Tag Archives: Lockheed Martin Aeronautics Company

7 September 1997

Lockheed Martin F-22A 91-4001 lands at Dobbins ARB after its first flight, 7 September 1997. (AP/The Hindu)
Lockheed Martin F-22A 91-4001 lands at Dobbins ARB after its first flight, 7 September 1997. (AP/The Hindu)

7 September 1997: At 10:18 a.m., Lockheed Martin Aeronautics Company Chief Test Pilot Alfred P. (“Paul”) Metz took off from Dobbins Air Reserve Base, Marietta, Georgia, flying the first F-22A Block 1 Engineering and Manufacturing Development Prototype, c/n 4001, call sign, “Raptor 01.” The new air superiority “stealth” fighter flew for just under one hour, reaching an altitude of 20,000 feet (6,096 meters). Metz was accompanied by two F-16 chase planes.

Previously employed by Northrop Aircraft, in 1990, Paul Metz had also made the first flight of the Raptor’s rival, the YF-23A Advanced Tactical Fighter prototype.

Alfred Paull metz was born 21 June 1946 at Springfield, Ohio. In 1968, he graduated form Ohio State University, Columbus, Ohio, with a bachelor’s degree in aeronautical engineering.

Metz entered the U.S. Air Force in 1968 and flew 68 combat missions during the Vietnam War as a pilot of the Republic F-105G Thunderchief (“Wild Weasel”) with the 17th Wild Weasel Squadron, 388th Tactical Fighter Wing, based at Korat Royal Thai Air Force Base, Thailand. He was twice awarded the Distinguished Flying Cross.

Metz graduated from the Air Force Test Pilot School at Edwards Air Force Base, California, in 1976, and remained at Edwards for the next two years. He was then assigned as an instructor at the U.S. Navy Test Pilot School at NATC Patuxent River, Maryland, in 1978.

Metz left the Air Force in 1980 and joined Northrop Aircraft as an engineering test pilot. He became Northrop’s chief test pilot in 1985. After flying as an engineering test pilot for the B-2 stealth bomber, Paul Metz joined Lockheed Martin’s F-22 program in 1992.

Test pilot Paul Metz with teh second F-22A EMD prototype, 91-4002, at Edwards Air Force Base, California.
Test pilot Paul Metz with the second F-22A EMD prototype, 91-4002, at Edwards Air Force Base, California. (National Museum of the United States Air Force)

Paul Metz continued testing the F-22A for four years before joining the F-35 Joint Strike Fighter program. He was appointed Vice President for Flight Test. He retired in 2006.

The Lockheed Martin F-22A Raptor is a single-seat, twin-engine fighter designed with stealth technology. It is 62 feet, 1 inch (18.923 meters) long with a wingspan of 44 feet, 6 inches (13.564 meters) and height of 16 feet, 8 inches (5.080 meters). The fighter has an empty weight of 43,340 pounds (19,659 kilograms) and a maximum takeoff weight of 83,500 pounds (37,875 kilograms). The F-22 is powered by two Pratt and Whitney F119-PW-100 afterburning turbofan engines which incorporate thrust vectoring exhaust nozzles to enhance the fighter’s maneuverability.

A Lockheed Martin F-22A Raptor in flight. (Wikipedia)
A Lockheed Martin F-22A Raptor in flight. (Wikipedia)

The F-22A can cruise at Mach 1.82 and has a maximum speed of Mach 2.25. Its service ceiling is greater than 65,000 feet (19,812 meters) and the combat radius is 470 miles (756 kilometers).

The fighter is armed with a 20 mm M61A2 Vulcan 6-barrel cannon with 480 rounds of ammunition, and can carry AIM-9 Sidewinder and AIM-120 AMRAAM air-to-air missiles. The F-22 can also be configured for ground attack.

The F-22A entered service with the U.S. Air Force in 2003, with “initial operational capability” achieved in 2005. Including flight test aircraft, 195 F-22s were produced before the program prematurely ended in 2012.

In 2000, 91-4001 was removed from flight status and used to test battle damage survivability.

The stripped air frame of 91-4001 at Hill AFB, Utah. (f-16.net)
The stripped air frame of 91-4001 at Hill AFB, Utah. (f-16.net)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

8 January 1944

Lockheed XP-80 prototype, 44-83020, at Muroc AAF, 8 January 1944. (U.S. Air Force)
The Lockheed XP-80 prototype, 44-83020, at Muroc AAF, 8 January 1944. (Lockheed Martin Aeronautics Company)
Milo Burcham
Milo Garrett Burcham

8 January 1944: At Muroc Army Air Field (later to become Edwards Air Force Base), Lockheed’s chief engineering test pilot, Milo Garrett Burcham, took the prototype Model L-140, the Army Air Forces XP-80 Shooting Star, 44-83020, for its first flight.

Tex Johnston, who would later become Boeing’s Chief of Flight Test, was at Muroc testing the Bell Aircraft Corporation XP-59 Airacomet. He wrote about the XP-80’s first flight in his autobiography:

Early on the morning of the scheduled first flight of the XP-80, busload after busload of political dignitaries and almost every general in the Army Air Force arrived at the northwest end of the lake a short distance from our hangar. Scheduled takeoff time had passed. I was afraid Milo was having difficulties. Then I heard the H.1B fire up, and he taxied by on the lake bed in front of our ramp. What a beautiful bird—another product of Kelly Johnson, Lockheed’s famed chief design engineer—tricycle gear, very thin wings, and a clear-view bubble canopy. Milo gave me the okay sign.

This was the initial flight of America’s second jet fighter, and what a flight it was. Milo taxied along in front of generals and politicians, turned south and applied full power. I could see the spectators’ fingers going in their ears. The smoke and sand were flying as the engine reached full power, and the XP-80 roared down the lake. Milo pulled her off, retracted gear and flaps, and held her on the deck. Accelerating, he pulled up in a climbing right turn, rolled into a left turn to a north heading, and from an altitude I estimated to be 4,000 feet [1,219 meters] entered a full-bore dive headed for the buses. He started the pull-up in front of our hangar and was in a 60-degree climb when he passed over the buses doing consecutive aileron rolls at 360 degrees per second up to 10,000 feet [3,048 meters]. He then rolled over and came screaming back. He shot the place up north and south, east and west, landed and coasted up in front of the spectators, engine off and winding down. I have never seen a crowd so excited since my barnstorming days. I returned to the office and dictated a wire to [Robert M.] Stanley [Chief Test Pilot, Bell Aircraft Corporation] “WITNESSED LOCKHEED XP-80 INITIAL FLIGHT STOP VERY IMPRESSIVE STOP BACK TO DRAWING BOARD STOP SIGNED, TEX” I knew he would understand.

Tex Johnston: Jet-Age Test Pilot, by A.M. “Tex” Johnston with Charles Barton, Smithsonian Books, Washington, D.C., 1 June 1992, Chapter 5 at Pages 127–128.

A few minor problems caused Burcham to end the flight after approximately five minutes but these were quickly resolved and flight testing continued.

The XP-80 was the first American airplane to exceed 500 miles per hour (805 kilometers per hour) in level flight.

Clarence L. "Kelly" Johnson with a scale model of a Lockheed P-80A-1-LO Shooting Star. Johnson's "Skunk Works" also designed the F-104 Starfighter, U-2, A-12 Oxcart and SR-71A Blackbird. (Lockheed Martin Aeronautical Company)
Clarence L. “Kelly” Johnson with a scale model of a Lockheed P-80A-1-LO Shooting Star. Johnson’s “Skunk Works” also designed the F-104 Starfighter, U-2, A-12 Oxcart and SR-71A Blackbird. (Lockheed Martin Aeronautics Company)

The Lockheed XP-80 was designed by Clarence L. “Kelly” Johnson and a small team of engineers that would become known as the “Skunk Works,” in response to a U.S. Army Air Corps proposal to build a single-engine fighter around the de Havilland-built Halford H.1B Goblin turbojet engine. This engine used a single-stage centrifugal-flow compressor and single-stage axial-flow turbine. It had a straight-through configuration rather than the reverse-flow of the Whittle turbojet from which it was derived. It produced 2,460 pounds of thrust (10.94 kilonewtons) at 9,500 r.p.m., and 3,000 pounds (13.34 kilonewtons) at 10,500 r.p.m.

Milo Burcham, on the left, shakes hands with Clarence L. Johnson following the first flight of the Lockheed XP-80, 8 January 1944. (Lockheed)
Milo Burcham, on the left, shakes hands with Clarence L. Johnson following the first flight of the Lockheed XP-80, 8 January 1944. (Lockheed Martin Aeronautics Co.)

The XP-80 was a single-seat, single-engine airplane with straight wings and retractable tricycle landing gear. Intakes for engine air were placed low on the fuselage, just forward of the wings. The engine exhaust was ducted straight out through the tail. For the first prototype, the cockpit was not pressurized but would be on production airplanes.

As was customary for World War II U.S. Army Air Forces aircraft, the prototype was camouflaged in non-reflective Dark Green with Light Gull Gray undersides. The blue and white “star and bar” national insignia was painted on the aft fuselage, and Lockheed’s winged-star corporate logo was on the nose and vertical fin. Later, the airplane’s radio call, 483020 was stenciled on the fin in yellow paint. The number 20 was painted on either side of the nose in large block letters. Eventually the tip of the nose was painted white and a large number 78 was painted just ahead of the intakes in yellow block numerals. Early in the test program, rounded tips were installed on the wings and tail surfaces. This is how the XP-80 appears today.

Lockheed XP-80 parked at Muroc Dry Lake, 1944 (Lockheed)
The highly-polished Dark Green and Light Gull Gray Lockheed XP-80 prototype parked at Muroc Dry Lake, 1944 (Lockheed Martin Aeronautics Co.)

The XP-80 is 32 feet, 911/16 inches (9.9997 meters) long with a wingspan of 37 feet, ⅞-inch (11.2998 meters) and overall height of 10 feet, 21/16 inches (3.1004 meters). It had a Basic Weight for Flight Test of 6,418.5 pounds (2,911.4 kilograms) and Gross Weight (as actually weighed prior to test flight) of 8,859.5 pounds (4,018.6 kilograms).

The XP-80 has a maximum speed of 502 miles per hour (808 kilometers per hour) at 20,480 feet (6,242 meters) and a rate of climb of 3,000 feet per minute (15.24 meters per second). The service ceiling is 41,000 feet (12,497 meters).

Unusual for a prototype, the XP-80 was armed. Six air-cooled Browning AN-M2 .50-caliber machine guns were placed in the nose. The maximum ammunition capacity for the prototype was 200 rounds per gun.

The Halford engine was unreliable and Lockheed recommended redesigning the the fighter around the larger, more powerful General Electric I-40 (produced by GE and Allison as the J33 turbojet). The proposal was accepted and following prototypes were built as the XP-80A.

Lockheed built 1,715 P-80s for the U.S. Air Force and U.S. Navy. They entered combat during the Korean War in 1950. A two-seat trainer version was even more numerous: the famous T-33A Shooting Star.

Lockheed XP-80 Shooting Star 44-83020 was used as a test aircraft and jet trainer for several years. In 1949, it was donated to the Smithsonian Institution. It is on display at the Jet Aviation exhibit of the National Air and Space Museum. It was restored beginning in 1976, and over the next two years nearly 5,000 man-hours of work were complete the restoration.

The prototype Lockheed XP-80 Shooting Star, 44-83020, at teh Smithsonian Institution National Air and Space Museum. (NASM)
The prototype Lockheed XP-80 Shooting Star, s/n 140-1001, 44-83020, at the Smithsonian Institution National Air and Space Museum. (NASM)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather