 8 feet, 6.781 inches (2.611 meters). The pilot’s inputs to the cyclic stick are damped through a series of mechanical linkages and hydraulic dampers before arriving at the pitch horns on the rotor hub. The result is smoother flight, especially while at a hover. The stabilizer bar action is commonly explained as being “gyroscopic,” but this is incorrect. (A similar system is used on the larger Bell 204/205/212 helicopters.)

The working parts of this Agusta-Bell 47G-3B-1 are clearly visible in this photograph. (M. Bazzani/Heli-Archive)

The Bell 47G and 47G-2 used laminated-wood main rotor blades, with a metal spar, covered with fabric. The blades’ trailing edge tapers slightly from root to tip. The airfoil is symmetrical, transitioning from NACA 0015 at the root to NACA 0011 at the tip. The normal operating range of the main rotor is 322–360 r.p.m. (294–360 r.p.m. for autorotation). A longitudinal hole in the blade tip for a recessed tension-adjusting nut produces a distinctive whistling sound.

The 47G-2 used a more powerful AVCO Lycoming VO-435-A1A, -A1B, -A1D, -A1E or -A1F engine in place of the Franklin 6V4-200-C32AB. The VO-435 is an air-cooled, normally-aspirated 433.972-cubic-inch-displacement (7.112 liter) vertically-opposed six-cylinder direct-drive engine. The engine has a compression ratio of 7.30:1 and requires a minimum of 80/87 octane aviation gasoline. The VO-435A series engine has a Maximum Continuous Power rating of 250 horsepower at 3,200 r.p.m., and 260 h.p. @ 3,400 r.p.m. for takeoff. Installed in the Bell 47G-2, the engine’s maximum power limit is 28.8 inches of mercury (0.975 bar) manifold pressure at 3,100 r.p.m. (200 horsepower) to increase time-between-overhaul (TBO) limits. The VO-435 is 34.73 Inches (0.882 meters) high, 33.58 inches (0.878 meters) wide and 24.13 inches (0.613 meters) deep, and weighs 393.00 pounds (178.26 kilograms) to 401.00 pounds (182.89 kilograms), depending of the specific engine variant.

Bell Model 47G, 47G-2 diagram
Bell Model 47G/47G-2 left profile.

Engine torque is sent through a centrifugal clutch to a gear-reduction transmission, which drives the main rotor through a two-stage planetary gear system. The transmission also drives the tail rotor drive shaft, and through a vee-belt/pulley system, a large fan on the forward face of the engine to provide cooling air.

The Bell 47G/G-2 has a maximum speed (VNE) of 100 miles per hour (161 kilometers per hour) from Sea Level to 1,400 feet (427 meters). Above that altitude, VNE is reduced 3.5 miles per hour (5.6 kilometers per hour) for every 1,000 foot (305 meters) increase in altitude. On a Standard Day, the hover ceiling in ground effect (HIGE) of the Bell 47G-2, at maximum gross weight, is 10,000 feet (3,048 meters) above Sea Level, and out of ground effect (HOGE), 3,200 feet (975 meters).

Fuel is carried in two gravity-feed tanks, mounted above and on each side of the engine. The total fuel capacity is 43.0 gallons (162.8 liters), however, usable fuel is 41.0 gallons (155.2 liters). The helicopter has a maximum range of 238 miles (383 kilometers).

In production from 1946 until 1974, more than 7,000 Model 47 helicopters were built, worldwide. It is estimated that about 10% of these aircraft remain in service.

In 2010, the type certificates for all Bell 47 models were transferred to Scott’s Helicopter Service, Le Sueur, Minnesota, which continues to manufacture parts and complete helicopters.

Bell 47G-2 F-BHGJ was delivered to Fenwick Aviation SA, along with the second production G-2, 3 February 1955. It was acquired by France Aviation SA, Aéroport de Toussus le Noble, Chateaufort, south of Versailles, on 13 June 1955. It was next registered to SA Gyrafrique, Algeria, 8 November 1955. On 5 August 1960, the helicopter was once again reregistered, this time to SA Gyrasahara. Gyrafrance SA (Gyrafrance Hélicoptères), Aéroport de Frejorgues, Mauguio, became the registered owner, 23 July 1964. On 9 August 1991, the registered owner was Societe Nouvelle Gyrafrance SA, Aéroport de Montpellier–Méditerranée, Mauguio. F-BHGJ was registered to SA Aero 34, also located at the Aéroport Montpellier–Méditerranée, Mauguio, 23 March 1995, and then Aeromecanic 34 SARL, Marignane, 1 August 2001. From 12 October 2004 until 18 February 2015, the helicopter was owned by Heli System, Frontignan, on the Mediterranean coast. The first Bell 47G-2, F-BHGJ, is currently owned by Conseil Aménagement Foncier, Frontignan.

Recommended: The Bell 47 Helicopter Story, by Robert S. Petite and Jeffrey C. Evans, Graphic Publishers, Santa Ana, California, November 2013.

© 2017, Bryan R. Swopes