Frank Hawks with the red and silver Lockheed Air Express, NR7955. (San Diego Air & Space Museum Archives)
4–5 February 1929: At 5:37:30 p.m., Pacific Time, Monday, Frank Monroe Hawks took off from Metropolitan Field, Los Angeles, California, (now known as Van Nuys Airport, VNY) in a new Lockheed Model 3 Air Express transport, NR7955, serial number EX-2. Also on board was Oscar Edwin Grubb, the final assembly superintendent for Lockheed. The pair flew non-stop to Roosevelt Field, Long Island, New York, arriving there at 2:59:29 p.m., Eastern Time, on Tuesday. The duration of the flight was 18 hours, 21 minutes, 59 seconds.
Oscar Edwin Grubb and Frank Monroe Hawks, shortly before departing for New York, 4 February 1929. (Getty Images)
The only previous non-stop West-to-East flight had been flown during August 1928 by Arthur C. Goebel, Jr., and Harry Tucker with their Lockheed Vega, Yankee Doodle, NX4769. Hawks cut 36 minutes off of Goebel’s time.
Lockheed Model 3 Air Express NR7955, photographed 1 February 1929. The Air Express was the first production airplane to use the new NACA cowling design. (Crane/NACA)
Hawks was a technical adviser to The Texas Company (“Texaco”), a manufacturer and distributor of petroleum products which sponsored the flight. On his recommendation, the company purchased the Air Express from Lockheed for use as a company transport.
On 17 January 1930,
“Pilot Frank Hawks attempted a takeoff from a soggy field in West Palm Beach, Florida, destroying the aircraft christened ‘Texaco Five’ in a spectacular crash that catapulted it into a row of three parked aircraft. All three occupants were unhurt while the aircraft was destroyed.”
—Bureau of Aircraft Accidents Archives
NC7955’s Department of Commerce registration was cancelled 31 January 1930.
The Lockheed Model 3 Air Express was a single-engine parasol-wing monoplane transport, flown by a single pilot in an open aft cockpit, and capable of carrying 4 to 6 passengers in its enclosed cabin. The airplane was designed by Gerard Freebairn Vultee and John Knudsen Northrop. It used the Lockheed Vega’s molded plywood monocoque fuselage.
The Model 3 received Approved Type Certificate No. 102 from the Aeronautic Branch, U. S. Department of Commerce.
The Lockheed Air Express was the first production airplane to use the “NACA Cowl,” an engine cowling for radial engines which had been designed by a team led by Fred Ernest Weick of the the National Advisory Committee for Aeronautics’ Langley Memorial Aeronautical Laboratory. The new cowling design tightly enclosed the engine and used baffles to control air flow around the hottest parts of the engines. The exit slots were designed to allow the air to exit the cowling at a higher speed than it had entered the intake. The new cowling design provided better engine cooling and caused significantly less aerodynamic drag. The addition of the NACA cowling increased the Air Express’s maximum speed from 157 to 177 miles per hour (253 to 285 kilometers per hour).
The day following Hawks’ transcontinental flight, Vultee sent a telegram to NACA:
COOLING CAREFULLY CHECKED AND OK. RECORD IMPOSSIBLE WITHOUT NEW COWLING. ALL CREDIT DUE TO NACA FOR PAINSTAKING AND ACCURATE RESEARCH. GERRY VULTEE, LOCKHEED AIRCRAFT CO.
The Lockheed Model 3 Air Express was 27 feet, 6 inches (8.382 meters) long with a wing span of 42 feet, 6 inches (12.954 meters) and height of 8 feet, 4½ inches (2.553 meters). The wing area was 288 square feet (26.756 square meters). The wing had no dihedral. The airplane had an empty weight of 2,533 pounds (1,149 kilograms) and gross weight of 4,375 pounds (1,984 kilograms).
The Model 3 was powered by an air-cooled, supercharged 1,343.804-cubic-inch-displacement (22.021 liter) Pratt & Whitney Wasp C nine cylinder, direct-drive radial engine. The Wasp C was rated at 420 horsepower at 2,000 r.p.m. at Sea Level. It was 3 feet, 6.63 inches (1.083 meters) long, 4 feet, 3.44 inches (1.307 meters) in diameter, and weighed 745 pounds (338 kilograms).
The Air Express had a cruising speed of 135 miles per hour (217 kilometers per hour), and maximum speed of 177 miles per hour (285 kilometers per hour). It’s service ceiling was 17,250 feet (5,258 meters).
Frank Hawks, 1930. (San Diego air and Space Museum Archives)
Francis Monroe Hawks was born at Marshalltown, Iowa, 28 March 1897. He was the son of Charles Monroe Hawks, a barber, and Ida Mae Woodruff Hawks. He attended Long Beach Polytechnic High School, Long Beach, California, graduating in 1916. He then studied at the University of Southern California, in Los Angeles.
Frank Hawks was an Air Service, United States Army, pilot who served during World War I. He rose to the rank of Captain, and at the time of his record-breaking transcontinental flight, he held a commission as a reserve officer in the Army Air Corps. Hawks transferred to the U.S. Naval Reserve with the rank of Lieutenant Commander. His date of rank 27 May 1932.
His flying had made him a popular public figure and he starred in a series of Hollywood movies as “The Mysterious Pilot.”
Poster advertising Episode 5 of the movie serial, “The Mysterious Pilot.” (Columbia Pictures)Amelia Earhart and Frank Hawks. (World History Project)
On 28 December 1920, Miss Amelia Earhart took her first ride in an airplane at Long Beach Airport in California. The ten-minute flight began her life-long involvement in aviation. The airplane’s pilot was Frank Monroe Hawks.
Francis M. Hawks married Miss Newell Lane at Lewiston, Montana, 7 August 1918. They had a daughter, Dolly. They later divorced. He next married Mrs. Edith Bowie Fouts at St. John’s Church, Houston, Texas, 26 October 1926.
Frank Hawks was killed in an aircraft accident at East Aurora, New York, 23 August 1938. He was buried at Redding Ridge Cemetery, Redding, Connecticut.
Amelia Earhart with her Lockheed Vega 5C, NR965Y, at Wheeler Field, Oahu, Hawaii, 11 January 1935. (Getty Images/Underwood Archives)
11 January 1935: At 4:40 p.m., local time, Amelia Earhart departed Wheeler Field on the island of Oahu, Territory of Hawaii, for Oakland Municipal Airport at Oakland, California, in her Lockheed Vega 5C Special, NR965Y. She arrived 18 hours, 15 minutes later. Earhart was the first person to fly solo from Hawaii to the Mainland.
(This Vega was not the same aircraft which she used to fly the Atlantic, Vega 5B NR7952, and which is on display at the Smithsonian Institution National Air and Space Museum.)
Built by the Lockheed Aircraft Company, the Model 5 Vega is a single-engine high-wing monoplane designed by John Knudsen (“Jack”) Northrop and Gerrard Vultee. It was a very state-of-the-art aircraft for its time. It used a streamlined monocoque fuselage made of spiral strips of vertical grain spruce pressed into concrete molds and held together with glue. The wing and tail surfaces were fully cantilevered, requiring no bracing wires or struts to support them.
The techniques used to build the Vega were very influential in aircraft design. It also began Lockheed’s tradition of naming its airplanes after stars or other astronomical objects.
Amelia Earhart’s Lockheed Vega 5C, NR965Y, being run up at Wheeler Field, 11 January 1935. Amelia is sitting on the running board of the Standard Oil truck parked in front of the hangar. (Hawaii Aviation)
Lockheed Model 5C Vega serial number 171 was completed in March 1931, painted red with silver trim, and registered NX965Y. The airplane had been ordered by John Henry Mears. Mears did not take delivery of the new airplane and it was then sold to Elinor Smith. It was resold twice before being purchased by Amelia Earhart in December 1934.
The Lockheed Model 5C Vega is 27 feet, 6 inches (8.382 meters) long with a wingspan of 41 feet (12.497 meters) and overall height of 8 feet, 2 inches (2.489 meters). Its empty weight is 2,595 pounds (1,177 kilograms) and gross weight is 4,500 pounds (2,041 kilograms).
Earhart’s Vega 5C was powered by an air-cooled, supercharged, 1,343.804-cubic-inch-displacement (22.021 liter) Pratt & Whitney Wasp C, serial number 2849, a single-row, nine cylinder, direct-drive radial engine with a compression ratio of 5.25:1. The Wasp C was rated at 420 horsepower at 2,000 r.p.m. at Sea Level, burning 58-octane gasoline. It was 3 feet, 6.63 inches (1.083 meters) long with a diameter of 4 feet, 3.44 inches (1.307 meters) and weighed 745 pounds (338 kilograms).
The standard Model 5C had a cruise speed of 165 miles per hour (266 kilometers per hour) and maximum speed of 185 miles per hour (298 kilometers per hour). The service ceiling was 15,000 feet (4,570 meters) and range in standard configuration was 725 miles (1,167 kilometers).
“Before parting with her ‘little red bus’ (as she affectionately called it), Amelia removed the upgraded Wasp engine and substituted an obsolete model; she wanted her well-tried engine for the new airplane, also a Lockheed Vega. It was a later model, in which Elinor Smith had been preparing to be the first woman to fly the Atlantic, a plan abandoned after Amelia successfully took that record. It was originally built to exacting specifications for Henry Mears of New York, who had a round-the-world flight in mind. Called the Vega, Hi-speed Special, it carried the registration 965Y and was equipped with special fuel tanks, radio, and streamlined landing gear and cowling. These latter appointments, together with a Hamilton Standard Controllable-Pitch Propeller, gave the plane a speed of 200 mph and Amelia had her eye on further records as well as her constant journeys across the continent.”
— The Sound of Wings by Mary S. Lovell, St. Martin’s Press, New York, 1989, Chapter 17 at Page 206.
Crowds of spectators greet Amelia Earhart on her arrival at Oakland, California, from Hawaii, 12 January 1935. (Associated Press)
“. . . At Oakland Airport a good ten thousand had been waiting for several hours, yet when she came in she surprised them. They had been craning their necks looking for a lone aircraft flying high and obviously seeking a place to land. But Amelia did not even circle the field; she brought the Vega in straight as an arrow at a scant two hundred feet, landing at 1:31 p.m. Pacific time. The crowd set up a roar, broke through the police lines, and could be halted only when dangerously near the still-whirling propeller. From the road circling the airport, a chorus of automobile horns honked happily.”
— Amelia: The Centennial Biography of an Aviation Pioneer by Donald M. Goldstein and Katherine V. Dillon, Brassey’s, Washington and London, 1997, Chapter 13 at Page 132.
Amelia Earhart stands in the cockpit of her Lockheed Model 5C Vega, NR965Y, on arrival at Oakland Municipal Airport, 12 January 1935. (National Geographic/Corbis)
Amelia Earhart sold the Vega in 1936. It appeared in “Wings in the Dark,” (Paramount Pictures, 1935), and “Border Flight,” (Paramount Pictures, 1936) which starred Frances Farmer, John Howard and Robert Cummings. It changed hands twice more before being destroyed in a hangar fire 26 August 1943.
Lockheed Model 5C Vega NR965Y, on the set of a motion picture production, “Border Flight,” (Paramount, 1936). The woman to left of center is Frances Farmer. Roscoe Karns, who performed in both movies, is at center. (San Diego Air and Space Museum)
Lockheed XC-69 Constellation 43-10309 (L-049 NX25600) in flight. (San Diego Air & Space Museum Archive)
9 January 1943: At the insistence of the United States Army Air Forces, Boeing’s Chief Test Pilot, Eddie Allen, made the first flight of the Lockheed L-049 Constellation prototype, NX25600, from Lockheed Air Terminal at Burbank, California, to Muroc Army Airfield (today known as Edwards Air Force Base). Lockheed’s Chief Test Pilot, Milo G. Burcham, was the co-pilot.
Lockheed XC-69 Constellation 43-10309 (L-049 NX25600) in flight. (San Diego Air & Space Museum Archive)
Also on board were Lockheed’s chief research engineer, Clarence L. (“Kelly”) Johnson; Rudy Thoren, Johnson’s assistant; and Dick Stanton, chief mechanic.
The Lockheed Constellation was designed by a team led by Chief Engineer Hall Livingstone Hibbard, left, and Chief Research Engineer Clarence Leonard “Kelly” Johnson. (Lockheed)
When the flight ended after 58 minutes, Allen said, “This machine works so well that you don’t need me anymore!” With that, Allen returned to Seattle.
The Los Angeles Times reported:
SUPER TRANSPORT PLANE IN DEBUT
Lockheed’s Air Marvel Makes First Flight; Believed to Be World’s Largest and Fastest; Built Like Fighter, Can Outspeed Jap Zero
BY MARVIN MILES
Into the winter sky yesterday swept a brilliant new star—Lockheed super-transport Constellation.
First of a galaxy to come, the four-engine colossus sped down the long east-west runway at Lockheed Air Terminal, skipped nimbly off the concrete and boomed upward with the surging roar of 8000 unleashed horses.
A few breath-taking seconds’ full throttle had written a matter-of-fact climax to two years of secret development that evolved a 60-passenger transport faster than a Jap Zero fighter.
There were no fanfares, no speeches—simply an unvarnished war production takeoff, emphasizing as nothing else could the grim driving need for huge work planes to carry the battle swiftly to the ends of the earth.
Yet it was the first significant aviation event of 1943.
Lockheed XC-69 Constellation 43-30109 during its first flight, 9 January 1943. (Lockheed Martin Aeronautics Company)
Built along the slim, graceful lines of a fighter the craft is faster than any four-engine bomber now in service. It can cross the continent in less than 9 hours,fly to Honolulu in 12. Even at half power its cruising speed is approximately 100 miles per hour faster than that of a standard airliner!
Within its supercharged cabin, air-density will remain at the 8000-foot level when the Constellation is cruising at “over-the-weather” altitudes up to 35,000 feet. So great is its power that the monster can maintain 25,000 feet on three engines, 16,500 on two.
As for economy of operation, the new sky queen can fly her full load hour after hour using but one gallon of gasoline per mile.
Lockheed XC-69 Constellation 43-10309 (L-049 NX25600) at Lockheed Air Terminal, with engines running. Looking west-northwest across the San Fernando Valley. (San Diego Air & Space Museum Archive)
ONE TAXI TEST
At the controls when the super-transport lifted its tricycle gear in flight were Eddie Allen, Army pilot and veteran four-engine flyer, and Milo Burcham, Lockheed test pilot noted for his substratosphere testing of the P-38. Also in the ship were C.L. (Kelly) Johnson, chief research engineer for the aircraft company; Rudy Thoren, Johnson’s assistant, and Dick Stanton, chief mechanic.
Chief Research Engineer Clarence L. “Kelly” Johnson (left) and Chief Engineering Test Pilot Milo G. Burcham, with the XC-69 Constellation. (Lockheed Martin Aeronautics Company)
There was but one taxi test yesterday, highlighted by a brief blaze in one of the four engines following a backfire as the ship turned to roll back to the head of the runway.
The fire was doused quickly and the Constellation stood ready for her maiden flight, he nose into a gentle breeze, the focal point of hundreds of eyes of workers, Army guards and officials watched expectantly.
Each engine “revved up”in turn, sending deep-throated echoes over the sun-drenched terminal.
Then the four black propellers whirled as one.
The Constellation shot forward, the wind in her teeth, a hurtling, bellowing land monster—until her propellers plucked her from the earth in an incredibly short span of runway and sent her thundering triumphantly toward the sun.
GLIDES BACK EASILY
In a moment she had almost vanished, only to bank in a wide turn and drone back over the terminal twice before leading her covey of lesser following craft off toward the desert to the Army airport at Muroc Dry Lake where she landed gracefully an hour later.
Prototype Lockheed L-049 Constellation NX25600 at Muroc Dry Lake on the high desert of southern California, 9 January 1943. (San Diego Air & Space Museum Archive)
Shortly before dusk the giant craft returned to the Burbank terminal, slipped down the long “landing groove” of air and settled easily to the runway.
Her debut was over.
Today she will begin the exhaustive test flights to determine her performance before she is turned over to T.W.A. and the Army for the grueling business of war. . . .
—Los Angeles Times, Vol. LXII, Sunday morning, 10 January 1943, Page 1, Columns 1 and 2; Page 2, Columns 2 and 3. The article continues in Column 4. (The photographs are not a part of the original article.)
The prototype Lockheed XC-69, 43-10309 (NX25600), landing at Lockheed Air Terminal, Burbank, California, 1943. (Lockheed Martin Aeronautics Company)
The Lockheed Model 49-46-10, company serial number 049-1961, was designated XC-69 by the U.S. Army Air Forces and assigned serial number 43-10309.
The Constellation was operated by a flight crew of four: two pilots, a navigator and a flight engineer. It could carry up to 81 passengers. The airplane was 95 feet, 1 3⁄16 inches (28.986 meters) long with a wingspan of 123 feet, 0 inches (37.490 meters), and overall height of 23 feet, 7⅞ inches (7.210 meters). It had an empty weight of 49,392 pounds (22,403.8 kilograms) and maximum takeoff weight of 86,250 pounds (39,122.3 kilograms).
The XC-69 was powered by four air-cooled, supercharged, 3,347.662-cubic-inch-displacement (54.858 liter), Wright Aeronautical Division Cyclone 18 745C18BA2 engines. Also known as the Duplex Cyclone, these were a two-row, 18-cylinder radial engines with a compression ratio of 6.5:1, which required 100/130-octane aviation gasoline. They were rated at 2,000 horsepower at 2,400 r.p.m., or 2,200 horsepower at 2,800 r.p.m. for takeoff, (five minute limit). The 745C18BA2 was 6 feet, 4.26 inches (1.937 meters) long, 4 feet, 7.78 inches (1.417 meters) in diameter and weighed 2,595 pounds (1,177 kilograms). The engines drove 15 foot, 2 inch (4.623 meter) diameter, three-bladed Hamilton Standard Hydromatic 43E60 constant-speed propellers through a 0.4375:1 gear reduction.
The L-049 had a cruise speed of 313 miles per hour (504 kilometers per hour) and a range of 3,995 miles (6,429 kilometers). Its service ceiling was 25,300 feet (7,711 meters).
In this photograph of the Lockheed XC-69 prototype at Lockheed Air Terminal, the civil experimental registration numbers, NX25600, are visible on the rudder and under the left wing. Looking northeast, the Verdugo Mountains of Southern California are in the background. (San Diego Air & Space Museum Archive)This is a rare color photograph of the prototype Lockheed XC-69 Constellation, 43-10309, (L-049 NX-25600) with a Lockheed UC-101, 42-94148 (ex-Vega 5C NC14236) at Lockheed Air Terminal, Burbank California. This picture represents 15 years of technological advancement. (Lockheed Martin Aeronautics Company)
The prototype XC-69 was later re-engined with Pratt & Whitney Double Wasp 2SC14-G (R-2800-83) engines and designated XC-69E. These had a Normal rating of 1,700 horsepower at 2,600 r.p.m., to 7,300 feet (2,225 meters), 1,500 horsepower at 17,500 feet (5,334 meters), and 2,100 horsepower at 2,800 r.p.m. for Takeoff.
Lockheed XC-69 Constellation 43-10309. (Lockheed Martin Aeronautics Company)Lockheed XC-69 Constellation 43-10309. (Lockheed Martin Aeronautics Company)
After the war, the Constellation prototype was sold to Howard Hughes’ Hughes Aircraft Company for $20,000 and registered as NX67900. In May 1950, Lockheed bought the prototype back from Hughes for $100,000 and it was again registered as NC25600. It had accumulated just 404 flight hours up to this time.
The prototype Lockheed XC-69 Constellation, 43-10309, is parked at Howard Hughes’ Culver City airport. In the foreground is the Hughes XF-11, 44-70155. Photographed 7 July 1946. (University of Nevada, Las Vegas Libraries)The prototype Lockheed L-1049 Super Constellation NX25600 (XC-69 43-10309), flying above an inversion layer. The San Gabriel Mountains of Southern California are in the background. (Lockheed Martin Aeronautics Company)
Lockheed then converted 049-1961 to a prototype for the L-1049 Super Constellation with another registration, NX6700. In 1952, it was once again converted, this time as an aerodynamic test aircraft for the U.S. Navy PO-1W radar early warning aircraft (later redesignated WV-1 and EC-121 Warning Star). It was also used to test the Allison YT56 turboprop engine by placing it in the #4 position.
Lockheed L-1049 prototype NX6700 as an aerodynamics test aircraft for the U.S. Navy PO-1W airborne early warning Warning Star. (SDASM Archives)
Finally, in 1958, the first Constellation was purchased as a source of spare parts by California Airmotive Corporation and was dismantled.
Lockheed built two XC-69 prototypes. Twenty-two C-69s and 856 Constellations of all types were produced. The Lockheed Constellation was in production from 1943–1958 in both civilian airliner and military transport versions. It is the classic propeller-driven transcontinental and transoceanic airliner.
Your intrepid TDiA correspondent with “Bataan,” General Douglas MacArthur’s Lockheed VC-121A Constellation, 48-613, at Valle Airport, Arizona, 3 July 2012. (Photograph by Mrs. TDiA)
The first Lockheed SR-71A, 61-7950, takes off for the first time at Air Force Plant 42, Palmdale, California. An F-104 Starfighter follows as chase. (Lockheed Martin)
22 December 1964: Lockheed test pilot Robert J. “Bob” Gilliland made a solo first flight of the first SR-71A, 61-7950, at Air Force Plant 42, Palmdale, California. The “Blackbird” flew higher than 45,000 feet (13,716 meters) and more than 1,000 miles per hour (1,609 kilometers per hour) before landing at Edwards Air Force Base, 22 miles (35 kilometers) northeast, to begin the flight test program.
Bob Gilliland made the first flight of many of the Lockheed SR-71s. It is reported that he has logged more flight time in excess of Mach 3 than any other pilot.
Blackbird test pilot Robert J. Gilliland, with a Lockheed SR-71A. Gilliland is wearing an S901J full-pressure suit made by “Northeast Manufacturing” (the David Clark Co.) (Lockheed Martin)
The SR-71A Blackbird is a Mach 3+ strategic reconnaissance aircraft designed and built by Lockheed’s famous (but Top Secret) “Skunk Works” for the United States Air Force. It was developed from the Central Intelligence Agency’s A-12 Oxcart program.
The SR-71A is a two-place aircraft, operated by a Pilot and a Reconnaissance Systems Officer (“RSO”). It uses electronic and optical sensors. The fuselage has a somewhat flattened aspect with chines leading forward from the wings to the nose. The wings are a modified delta, with integral engine nacelles. Two vertical stabilizers are mounted at the aft end of the engine nacelles and cant inward toward the aircraft centerline.
The SR-71A is 107 feet, 5 inches (32.741 meters) long with a wingspan of 55 feet, 7 inches (16.942 meters), and overall height of 18 feet, 6 inches (5.639 meters). Its empty weight is 67,500 pounds (30,620 kilograms) and maximum takeoff weight is 172,000 pounds (78,020 kilograms).
Lockheed SR-71A 61-7950 in flight. (U.S. Air Force)
The Blackbird is powered by two Pratt & Whitney JT11D-20 (J58-P-4) turbo-ramjet engines, rated at 25,000 pounds of thrust (111.21 kilonewtons) and 34,000 pounds of thrust (151.24 kilonewtons) with afterburner. The exhaust gas temperature is approximately 3,400 °F. (1,870 °C.). The J58 is a single-spool, axial-flow engine which uses a 9-stage compressor section and 2-stage turbine. The J58 is 17 feet, 10 inches (7.436 meters) long and 4 feet, 9 inches (1.448 meters) in diameter. It weighs approximately 6,000 pounds (2,722 kilograms).
The SR-71A has a maximum speed of Mach 3.3 at 80,000 feet (24,384 meters)—2,199 miles per hour (3,539 kilometers per hour). Its maximum rate of climb is 11,810 feet per minute (60 meters per second), and the service ceiling is 85,000 feet (25,908 meters). The Blackbird’s maximum unrefueled range is 3,680 miles (5,925 kilometers).
Lockheed built 32 SR-71As. They entered service with the 4200th Strategic Reconnaissance Wing (later redesignated the 9th SRW) in 1966 and were initially retired in 1989. Several were reactivated in 1995, but finally retired in 1999.
Lockheed SR-71A-LO 61-7950 was lost to fire during a brake system test at Edwards AFB, 10 January 1967. (Lockheed Martin via habu.org)
Milton O. Thompson with a Lockheed JF-104A Starfighter at Edwards Air Force Base, circa 1962. The JF-104A is similar to the one he ejected from, 20 December 1962. (NASA)
20 December 1962: Milton Orville Thompson, a NASA test pilot assigned to the X-15 hypersonic research program, was conducting a weather check along the X-15’s planned flight path from Mud Lake, Nevada, to Edwards Air Force Base in California, scheduled for later in the day. Thompson was flying a Lockheed F-104A-10-LO Starfighter, Air Force serial number 56-749, call sign NASA 749.
NASA 749, a Lockheed JF-104A Starfighter, 56-749, with an ALSOR sounding rocket on a centerline mount, at Edwards Air Force Base. (NASA)
In his autobiography, At the Edge of Space, Thompson described the day:
“The morning of my weather flight was a classic desert winter morning. It was cold, freezing in fact, but the sky was crystal clear and there was not a hint of a breeze—a beautiful morning for a flight.”
Completing the weather reconnaissance mission, and with fuel remaining in the Starfighter’s tanks, Milt Thompson began practicing simulated X-15 approaches to the dry lake bed.
X-15 pilots used the F-104 to practice landing approaches. The two aircraft were almost the same size, and with speed brakes extended and the flaps lowered, an F-104 had almost the same lift-over-drag ratio as the X-15 in subsonic flight. Thompson’s first approach went fine and he climbed back to altitude for another practice landing.
Lockheed F-104A-10-LO Starfighter 56-749 (NASA 749) carrying an ALSOR sounding rocket on a centerline mount. (NASA)
When Milt Thompson extended the F-104’s flaps for the second simulated X-15 approach, he was at the “high key”— over Rogers Dry Lake at 35,000 feet (10,668 meters) — and supersonic. As he extended the speed brakes and lowered the flaps, NASA 749 began to roll to the left. With full aileron and rudder input, he was unable to stop the roll. Adding throttle to increase the airplane’s airspeed, he was just able to stop the roll with full opposite aileron.
Thompson found that he could maintain control as long as he stayed above 350 knots (402 miles per hour/648 kilometers per hour) but that was far too high a speed to land the airplane. He experimented with different control positions and throttle settings. He recycled the brake and flaps switches to see if he could get a response, but there was no change. He could see that the leading edge flaps were up and locked, but was unable to determine the position of the trailing edge flaps. He came to the conclusion that the trailing edge flaps were lowered to different angles.
Thompson called Joe Walker, NASA’s chief test pilot, on the radio and explained the situation:
I told him the symptoms of my problem and he decided that I had a split trailing edge flap situation with one down and one up.
He suggested I recycle the flap lever to the up position to attempt to get both flaps up and locked. I had already tried that, but I gave it another try. Joe asked if I had cycled the flap lever from the up to the takeoff position and then back again. I said no. I had only cycled the flap lever from the up position to a position just below it and then back to the up position. Joe suggested we try it his way. I moved the flap lever from the up position all the way to the takeoff position and then back to the up position. As soon as I moved the lever to the takeoff position, I knew I had done the wrong thing.
The airplane started rolling again, but this time I could not stop it. The roll rate quickly built up to the point that I was almost doing snap rolls. Simultaneously, the nose of the airplane started down. I was soon doing vertical rolls as the airspeed began rapidly increasing. I knew I had to get out quick because I did not want to eject supersonic and I was already passing through 0.9 Mach. I let go of the stick and reached for the ejection handle. I bent my head forward to see the handle and then I pulled it. Things were a blur from that point on.
—At the Edge of Space: The X-15 Flight Program, by Milton O. Thompson, Smithsonian Institution Press, Washington and London, 1992. Chapter 5 at Pages 119–120.
Impact crater caused by the crash and explosion of Milt Thompson’s Lockheed JF-104A Starfighter, 20 December 1962. (NASA)
As Thompson descended by parachute he watched the F-104 hit the ground and explode in the bombing range on the east side of Rogers Dry Lake. He wrote, “It was only 7:30 a.m. and still a beautiful morning.”