Tag Archives: Knight Commander of the Most Excellent Order of the British Empire

13 September 1931

Supermarine S.6B S.1595 at the London Science Museum. (sciencemuseum.org.uk)

13 September 1931: Having won the previous two Coupe d’Aviation Maritime Jacques Schneider international seaplane races, the United Kingdom was in the position of permanently winning the famous Schneider Trophy if it were to win a third consecutive race.

The 1931 race was the twelfth in a series of annual or semiannual races which were first held in 1913, specifically for seaplanes. Teams from several nations, France, Great Britain, Italy and the United States, competed with float-equipped airplanes built specifically for the races. The national team which won three consecutive races would win the series and take home the Trophy. Italy had won three times (1920, 1921, and 1926); the United States, twice (1923, 1925); and France, one time (1913). The United Kingdom had previously won in 1922, 1927 and 1929.

Royal Air Force High-Speed Flight, 1931. (Unattributed)

Having won the race in 1929, Great Britain was the host nation for 1931. Like the 1929 race, the 1931 race was held over The Solent, a body of water between the harbor city of Portsmouth, England, and the Isle of Wight. Instead of the four-sided polygon used previously, the 1931 race course was a triangle of 50 kilometers (31.07 statute miles). Competitors would make seven circuits of the course, with all left-hand turns, for a total distance of 350 kilometers (217.48 statute miles).

Competitors would fly seven counter-clockwise laps of the 50-kilometer triangular race course (FLIGHT)

Italy had been developing the Macchi-Castoldi M.C. 72 with its 3,100-horsepower, 24-cylinder Fiat AS.6 engine, but the airplane was not ready by the required date. The United States was unwilling to invest the required money and had not entered since the 1927 race. France also was not prepared to compete. Both France and Italy formally announced their intention not to compete on 4 September 1931.

This meant that only a single British airplane was required to complete the race course to win the race and permanent possession of the trophy. Three airplanes were ready, one Supermarine S.6 and two new S.6Bs.

Three racing aircraft of the Royal Air Force High-Speed Flight at RAF Calshot for the 1931 Schneider Trophy Race. Left to right, #7, Supermarine S.6B S.1596; #4, Supermarine S.6 N.248; and #1, Supermarine S.6B S.1595. (FLIGHT)

Postponed because of rain and fog on the previous day, the 1931 race started at 1:02:10 p.m., Sunday, 13 September, with the firing of the starting gun from HMS Medea. Flight-Lieutenant John Nelson Boothman, Royal Air Force, in a blue and silver Supermarine S.6B, number S.1565, taxied across the start line at 1:10:19 p.m.

Race rules required that competitors take off, circle and land on the water. They were then required to taxi on the water for two minutes, before taking off a second time to begin the officially timed race laps. Observers reported that Flight-Lieutenant Boothman’s performance of the preliminary test was flawless. He taxied into position for his second takeoff and was airborne with a 40 second run.

Flight-Lieutenant John N. Boothman (FLIGHT)

Boothman’s lap times were:

Lap 1: 552.15 kilometers per hour (343.1 miles per hour)

Lap 2: 551.5 kilometers per hour (342.7 miles per hour)

Lap 3: 547.1 kilometers per hour (340.0 miles per hour)

Lap 4: 544.5 kilometers per hour (338.3 miles per hour)

Lap 5: 546.5 kilometers per hour (339.6 miles per hour)

Lap 6: 546.1 kilometers per hour (339.4 miles per hour)

Lap 7: 543.5 kilometers per hour (337.7 miles per hour)

Overall average speed: 547.3 kilometers per hour (340.08 miles per hour)

Air Ministry,

9th October, 1931.

ROYAL AIR FORCE.

     The KING has been graciously pleased to approve of the award of the Air Force Cross to the undermentioned officers of the Royal Air Force:—

Flight Lieutenant John Nelson Boothman.

In recognition of his achievement in winning the Schneider Trophy Contest, 1931.

Supermarine S.6B, S.1596. (BAE Systems)

S.1595 was Vickers-Supermarine S.6B Monoplane, designed by Reginald Joseph Mitchell, who would later design the legendary Supermarine Spitfire fighter of World War II. The racer was developed from Mitchell’s earlier S.4, S.5 and S.6 Schneider Cup racers, and was built at the Supermarine Aviation Works (Vickers), Ltd., Southampton, on the south coast of England. There were two S.6Bs, with the second identified as S.1596.

Reginald Joseph Mitchell, C.B.E., F.R.Ae.S.

The Supermarine S.6B was a single-place, single-engine, low-wing monoplane with two fixed pontoons as an undercarriage. It was of all-metal construction and used a high percentage of duralumin, a very hard alloy of aluminum and copper, as well as other elements. The float plane was 28 feet, 10 inches (8.788 meters) long, with a wingspan of 30 feet, 0 inches (9.144 meters) and height of 12 feet, 3 inches (3.734 meters). The wing area was 145 square feet (13,5 square meters). The S.6B had an empty weight of 4,560 pounds (2,068 kilograms) and gross weight of 5,995 pounds (2,719 kilograms).

Supermarine S.6B S.1596 (BAE Systems)

In an effort to achieve the maximum possible speed, aerodynamic drag was eliminated wherever possible. There were no radiator or oil cooler intakes. The wing surfaces were constructed of two thin layers of duralumin with a very small space between them. The engine coolant, a mixture of water and ethylene glycol, was circulated between these layers, which are known as surface radiators. The engine had a high oil consumption rate and the vertical fin was the oil supply tank. The skin panels also served as surface radiators. The fuselage panels were corrugated for strength, and several small parallel passages transferred lubricating oil from the fin tank to the engine, and further cooled the oil.

Supermarine S.6B S.1596 (BAE Systems)

S.1595 was powered by a liquid-cooled, supercharged, 2,239.327-cubic-inch-displacement (36.696 liter) Rolls-Royce Type R single-overhead-camshaft (SOHC) 60° V-12 engine, number R29. The Type R was a racing engine with 4 valves per cylinder and a compression ration of 6:1. In the 1931 configuration, it produced 2,350 horsepower at 3,200 r.p.m. It used a 0.605:1 reduction gear and turned a Fairey Aviation fixed-pitch airscrew with a diameter of 8 feet, 6 inches (2.591 meters). A special fuel, a mixture of benzol, methanol and acetone with TCP anti-detonation additive, was used.

Lucy, Lady Houston, with the Royal Air Force High-Speed Flight, 1931. R.J. Mitchell, designer of the S-series racers, is standing at right. (Royal Air Force Museum)

There would have been no 1931 British Schneider Trophy Race team without the generous contribution of Lucy, Lady Houston, D.B.E., who donated £100,000 to Supermarine to finance the new aircraft. Lady Houston would later sponsor the 1933 Houston Mount Everest Flying Expedition.

The winning aircraft, S.1595, is in the collection of the Science Museum, London.

Supermarine S.6B S.1596 (BAE Systems)

John Nelson Boothman was born at Harrow, northwest London, England, 19 February 1901. He was the son of Thomas John Boothman, a railway clerk, and Mary Burgess Boothman. He  became interested in aviation while very young, and took his first flight at the age of 10, as a passenger of Samuel Franklin Cody, the first pilot to fly a powered airplane in England.

Boothman was educated at Harrow High School. In 1918, when he was 16 years old, Boothman volunteered as a driver with the Croix-Rouge française (French Red Cross), serving in the Balkans until World War I came to an end. He was awarded the Croix de Guerre.

On his return to England, he took flying lessons, and joined the Royal Air Force. He received a short-service commission as a Pilot Officer (probationary), 29 March 1921. He trained at No. 1 Flight Training School. He then joined No. 4 Squadron at Constantinople. On 22 March 1922, Boothman was confirmed in the rank of Pilot Officer. He was promoted to Flying Officer 29 September 1922.

Also in 1922, Pilot Officer Boothman married Miss Gertrude Andrews. They would have one son.

Flying Officer Boothman returned to England in 1924 and was assigned as a flight instructor at the Central Flying School. He was also a member of an aerial demonstration team.

After five years of service, on 1 January 1926 Boothman’s commission as a Flying Officer, Royal Air Force, was made permanent. He returned to the Middle East, joining No. 55 Squadron in Iraq, 21 September 1926. This was a bombing squadron, equipped with the de havilland DH-9A. Boothman was promoted to Flight-Lieutenant 1 July 1927. He served with the Air Staff before going on to No. 30 Squadron, which also flew DH-9As, as a flight commander, 24 February 1928.

Flight-Lieutenant John Nelson Boothman, Royal Air Force.

Flight-Lieutenant Boothman was assigned as a test pilot at the Marine Aircraft Experimental Establishment, Felixstowe, Suffolk, 10 February 1930. On 11 May 1931, he became a member of the High-Speed Flight at RAF Calshot.

After winning the Schneider Trophy Race, on 3 October 1931, Flight-Lieutenant Boothman was assigned as a flight commander with No. 22 Squadron, a test squadron supporting the Aeroplane Experimental Establishment at RAF Martlesham Heath. During 1932, he became seriously ill and was removed from duty for several months. He returned to duty 13 August 1932 as a test pilot in the Experimental Section at RAE Farnborough. He then served as Chief Flying Instructor, Central Flying School.

Flight-Lieutenant Boothman attended the Royal Air Force Staff College in 1935. He was promoted to the rank of Squadron Leader, 1 December 1935. From 4 January 1936, he was assigned to Air Staff, Headquarters, Coastal Command. On 26 March 1937, Squadron Leader Boothman was assigned to Air Staff, Headquarters, Royal Air Force, Far East.

Boothman was promoted to Wing Commander, 1 January 1939. In September he was placed in command of No. 44 Squadron at RAF Waddington in Lincolnshire. This was a light bomber squadron which flew Bristol Blenheims and Handley Page Hampdens.

During the early stages of World War II, Wing Commander Boothman was assigned to Air Staff—Directorate of Operations (Home), and Air Staff, Headquarters, Bomber Command. He returned to RAF Waddington in March 1940 as the station’s commanding officer. He was promoted to Group Captain (temporary), 1 March 1941, then sent to the United States as an adviser to the U.S. Army Air Forces. Boothman returned to England as commanding officer of RAF Finningley, South Yorkshire.

On 6 June 1943, Group Captain Boothman was promoted to the rank of Acting Air Commodore, and assigned as Air Officer Commanding, No. 106 Wing. The wing controlled all photographic reconnaissance units in the United Kingdom. In 1 December 1943, Air Commodore Boothman’s rank was changed from Acting to Temporary.

In July 1944 Air Commodore Boothman was assigned as Commandant, Aeroplane and Armament Experimental Establishment (A. & A.E.E.) at RAF Boscombe Down, Wiltshire. In the King’s Birthday Honours, 1944, Air Commodore Boothman was invested Companion of the Most Honourable Order of the Bath, Military Division (C.B.).

On 2 July 1945, was promoted to Acting Air Vice Marshal and appointed Assistant Chief of Air Staff (Technical Requirements). On 9 October 1945, The U.S. Army Air Forces awarded him the the medal of Commander, Legion of Merit.

Air Vice Marshal John Nelson Boothman D.F.C., A.F.C., Royal Air Force, is presented the Legion of Merit by General Carl A. Spaatz, United States Army Air Forces. (Smithsonian Institution)

Air Vice Marshal Boothman once again returned to Iraq in 1948 as Air Officer Commanding, Air Headquarters, Iraq.

On 4 September 1950, he was promoted to Acting Air Marshal, and Controller of Supply (Air), Ministry of Supply. On 15 November 1953, Air Marshal Boothman became Commander in Chief, Coastal Command and Commander in Chief (Air) Eastern Atlantic Area.

In the King’s Birthday Honours list, 7 June 1951, Air Marshal Boothman, C.B., D.F.C., A.F.C., was promoted to Knight Commander of the Military Division of the Most Excellent Order of the British Empire (K.B.E.).

In the Queen’s Birthday Honours, June 1954, Air Marshal Sir John Boothman, K.B.E., D.F.C., A.F.C., was invested Knight Commander of the Most Honourable Order of the Bath (K.C.B.).

On 1 October 1954, Sir John was promoted to the rank of Air Chief Marshal. He retired from the Royal Air Force in 1956.

Air Chief Marshal Sir John Nelson Boothman, K.C.B., K.B.E., D.F.C., A.F.C., Royal Air Force, died 29 December 1957 at the age of 57 years.

Air Vice Marshal Sir John Nelson Boothman, 1946. (Photographed by Walter Stoneman)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

18 December 1919

Sir John William Alcock, by Sir John Lavery, R.A., 1919
Sir John William Alcock, oil on canvas, by Sir John Lavery, R.A., 1919

18 December 1919: Captain Sir John William Alcock, KBE, DSC, a test pilot for Vickers Ltd., was flying the prototype Vickers Viking seaplane, G-EAOV, to the Paris Air Show–1919, at the Grand Palais, Champs Elysees. After crossing the English Channel, he attempted to land north of Rouen, in foggy conditions. A contemporary news article described the event:

THE DEATH OF SIR JOHN ALCOCK

It is with the most profound regret that we have to record the fatal accident of Sir John Alcock, which occurred on the afternoon of December 18, while he was engaged in taking a new Vickers machine to Paris in connection with the Salon. It appears that the machine when nearing Rouen had great difficulty in negotiating a strong wind. A farmer at Côte d’Evrard, about 25 miles north of Rouen, saw the machine come out of the fog, commence to fly unsteadily, and—it was then about 1 o’clock—it suddenly crashed into the ground. Sir John Alcock was taken from the wreck, but unfortunately there was considerable delay in getting medical assistance as the farmhouse near where the crash occurred is out of the way. As soon as the accident was reported, doctors rushed from No. 6 British General Hospital, Rouen, but they were too late. It is probable that an enquiry will be held by French authorities, at which  the Air Ministry and Messrs. Vickers will be represented. Arrangements are being made for the conveyance of the body of Sir John Alcock to England for burial in Manchester, his native city.

The death of Sir John Alcock is an irreparable loss to aviation. His great flight across the Atlantic is too fresh in the mind of readers of FLIGHT for further reference here, while his previous work is recorded in the pages of past volumes of this paper.

FLIGHT, The Aircraft Engineer & Airships,  No. 574 (No. 52, Vol. XI.), 25 December 25 1919, at Page 1646.

Captain Sir John William Alcock, KBE, DSC.
Captain Sir John William Alcock, KBE, DSC.

John William Alcock was born 5 November 1892. He took an early interest in flying. Work as a mechanic led to flight training and he received his pilot’s license in 1912. With the onset of World War I, he enlisted as a warrant officer in the Royal Naval Air Service (RNAS). He was commissioned a sub-lieutenant in December 1915 and was sent to a squadron in the eastern Mediterranean. Alcock was flying a Sopwith Camel, 17 September 1917, when he shot down an enemy airplane and forced two others into the sea. For this action he was awarded the Distinguished Service Cross. After he returned to base, he took a Handley Page bomber on a mission to Constantinople. When one engine failed, he turned back, but then the second failed and the airplane went down. He and his two crewmen then swam to the enemy-held shoreline. They were all captured and held as prisoners of war.

John Alcock and Arthur Whitten-Brown, 14 June 1919. (Vickers PLC)
Arthur Whitten-Brown and John Alcock, 14 June 1919. (Vickers PLC)

After the war, John Alcock and Arthur Whitten Brown flew a Vickers Vimy from St. John’s, Newfoundland, to Clifden, Ireland, becoming the very first aviators to make a non-stop crossing of the Atlantic Ocean.

Forever known as “Alcock and Brown,” the two pilots were invested as Knight Commander of the Most Excellent Order of the British Empire by King George V.

The airplane which Sir John Alcock was flying was the prototype Vickers Viking, registration G-EAOV. This was an amphibious 5-place single-engine biplane, powered by a 897.1-cubic-inch-displacement  (14.2 liter) water-cooled Rolls-Royce Falcon 60° SOHC V-12 engine which produced 288 horsepower at 2,300 r.p.m at Sea Level. It was mounted just below the airplane’s upper wing and turned a four-bladed propeller in pusher configuration.

Vickers Viking G-EAOV. (Imperial War Museum)
Vickers Viking G-EAOV. © IWM (Q 73276)
Vickers Viking G-EAOV. © IWM (Q 73377
Vickers Viking prototype. © IWM (Q 73377)
Vickers Viking G-EAOV at Brooklands, 1919. © IWM (Q 73286)
Vickers Viking G-EAOV at Brooklands, 1919. © IWM (Q 73286)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

10 December 1919

Captain Sir Ross Macpherson Smith K.B.E., M.C., D.F.C., A.F.C., and his brother, Lieutenant Sir Keith Macpherson Smith K.B.E. (State Library of South Australia)
Captain Sir Ross Macpherson Smith K.B.E., M.C. and Bar, D.F.C., A.F.C., and his brother, Lieutenant Sir Keith Macpherson Smith K.B.E. (State Library of South Australia)

10 December 1919: Captain Sir Ross Macpherson Smith KBE, MC and Bar, DFC and Two Bars, AFC, and his brother, Lieutenant Sir Keith Macpherson Smith KBE, arrived at Darwin, Northern Territory, Australia, aboard a Vickers Vimy. Also aboard were Sergeant Jim Bennett and Sergeant Wally Shiers. The four had departed Hounslow Heath Aerodrome, London, England, on 12 November, in response to the offer of a £10,000 prize offered by the government of Australia to the first Australian airmen to fly from England to Australia aboard a British airplane.

The Smith’s airplane, a Vickers F.B.27A Vimy IV, registration G-EAOU, was built for the Royal Air Force, and given serial number F8630. It was too late to serve in combat and was not delivered to the RAF. Vickers modified it for the flight to Australia, adding additional fuel tanks. Total duration of the flight was 28 days, 17 hours, 40 minutes. The journey required 135 hours, 55 minutes of flying time. The distance flown was estimated to be 11,123 miles (17,901 kilometers). The Vimy averaged 81.84 miles per hour (131.71 kilometers per hour).

Ross and Keith Smith, left of center, wearing khakis and slouch hats, on their arrival at Darwin, Northern Territory, Australia, 10 December 1919. (National Archives of Australia A1200/19, L84857)

The route of the flight was London, England to Lyon, France; Rome, Italy; Cairo, Egypt; Damascus, French Mandate of Syria; Basra, Kingdom of Iraq; Karachi, Delhi, and Calcutta, British India; Akyab, and Rangoon, Burma; Singora, Siam; Singapore, Straits Settlements; Batavia and Surabaya, Dutch East Indies; arriving at Darwin at 4:10 p.m. local time, 10 December 1919 (0140, 11 December, GMT).

The Smith brothers were both invested Knight Commander of the Most Excellent Order of the British Empire by George V. The four airmen divided the £10,000 prize money.

Vickers F.B.27A Vimy IV, G-EAOU.
Vickers F.B.27A Vimy IV, G-EAOU, photographed 31 August 1920. (Museums Victoria Collections)

The Vickers Vimy (named after the World War I Battle of Vimy Ridge) was a twin-engine biplane heavy bomber built for the Royal Air Force. The airplane was 43 feet, 7 inches (13.284 meters) long with a wingspan of 68 feet, 1 inch (20.752 meters). It was 15 feet, 8 inches  (4.775 meters) high. The bomber weighed 7,104 pounds (3,222 kilograms) empty, and had a maximum takeoff weight of 10,884 pounds (4,937 kilograms), though on the intercontinental flight, G-EAOU was routinely operated at a gross weight of 13,000 pounds (5,897 kilograms).

The Vimy was powered by two 1,240.5-cubic-inch-displacement (20.329 liter) water-cooled Rolls-Royce Eagle VIII single overhead cam 60° V-12 engines, rated at 350 horsepower at 1,800 r.p.m., each, turning four-bladed, fixed-pitch, wooden propellers through a 0.60:1 gear reduction. The engine could be operated at 2,000 r.p.m. for five minutes. It used four Rolls-Royce/Claudel Hobson carburetors and four Watford magnetos. Fuel consumption at normal power at Sea Level was 23 gallons (87 liters) per hour. The engine weighed 847 pounds (384 kilograms).

Rolls-Royce Eagle VIII aircraft engine. (NASM)

The Vimy had a maximum speed of 100 miles per hour (161 kilometers per hour), and in standard configuration, a range of 900 miles (1,448 kilometers). The service ceiling was 7,000 feet (2,134 meters). This is the same type airplane flown across the North Atlantic ocean by Alcock and Brown six months earlier.

Vickers gave the Vimy IV bomber to the Australian government. G-EAOU is on display at Adelaide Airport, Adelaide, South Australia.

Vickers Vimy, G-EAOU. (John Oxley Library, State Library of Queensland)
Vickers Vimy, G-EAOU. (John Oxley Library, State Library of Queensland)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather