Tag Archives: Lockheed Aircraft Corporation

Medal of Honor, Major Richard Ira Bong, United States Army Air Forces

Major Richard Ira Bong, Air Corps, United States Army, Leyte, 12 December 1944. Major Bong is wearing the Medal of Honor. (U.S. Air Force)

17 December 1944: Major Richard Ira Bong, United States Army Air Corps, flying a Lockheed P-38 Lighting over San José on the Island of Mindoro, Commonwealth of the Philippines, shot down an enemy Nakajima Ki-43 Hayabusa (Allied reporting name, “Oscar”).

This was Bong’s 40th confirmed aerial victory and made him the leading American fighter ace of World War II. He is officially credited with 40 aircraft destroyed, 8 probably destroyed and 7 damaged.

Five days earlier, 12 December, during a ceremony at an American airfield on the Island of Leyte, Philippine Islands, General Douglas MacArthur, United States Army, had presented Major Bong the Medal of Honor.

An Associated Press reporter quoted the General:

“Of all military attributes, that one which arouses the greatest admiration is courage. It is the basis of all successful military ventures. our forces possess it to a high degree and various awards are provided to show the public’s appreciation. The Congress of the United States has reserved to itself the honor of decorating those amongst all who stand out as the bravest of the brave. It’s this high and noble category, Bong, that you now enter as I pin upon your tunic the Medal of Honor. Wear it as a symbol of the invincible courage you have displayed so often in mortal combat. My dear boy, may a merciful God continue to protect you is the constant prayer of your commander in chief.”

[On 18 December 1944, Douglas MacArthur was promoted to General of the Army, a five-star rank held by only nine other U.S. military officers. General MacArthur was the son of a Medal of Honor recipient, and had himself been twice nominated for the Medal for his actions during the occupation of Vera Cruz (1914) and the Meuse-Argonne Offensive (1918). He was awarded the Medal of Honor for his defense of the Philippines, 1941–42.]

General Douglas MacArthur talks with Major Richard I. Bong, 12 December 1944. (U.S. Air Force)
General Douglas MacArthur talks with Major Richard I. Bong, Leyte, Philippine Islands, 12 December 1944. (U.S. Air Force)

Richard Bong’s citation reads:

MEDAL OF HONOR

The President of the United States of America, in the name of Congress, takes pleasure in presenting the Medal of Honor to Major (Air Corps) Richard Ira Bong, United States Army Air Forces, for conspicuous gallantry and intrepidity in action above and beyond the call of duty while serving with the 49th Fighter Group, V Fighter Command, Fifth Air Force, in action in the Southwest Pacific area from 10 October to 15 November 1944.

Though assigned to duty as gunnery instructor and neither required nor expected to perform combat duty, Major Bong voluntarily and at his own urgent request engaged in repeated combat missions, including unusually hazardous sorties over Balikpapan, Borneo, and in the Leyte area of the Philippines. His aggressiveness and daring resulted in his shooting down eight enemy airplanes during this period.

General Orders: War Department, General Orders No. 90, December 8, 1944
Action Date: October 10 – November 15, 1944
Service: Army Air Forces
Rank: Major
Regiment: 49th Fighter Group, V Fighter Command
Division: 5th Air Force.

Dick Bong poses with "Marge," his Lockheed P-38J Lightning. A large photograph of his fiancee, Miss Marjorie Vattendahl, is glued to the fighter's nose.
Dick Bong poses with “Marge,” his Lockheed P-38J-15-LO Lightning, 42-103993, Lockheed serial number 2827. A large photograph of his fiancée, Miss Marjorie Ann Vattendahl, is affixed to the fighter’s nose.

Major Bong flew a number of different Lockheed P-38s in combat. He is most associated, though, with P-38J-15-LO 42-103993, which he named Marge after his fiancée, Miss Marjorie Ann Vattendahl, a school teacher from Poplar, Wisconsin.

Richard Bong had flown 146 combat missions. General George C. Kenney, commanding the Far East Air Forces, relieved him from combat and ordered that he return to the United States. He was assigned to test new production P-80 Shooting Stars jet fighters being built at Lockheed Aircraft Corporation’s Burbank, California plant.

On 6 August 1945, the fuel pump of the new P-80 Bong was flying failed just after takeoff. The engine failed from fuel starvation and the airplane crashed into a residential area of North Hollywood, California. Major Richard Ira Bong was killed.

Nakajima Ki-43 Type 1 Army Fighter (AvionsLegendaires.net)

The Nakajima Ki-43 Type 1 Hayabusa was a single-place, single-engine fighter manufactured by Nakajima Hikoki K.K. for the Imperial Japanese Army Air Service. The light weight fighter was very maneuverable and was a deadly opponent. It was identified as “Oscar” by Allied forces. The Ki-43 shot down more Allied airplanes during World War II than any other Japanese fighter.

The Ki-43 was 29.2 feet (8.90 meters) long, with a wingspan of 35.6 feet (10.85 meters) and height of 9 feet (2.74 meters). Its empty weight was 4,170 pounds (1,878 kilograms) and gross weight  was 5,500 pounds (2,495 kilograms).

The Ki-43 Type 1 Army Fighter was powered by an air-cooled, supercharged Nakajima Ha-115 Toku two-row, 14-cylinder radial engine which produced 925 horsepower at 9,350 feet (2,850 meters), 800 horsepower  at 20,000 feet (6,096 meters), and 1,105 horsepower at Sea Level for takeoff. The engine drove a three-bladed constant-speed propeller with a diameter of 9.2 feet (2.80 meters).

Nakajima Ki-43 Type 1 Army Fighter, called “Oscar” by the Allied forces. (The Java Gold’s Blog)

Compared to American fighters, the Oscar was lightly armed with just two synchronized 7.7 mm × 58 mm Type 89 or 12.7 mm × 81 mm Type 1 machine guns, or a combination of one 7.7 mm and one 12.7 mm gun. The 12.7 machine gun could fire explosive ammunition. (The Type 89 was a licensed version of the Vickers .303-caliber machine gun, while the design of the Type 1 was based on the Browning M1921 .50-caliber machine gun.)

The Oscar’s maximum speed was 295 miles per hour (475 kilometers per hour) at Sea Level, and 347 miles per hour (558 kilometers per hour) at 20,000 feet (6,096 meters). Its service ceiling was 37,100 feet (11,308 meters). The maximum range with a normal fuel load of 149 U.S. gallons (564 liters) was 1,180 miles (1,899 kilometers) at 1,500 feet (457 meters).

Lockheed P-38J-10-LO Lightning 42-68008, Lockheed serial number 2519. (Lockheed Martin)

The Lockheed P-38 lightning is a single-place, mid-wing, twin-engine fighter. It is an unusual configuration, with the cockpit, weapons and nose landing gear in a central nacelle, and engines, turbochargers, cooling system and main landing gear in outer “booms.” The airplane was originally designed by Clarence L. “Kelly” Johnson.

The P-38J is 37 feet, 10 inches (11.532 meters) long, with a wingspan of 52 feet, 0 inches (15.850 meters) and overall height of 9 feet, 9-11/16 inches (2.989 meters). The fighter has an empty weight of 12,700 pounds (5,761 kilograms) and maximum gross weight of 21,600 pounds (9,798 kilograms).

The P-38J was powered by two liquid-cooled, turbosupercharged 1,710.597-cubic-inch displacement (28.032 liter) Allison Engineering Company V-1710-F-17R and -F17L (V-1710-89 and -91, respectively) single overhead cam (SOHC) 60° V-12 engines with a continuous power rating of 1,100 horsepower at 2,600 r,p.m., to 30,000 feet (9,144 meters), and a takeoff/military power rating of 1,425 horsepower at 3,000 r.p.m. The counter-rotating engines drove 11 feet, 6 inches (3.505 meters) diameter, three-bladed Curtiss Electric full-feathering constant-speed propellers through a 2.00:1 gear reduction. The engines were 7 feet, 1.34 inches (2.168 meters) long, 3 feet, 0.75 inches (0.933 meters) high, 2 feet, 5.28 inches (0.744 meters) wide, and weighed 1,350 pounds (612 kilograms).

A flight of two camouflaged Lockheed P-38J Lightnings, circa 1943. Dick Bong is flying the closer airplane, P-38J-5-LO 42-67183. (Lockheed Martin)

The P-38J had a maximum speed of 420 miles per hour (676 kilometers per hour) at 26,500 feet (8,077 meters). The service ceiling was 44,000 feet (13,411 meters). Carrying external fuel tanks, the Lightning had a maximum range of 2,260 miles (3,637 kilometers).

P-38s were armed with one 20 mm Hispano M2 aircraft autocannon with 150 rounds of ammunition, and four air-cooled Browning AN-M2 .50-caliber machine guns with 500 rounds per gun. All guns are grouped close together in the nose and aimed straight ahead.

A Lockheed P-38 Lighning test fires its guns. (Lockheed Martin)

Between 1939 and 1945, Lockheed Aircraft Corporation built 10,037 P-38 Lightnings at Burbank, California. 2,970 of these were P-38Js.

Major Richard Ira Bong, Air Corps, United States Army. (Richard I. Bong Veterans Historical Center/National Endowment for the Humanities)

© 2018, Bryan R. Swopes

14 December 1959

Captain Joe Bailey Jordan, U.S. Air Force, in the cockpit of his record-setting Lockheed F-104C Starfighter. (U.S. Air Force)
Captain Joe Bailey Jordan, U.S. Air Force, in the cockpit of his record-setting Lockheed F-104C Starfighter. (U.S. Air Force)

14 December 1959: Air Force test pilot Captain Joe Bailey Jordan, United States Air Force, established a Fédération Aéronautique Internationale (FAI) World Record for Altitude in a Turbojet Aircraft, breaking a record set only 8 days before by Commander Lawrence E. Flint, Jr., U.S. Navy, flying the number two prototype McDonnell YF4H-1 Phantom II, Bu. No. 142260.¹

Lockheed F-104C-5-LO Starfighter 56-885. (U.S. Air Force)
Lockheed F-104C-5-LO Starfighter 56-885. (U.S. Air Force)

Flying a slightly modified Lockheed F-104C-5-LO Starfighter, 56-885, (the aft fuselage had been replaced by one from a two-place F-104B, which had larger tail surfaces), Jordan released the brakes at Edwards Air Force Base, and 15 minutes, 4.92 seconds later he reached 30,000 meters (98,425 feet) establishing an Fédération Aéronautique Internationale (FAI) world record for time-to-altitude.² The Starfighter continued the zoom climb profile, peaking at 103,389 feet (31,513 meters) ³ and going over the top at 455 knots (843 kilometers per hour). While accelerating for the zoom maneuver, Jordan’s F-104 reached Mach 2.36.

The Harmon International Trophy (NASM)

Fédération Aéronautique Internationale rules required that a new record must exceed the previous record by 3%. The Starfighter beat the Phantom II’s peak altitude by 4.95%. Captain Jordan was credited for his very precise flying and energy efficiency. For this flight, Captain Jordan was awarded the Harmon International Trophy, which was presented to him by President Dwight D. Eisenhower.

Joe Bailey Jordan was born at Huntsville, Texas, 12 June 1929, the son of James Broughtan Jordan, a track foreman, and Mattie Lee Simms Jordan. Jordan graduated from Sweeney High School in 1946, then studied at the University of Houston. He entered the United States Air Force in 1949, trained as a pilot and received his pilot’s wings 15 September 1950. He flew more than 100 missions during the Korean War, and received two Distinguished Flying Crosses and two Air Medals. He then served as a flight instructor at Laredo Air Force Base, Laredo, Texas. In 1961 he was stationed at Bitburg Air Base in Germany. Jordan was a graduate of both the Air Force Test Pilot School and the Air Force Fighter Weapons School. He became a project test pilot on the F-104 in 1956.

Jordan married Dolores Ann Craig of Spokane, Washington, 8 February 1958, at Santa Monica, California. They had two children, Carrie and Ken.

Colonel Jordan was the first Western pilot to fly the Mikoyan-Gurevich MiG-21 interceptor and his evaluations allowed U.S. pilots to exploit the MiG’s weaknesses during the Vietnam War.

General Dynamics F-111A 65-5701. Photographed by Hervé Cariou at the Salon du Bourget (Paris Air Show), May 1967.

While testing General Dynamics F-111A 65-5701, Jordan and his co-pilot were forced to eject in the fighter’s escape capsule when the aircraft caught fire during a gunnery exercise at Edwards AFB, 2 January 1968. His back was injured in the ejection.

After Jordan retired from the Air Force in 1972, he became an engineering test pilot for the Northrop Corporation’s YF-17 flight test program.

Lieutenant Colonel Joe Bailey Jordan died at Oceanside, California, 22 April 1990, at the age of 60 years. His ashes were spread at Edwards Air Force Base. Jordan Street on the air base is named in his honor.

Captain Joe Bailey Jordan, United States Air Force. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Captain Joe Bailey Jordan, United States Air Force. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

The Lockheed F-104C Starfighter was a tactical strike variant of the F-104A interceptor. The F-104C shared the external dimensions of the F-104A, but weighed slightly less.

The F-104C was powered by a single General Electric J79-GE-7 engine, a single-spool axial-flow afterburning turbojet, which used a 17-stage compressor and 3-stage turbine. The J79-GE-7 is rated at 10,000 pounds of thrust (44.482 kilonewtons), and 15,800 pounds (70.282 kilonewtons) with afterburner. The engine is 17 feet, 4 inches (5.283 meters) long, 3 feet, 2.3 inches (0.973 meters) in diameter, and weighs 3,575 pounds (1,622 kilograms).

The F-104C could carry a 2,000 pound weapon on a centerline hardpoint. It could carry up to four AIM-9B Sidewinder missiles.

On 9 May 1961, near Moron AFB, Spain, Starfighter 56-885 had a flight control failure with stick moving full aft. The pilot was unable to move it forward, resulting in an initial zoom climb followed by unrecoverable tumble. The pilot safely ejected but the airplane crashed and was destroyed.

Captain Joe B. Jordan, USAF, is congratulated by Lockheed test pilot Tony LeVier. Captain Bailey is wearing a David Clark Co. MC-3 capstan-type partial-pressure suit with a ILC Dover MC-2 helmet. (Jet Pilot Overseas)
Captain Joe B. Jordan, USAF, is congratulated by Lockheed Chief Engineering Test Pilot Tony LeVier. Captain Bailey is wearing a David Clark Co. MC-3 capstan-type partial-pressure suit with an ILC Dover MC-2 helmet. (Jet Pilot Overseas)

A short Air Force film of Joe Jordan’s record flight can be seen at:

¹ FAI Record File Number 10352

² FAI Record File Number 9065

³ FAI Record File Number 10354

© 2018, Bryan R. Swopes

10 December 1963

Colonel Charles E. Yeager, U.S. Air Force, wearing a David Clark Co. A/P22S-2 full-pressure suit, accompanied by Major Ralph N. Richardson of the Aviation Physiology Laboratory, Richardson, walks to a Lockheed NF-104A Aerospace Trainer at Edwards Air Force base. (U.S. Air Force)
Colonel Charles E. Yeager, U.S. Air Force, wearing a David Clark Co. A/P22S-2 full-pressure suit, accompanied by Major Ralph N. Richardson of the Aviation Physiology Laboratory, walks to a Lockheed NF-104A Aerospace Trainer at Edwards Air Force Base. (U.S. Air Force)

10 December 1963: In an attempt to set a world absolute altitude record, Colonel Charles E. (“Chuck”) Yeager, U.S. Air Force, took a Lockheed NF-104A Starfighter Aerospace Trainer, 56-0762, on a zoom climb profile above 100,000 feet (30,480 meters) at Edwards Air Force Base, in the high desert of southern California. This was Colonel Yeager’s fourth attempt at the record.

Colonel Charles E. Yeager, U.S. Air Force, in the cockpit of a Lockheed NF-104A Aerospace Trainer, at Edwards Air Force Base, California, 1963. (U.S. Air Force)
Colonel Charles E. Yeager, U.S. Air Force, in the cockpit of a Lockheed NF-104A Aerospace Trainer, at Edwards Air Force Base, California, 1963. (U.S. Air Force)

The zoom climb maneuver was planned to begin with the NF-104A in level flight at 0.85 Mach and 35,000 feet (10,668 meters). The pilot would then accelerate in Military Power and light the afterburner, which increased the J79 turbojet engine’s 9,800 pounds of thrust (43.59 kilonewtons) to 15,000 pounds (66.72 kilonewtons). The modified Starfighter was to continue accelerating in level flight. On reaching Mach 2.2, the Colonel Yeager would ignite the Rocketdyne AR2–3 rocket engine, which burned a mixture of JP-4 and hydrogen peroxide to produce 6,600 pounds of thrust (29.36 kilonewtons).

Lockheed NF-104 Aerospace Trainer zoom-climb profile. (U.S. Air Force via NF-104.com)

When the AST reached Mach 2.5, Yeager was to begin a steady 3.5G pull-up until the interceptor was in a 70° climb. At 75,000 feet (22,860 meters), he would shut off the afterburner to avoid exceeding the turbojet’s exhaust temperature (EGT) limits. Yeager would then gradually reduce the jet engine power to idle by 85,000 feet (25,908 meters), and then shut it down. Without the engine running, cabin pressurization would be lost and his A/P22S-2 full-pressure suit would inflate.

One of the three Lockheed NF-104A Starfighter Aerospace Trainers, 56-756, in a zoom-climb with the rocket engine firing. (U.S. Air Force)
One of the three Lockheed NF-104A Starfighter Aerospace Trainers, 56-756, in a zoom-climb with the rocket engine firing. (U.S. Air Force)

The NF-104A would then continue to zoom to an altitude where its aerodynamic control surfaces were no longer functional. It had to be controlled by reaction jets in the nose and wing tips. The pilot had to use the reaction control thrusters to pitch the AST’s nose down before reentering the atmosphere, so that it would be in a -70° dive. The windmill effect of air rushing into the intakes was used to restart the jet engine.

Yeager’s NF-104A out of control. This is a still frame from cine film shot at a distance of 20 miles (32 kilometers). (U.S. Air Force)

The 10 December flight did not proceed as planned. Chuck Yeager reached a peak altitude of approximately 108,000 feet (32,918 meters), nearly two miles (3.2 kilometers) lower than the record altitude set by Major Robert W. Smith just four days earlier.

On reentry, Yeager had the Starfighter incorrectly positioned with only a -50° nose-down pitch angle, rather than the required -70°.

The Starfighter entered a spin.

Without air flowing through the engine intakes because of the spin, Yeager could not restart the NF-104’s turbojet engine. Without the engine running, he had no hydraulic pressure to power the aerodynamic flight control surfaces. He was unable to regain control the airplane. Yeager rode the out-of-control airplane down 80,000 feet (24,384 meters) before ejecting.

“The data recorder would later indicate that the airplane made fourteen flat spins from 104,000 until impact on the desert floor.  I stayed with it through thirteen of those spins before I punched out. I hated losing an expensive airplane, but I couldn’t think of anything else to do. . . I went ahead and punched out. . . .”

Yeager, An Autobiography, by Brigadier General Charles E. Yeager, U.S. Air Force (Retired) and Leo Janos, Bantam Books, New York, 1985, at Pages 279–281.

NF-104A 56-762 crashed at N. 35° 7′ 25″,  W. 118° 8′ 50″, about one mile (1.6 kilometers) north of the intersection of State Route 14 and State Route 58, near California City. The airplane was completely destroyed.

Chuck Yeager was seriously burned by the ejection seat’s internal launch rocket when he was struck by the seat which was falling along with him.

This incident was dramatized in the 1983 movie, “The Right Stuff,” (based on Tom Wolfe’s book of the same title), with Yeager portrayed by actor Sam Shepard.

Actor Sam Shepard portrayed Colonel Charles E. Yeager in the 1983 movie, "The Right Stuff", written and directed by Philip Kaufman for The Ladd Company, and based on the book by Tom Wolfe. The airplane behind Mr. Shepard is a Fokker-built F-104G Starfighter, 63-13269.
Actor Sam Shepard portrayed Colonel Charles E. Yeager in the 1983 movie, “The Right Stuff”, written and directed by Philip Kaufman for The Ladd Company, and based on the book by Tom Wolfe. The airplane behind Mr. Shepard is a Fokker-built F-104G Starfighter, 63-13269. (Warner Bros.)

56-762 was a Lockheed F-104A-10-LO Starfighter, one of three taken from storage at The Boneyard at Davis-Monthan Air Force Base, Tucson, Arizona, and sent to Lockheed for modification to Aerospace Trainers (ASTs).

These utilized a system of thrusters for pitch, roll and yaw control at altitudes where the standard aerodynamic control surfaces could no longer control the aircraft. This was needed to give pilots some experience with the reaction control system for flight outside the Earth’s atmosphere.

The F-104A vertical fin was replaced with the larger fin and rudder from the two-place F-104B for increased stability. The wings were lengthened for installation of the Reaction Control System. The fiberglass nosecone was replaced by an aluminum skin for the same reason. The interceptor’s radar and M61 Vulcan cannon were removed and tanks for rocket fuel and oxidizers, nitrogen, etc., installed in their place. The standard afterburning General Electric J79-GE-3B turbojet engine remained, and was supplemented by a Rocketdyne AR2–3 liquid-fueled rocket engine which produced 6,600 pounds of thrust (29.36 kilonewtons) for up to 100 seconds.

On 13 December 1958, prior to its modification to an AST, Lockheed F-104A-10-LO Starfighter 56-762 was flown by 1st Lieutenant Einar K. Enevoldson, USAF, to seven Fédération Aéronautique Internationale (FAI) time-to-altitude world records at Naval Air Station Point Mugu, Californa (NTD).

Wreckage of Lockheed NF-104A 56-762, 10 December 1963. (U.S. Air Force)
Wreckage of Lockheed NF-104A 56-762, 10 December 1963. (U.S. Air Force)

© 2018, Bryan R. Swopes

6 December 1963

Lockheed NF-104A Aerospace Trainer 56-756, with its Rocketdyne LR-121 engine firing during a zoom-climb maneuver. (U.S. Air Force)

6 December 1963: Air Force test pilot Major Robert W. Smith takes the Lockheed NF-104A Aerospace Trainer, 56-0756, out for a little spin. . .

Starting at 0.85 Mach and 35,000 feet (10,668 meters) over the Pacific Ocean west of Vandenberg Air Force Base, California, Bob Smith turned toward Edwards Air Force Base and accelerated to Military Power and then lit the afterburner, which increased the General Electric J79-GE-3B turbojet engine’s 9,800 pounds of thrust (43.59 kilonewtons) to 15,000 pounds (66.72 kilonewtons). The modified Starfighter accelerated in level flight. At Mach 2.2, Smith ignited the Rocketdyne LR121 rocket engine, which burned a mixture of JP-4 and hydrogen peroxide. The LR121 was throttleable and could produce from 3,000 to 6,000 pounds of thrust (13.35–26.69 kilonewtons).

When the AST reached Mach 2.5, Smith began a steady 3.5G pull-up until the interceptor was in a 70° climb. At 75,000 feet (22,860 meters), the test pilot shut off the afterburner to avoid exceeding the turbojet’s exhaust temperature (EGT) limits. He gradually reduced the jet engine power to idle by 85,000 feet (25,908 meters), then shut it off.  Without the engine running, cabin pressurization was lost and the pilot’s A/P22S-2 full-pressure suit inflated.

Lockheed NF-104A Aerospace Trainer 56-756, with its Rocketdyne LR-121 engine firing during a zoom-climb maneuver. (U.S. Air Force)

The NF-104A continued to zoom to an altitude where its aerodynamic control surfaces were no longer functional. It had to be controlled by the reaction jets in the nose and wing tips. 756 reached a peak altitude of 120,800 feet (36,820 meters), before reentering the atmosphere in a 70° dive. Major Smith used the windmill effect of air rushing into the intakes to restart the jet engine.

Lockheed NF-104 Aerospace Trainer zoom-climb profile. (U.S. Air Force via NF-104.com)

Major Smith had set an unofficial record for altitude. Although Lockheed had paid the Fédération Aéronautique Internationale (FAI) license fee, the Air Force had not requested certification in advance so no FAI or National Aeronautic Association personnel were on site to certify the flight.

One of the three Lockheed NF-104A Starfighter Aerospace Trainers, 56-756, in a zoom-climb with the Rocketdyne LR-121 engine firing. (U.S. Air Force)

For this flight, Robert Smith was nominated for the Octave Chanute Award “for an outstanding contribution made by a pilot or test personnel to the advancement of the art, science, and technology of aeronautics.”

Major Robert W. Smith, U.S. Air Force, with a Lockheed F-104 Starfighter. (U.S. Air Force)

Robert Wilson Smith was born at Washington, D.C., 11 December 1928. He was the son of Robert Henry Smith, a clerk (and eventually treasurer) for the Southern Railway Company, and Jeanette Blanche Albaugh Smith, a registered nurse. He graduated from high school in Oakland, California, in 1947. Smith studied at the University of California, Berkeley, and George Washington University.

Robert W. Smith joined the United States Air Force as an aviation cadet in 1949. He trained as a pilot at Goodfellow Air Force Base, San Angelo, Texas, and Williams Air Force Base in Arizona. He was commissioned as a second lieutenant, United States Air Force, 23 June 1950.

Second Lieutenant Robert Wilson Smith married Ms. Martha Yacko, 24 June 1950, at Phoenix, Arizona.

Lieutenant Robert W. Smith and his crew chief, Staff Sergeant Jackson, with Lady Lane, Smith’s North American F-86 Sabre. (Robert W. Wilson Collection)

He flew the F-86 Sabre on more than 100 combat missions with the 334th and 335th Fighter Interceptor Squadrons of the 4th Fighter Interceptor Wing during the Korean War. he named one of his airplanes Lady Lane in honor of his daughter. Smith was credited with two enemy aircraft destroyed, one probably destroyed and three more damaged.

Smith graduated from the Air Force Test Pilot School at Edwards Air Force Base in 1956. He flew more than fifty aircraft types during testing there and at Eglin Air Force Base, Florida. In 1962 he was assigned to the Aerospace Research Test Pilots School at Edwards for training as an astronaut candidate for Project Gemini.

Lieutenant Colonel Robert W. Smith, United States Air Force

After the NF-104A project was canceled, Lieutenant Colonel Smith volunteered for combat duty in the Vietnam War. He commanded the 34th Tactical Fighter Squadron, 388th Tactical Fighter Wing, at Korat Royal Thai Air Force Base, Thailand, flying the Republic F-105D Thunderchief. Bob Smith was awarded the Air Force Cross for “extraordinary heroism” while leading an attack at Thuy Phoung, north of Hanoi, 19 November 1967.

He had previously been awarded the Silver Star, and five times was awarded the Distinguished Flying Cross. Lieutenant Colonel Smith retired from the Air Force on 1 August 1969 after twenty years of service.

Lieutenant Colonel Robert Wilson Smith died at Monteverde, Florida, 19 August 2010. He was 81 years old.

Lockheed F-104A Starfighter 56-756 following a landing accident at Edwards AFB, 21 November 1961. (U.S. Air Force via the International F-104 Society)

56-756 was a Lockheed F-104A-10-LO Starfighter. Flown by future astronaut James A. McDivitt, it had been damaged in a landing accident at Edwards following a hydraulic system failure, 21 November 1961. It was one of three taken from storage at The Boneyard at Davis-Monthan Air Force Base, Tucson, Arizona, and sent to Lockheed for modification to Aerospace Trainers (ASTs). These utilized a system of thrusters for pitch, roll and yaw control at altitudes where the standard aerodynamic control surfaces could no longer control the aircraft. This was needed to give pilots some experience with the control system for flight outside Earth’s atmosphere.

Lockheed NF-104A Aerospace Trainer 56-756. (U.S. Air Force)

The F-104A vertical fin was replaced with the larger fin and rudder from the two-place F-104B for increased stability. The wingspan was increased to 25 feet, 11.3 inches (7.907 meters) for installation of the hydrogen peroxide Reaction Control System thrusters. The fiberglass nosecone was replaced by an aluminum skin for the same reason. The interceptor’s radar and M61 Vulcan cannon were removed and tanks for rocket fuel and oxidizers, nitrogen, etc., installed in their place. The fuselage “buzz number” was changed from FG-756 to NF-756.

The standard afterburning General Electric J79-GE-3B turbojet engine remained, and was supplemented by a Rocketdyne LR121 liquid-fueled rocket engine which produced 3,000 to 6,000 pounds of thrust (13.35–26.69 kilonewtons) with a burn time of 105 seconds.

56-756 was damaged by inflight explosions in 1965 and 1971, after which it was retired. It is mounted for static display at the Air Force Test Pilot School, Edwards Air Force Base, California, marked as 56-760.

Lockheed NF-104 Aerospace Trainer 56-756, marked as 56-760, on display at Edwards Air Force Base. (Kaszeta)

© 2018, Bryan R. Swopes

6 December 1957

Lockheed’s Model L-188A Electra prototype, N1881, passes over Lockheed Air Terminal during its first flight, 6 December 1957. (SDASM Archives)

6 December 1957: At 10:28 a.m., Lockheed Aircraft Corporation’s Chief Engineering Test Pilot Herman Richard (“Fish”) Salmon, and co-pilot Roy Edwin Wimmer started the Number 4 engine (outboard, right wing) of the new prototype Model L-188A Electra, c/n 1001, registered N1881. Also on board were flight engineers Louis Holland and William Spreuer. In rapid succession, the flight crew started engines 1, 2, on the left wing, and 3, inboard on the right. The prototype then taxied to the eastern end of Lockheed Air Terminal’s Runway 27.¹ At 10:44, Salmon released the brakes and the Electra rapidly accelerated down the runway. It was airborne in just 1,800 feet (549 meters).

Lockheed Model L-188 Electra N1881 flying along the Southern California coastline. (SDASM Archives)

Fish Salmon took the prototype to the U.S. Navy’s restricted missile test ranges off the southern California coastline, flying between Naval Air Station Point Mugu and San Diego. During the flight, the Electra reached 400 miles per hour (644 kilometers per hour) and 14,000 feet (4,267 meters). Salmon radioed, “She controls beautifully. No sweat.”

The Electra was followed by two chase planes, a Lockheed T-33A Shooting Star, and a Super Constellation airliner. After the initial flight test, Salmon returned to LAT, landing after a flight of 1 hour, 27 minutes. The test flight was made 56 days ahead of schedule.

The prototype Lockheed Electra. N1881, crosses the threshold at Lockheed Air Terminal’s Runway 15, 6 December 1957. (SDASM Archives)

Lockheed retained  N1881 as a test aircraft until April 1961, when it was sold to Friedkin Aeronautics and re-registered as N174PS. It was operated by Pacific Southwest Airlines (PSA) from May 1961 until October 1968, when it was sold to Holiday Airlines and re-registered as N974HA. The Electra was withdrawn from use and stored at Van Nuys Airport (VNY), just a few miles west of BUR, in October 1968. It is reported to have been scrapped in 1975.

Pacific Southwest Airlines Lockheed L188 Electra, N174PS (c/n 1001) at Lockheed Air Terminal, 23 September 1961. (Wikipedia).

The Lockheed Model 188A Electra is a four-engine, low-wing, commercial airliner with retractable tricycle landing gear, and powered by four turboprop engines. It was operated by a pilot, co-pilot and flight engineer, and could carry a maximum of 98 passengers. The L-188A was the first production variant. It is 104 feet, 6.5 inches (31.864 meters) long, with a wingspan of 99 feet, 0.00 inches (30.175 meters), and overall height of 32 feet, 11.6 inches (10.048 meters).

The L-188A was powered by four Allison Model 501-D13 (T56-A-1) turboprop engines. The -D13 is a single-shaft axial-flow gas turbine engine. It had a 14-stage compressor, 6-tube combustor, a 4-stage turbine. It was rated at 3,750 shaft horsepower at 13,820 r.p.m. The engines drove four-blade, square-tip Aeroproducts propellers with a diameter of 13 feet, 6 inches (4.115 meters), at 1,020 r.p.m. The -D13 is 12 feet, 1.0 inches (3.683 meters) long, 2 feet, 3.0 inches (0.686 meters) wide and 3 feet, 0.0 inches (0.914 meters) high. It weighs 1,750 pounds (794 kilograms).

Lockheed Model L-188A Electra N1881 at Lockheed Air Terminal, Burbank, California. (SDASM  Archives)
Lockheed Model L-188A Electra N1881 at Lockheed Air Terminal, Burbank, California. left profile (SDASM Archives)
Lockheed Model L-188A Electra N1881 at Lockheed Air Terminal, Burbank, California. (SDASM Archives)
Lockheed Model L-188A Electra N1881 at Lockheed Air Terminal, Burbank, California. (SDASM Archives)

Critical Mach Number (Mcr) = 0.711

¹ In 1967, the name of the Lockheed Air Terminal was changed to Hollywood-Burbank Airport. After several more name changes, including Bob Hope Airport, it is once again known as Hollywood-Burbank. Its FAA identifier is BUR.

© 2018, Bryan R. Swopes