Tag Archives: Milo Garrett Burcham

9 January 1943

Lockheed L-049 Constellation NX25600 in flight. (San Diego Air and Space Museum Archive)
Lockheed XC-69 Constellation 43-10309 (L-049 NX25600) in flight. (San Diego Air & Space Museum Archive)

9 January 1943: At the insistence of the United States Army Air Forces, Boeing’s Chief Test Pilot, Eddie Allen, made the first flight of the Lockheed L-049 Constellation prototype, NX25600, from Lockheed Air Terminal at Burbank, California, to Muroc Army Airfield (today known as Edwards Air Force Base). Lockheed’s Chief Test Pilot, Milo G. Burcham, was the co-pilot.

Lockheed XC-69 Constellation 43-10309 (L-049 NX25600) in flight. (San Diego Air & Space Museum Archive)

Also on board were Lockheed’s chief research engineer, Clarence L. (“Kelly”) Johnson; Rudy Thoren, Johnson’s assistant; and Dick Stanton, chief mechanic.

The Lockheed Constellation was designed by a team led by Chief Engineer Hall Livingstone Hibbard, left, and Chief Research Engineer Clarence Leonard “Kelly” Johnson. (Lockheed)

When the flight ended after 58 minutes, Allen said, “This machine works so well that you don’t need me anymore!” With that, Allen returned to Seattle.

The Los Angeles Times reported:

SUPER TRANSPORT PLANE IN DEBUT

Lockheed’s Air Marvel Makes First Flight; Believed to Be World’s Largest and Fastest; Built Like Fighter, Can Outspeed Jap Zero

BY MARVIN MILES

     Into the winter sky yesterday swept a brilliant new star—Lockheed super-transport Constellation.

     First of a galaxy to come, the four-engine colossus sped down the long east-west runway at Lockheed Air Terminal, skipped nimbly off the concrete and boomed upward with the surging roar of 8000 unleashed horses.

     A few breath-taking seconds’ full throttle had written a matter-of-fact climax to two years of secret development that evolved a 60-passenger transport faster than a Jap Zero fighter.

     There were no fanfares, no speeches—simply an unvarnished war production takeoff, emphasizing as nothing else could the grim driving need for huge work planes to carry the battle swiftly to the ends of the earth.

     Yet it was the first significant aviation event of 1943.

Lockheed XC-69 Constellation 43-30109 during its first flight, 9 January 1943. (Lockheed Martin Aeronautics Company)

     Built along the slim, graceful lines of a fighter the craft is faster than any four-engine bomber now in service. It can cross the continent in less than 9 hours,fly to Honolulu in 12. Even at half power its cruising speed is approximately 100 miles per hour faster than that of a standard airliner!

     Within its supercharged cabin, air-density will remain at the 8000-foot level when the Constellation is cruising at “over-the-weather” altitudes up to 35,000 feet. So great is its power that the monster can maintain 25,000 feet on three engines, 16,500 on two.

     As for economy of operation, the new sky queen can fly her full load hour after hour using but one gallon of gasoline per mile.

Lockheed XC-69 Constellation 43-10309 (L-049 NX25600) at Lockheed Air Terminal, with engines running. Looking west-northwest across the San Fernando Valley. (San Diego Air & Space Museum Archive)

ONE TAXI TEST

     At the controls when the super-transport lifted its tricycle gear in flight were Eddie Allen, Army pilot and veteran four-engine flyer, and Milo Burcham, Lockheed test pilot noted for his substratosphere testing of the P-38. Also in the ship were C.L. (Kelly) Johnson, chief research engineer for the aircraft company; Rudy Thoren, Johnson’s assistant, and Dick Stanton, chief mechanic.

Chief Research Engineer Clarence L. “Kelly” Johnson (left) and Chief Engineering Test Pilot Milo G. Burcham, with the XC-69 Constellation. (Lockheed Martin Aeronautics Company)

    There was but one taxi test yesterday, highlighted by a brief blaze in one of the four engines following a backfire as the ship turned to roll back to the head of the runway.

     The fire was doused quickly and the Constellation stood ready for her maiden flight, he nose into a gentle breeze, the focal point of hundreds of eyes of workers, Army guards and officials watched expectantly.

     Each engine “revved up”in turn, sending deep-throated echoes over the sun-drenched terminal.

     Then the four black propellers whirled as one.

     The Constellation shot forward, the wind in her teeth, a hurtling, bellowing land monster—until her propellers plucked her from the earth in an incredibly short span of runway and sent her thundering triumphantly toward the sun.

GLIDES BACK EASILY

      In a moment she had almost vanished, only to bank in a wide turn and drone back over the terminal twice before leading her covey of lesser following craft off toward the desert to the Army airport at Muroc Dry Lake where she landed gracefully an hour later.

Prototype Lockheed Constellation at Muroc Dry Lake, 1942. (Unattributed)
Prototype Lockheed L-049 Constellation NX25600 at Muroc Dry Lake on the high desert of southern California, 9 January 1943. (San Diego Air & Space Museum Archive)

     Shortly before dusk the giant craft returned to the Burbank terminal, slipped down the long “landing groove” of air and settled easily to the runway.

     Her debut was over.

     Today she will begin the exhaustive test flights to determine her performance before she is turned over to T.W.A. and the Army for the grueling business of war. . . .

Los Angeles Times, Vol. LXII, Sunday morning, 10 January 1943, Page 1, Columns 1 and 2; Page 2, Columns 2 and 3. The article continues in Column 4. (The photographs are not a part of the original article.)

The prototype Lockheed XC-69, 43-10309 (NX25600), landing at Lockheed Air Terminal, Burbank, California, 1943. (Lockheed Martin Aeronautics Company)

The Lockheed Model 49-46-10, company serial number 049-1961, was designated XC-69 by the U.S. Army Air Forces and assigned serial number 43-10309.

The Constellation was operated by a flight crew of four: two pilots, a navigator and a flight engineer. It could carry up to 81 passengers. The airplane was 95 feet, 1 316 inches (28.986 meters) long with a wingspan of 123 feet, 0 inches (37.490 meters), and overall height of 23 feet, 7⅞ inches (7.210 meters). It had an empty weight of 49,392 pounds (22,403.8 kilograms) and maximum takeoff weight of 86,250 pounds (39,122.3 kilograms).

The XC-69 was powered by four air-cooled, supercharged, 3,347.662-cubic-inch-displacement (54.858 liter), Wright Aeronautical Division Cyclone 18 745C18BA2 engines. Also known as the Duplex Cyclone, these were a two-row, 18-cylinder radial engines with a compression ratio of 6.5:1, which required 100/130-octane aviation gasoline. They were rated at 2,000 horsepower at 2,400 r.p.m., or 2,200 horsepower at 2,800 r.p.m. for takeoff, (five minute limit). The 745C18BA2 was 6 feet, 4.26 inches (1.937 meters) long, 4 feet, 7.78 inches (1.417 meters) in diameter and weighed 2,595 pounds (1,177 kilograms). The engines drove 15 foot, 2 inch (4.623 meter) diameter, three-bladed Hamilton Standard Hydromatic 43E60 constant-speed propellers through a 0.4375:1 gear reduction.

The L-049 had a cruise speed of 313 miles per hour (504 kilometers per hour) and a range of 3,995 miles (6,429 kilometers). Its service ceiling was 25,300 feet (7,711 meters).

In this photograph of the Lockheed XC-69 prototype, the civil experimental registration numbers, NX25600 are visible under the left wing. (Unattributed)
In this photograph of the Lockheed XC-69 prototype at Lockheed Air Terminal, the civil experimental registration numbers, NX25600, are visible on the rudder and under the left wing. Looking northeast, the Verdugo Mountains of Southern California are in the background. (San Diego Air & Space Museum Archive)
This is a rare color photograph of the prototype Lockheed XC-69 Constellation, 43-10309, (L-049 NX-25600) with a Lockheed UC-101, 42-94148 (ex-Vega 5C NC14236) at Lockheed Air Terminal, Burbank California. This picture represents 15 years of technological advancement. (Lockheed Martin Aeronautics Company)

The prototype XC-69 was later re-engined with Pratt & Whitney Double Wasp 2SC14-G (R-2800-83) engines and designated XC-69E. These had a Normal rating of 1,700 horsepower at 2,600 r.p.m., to 7,300 feet (2,225 meters), 1,500 horsepower at 17,500 feet (5,334 meters), and 2,100 horsepower at 2,800 r.p.m. for Takeoff.

Lockheed XC-69 Constellation 43-10309. (Lockheed Martin Aeronautics Company)
Lockheed XC-69 Constellation 43-10309. (Lockheed Martin Aeronautics Company)

After the war, the Constellation prototype was sold to Howard Hughes’ Hughes Aircraft Company for $20,000 and registered as NX67900. In May 1950, Lockheed bought the prototype back from Hughes for $100,000 and it was again registered as NC25600. It had accumulated just 404 flight hours up to this time.

The prototype Lockheed XC-69 Constellation, 43-10309, is parked at Howard Hughes’ Culver City airport. In the foreground is the Hughes XF-11, 44-70155. Photographed 7 July 1946. (University of Nevada, Las Vegas Libraries)
Lockheed L-1049 Super Constellation prototype, NX6700, ex-L-049 NX25600. (Lockheed Martin)
The prototype Lockheed L-1049 Super Constellation NX25600 (XC-69 43-10309), flying above an inversion layer. The San Gabriel Mountains of Southern California are in the background. (Lockheed Martin Aeronautics Company)

Lockheed then converted 049-1961 to a prototype for the L-1049 Super Constellation with another registration, NX6700. In 1952, it was once again converted, this time as an aerodynamic test aircraft for the U.S. Navy PO-1W radar early warning aircraft (later redesignated WV-1 and EC-121 Warning Star). It was also used to test the Allison YT56 turboprop engine by placing it in the position.

Lockheed L-1049 prototype NX6700 as an aerodynamics test aircraft for the U.S. Navy PO-1W airborne early warning Warning Star. (SDASM Archives)

Finally, in 1958, the first Constellation was purchased as a source of spare parts by California Airmotive Corporation and was dismantled.

Lockheed built two XC-69 prototypes. Twenty-two C-69s and 856 Constellations of all types were produced. The Lockheed Constellation was in production from 1943–1958 in both civilian airliner and military transport versions. It is the classic propeller-driven transcontinental and transoceanic airliner.

Your intrepid TDiA correspondent with “Bataan,” General Douglas MacArthur’s Lockheed VC-121A Constellation, 48-613, at Valle Airport, Arizona, 3 July 2012. (Photograph by Mrs. TDiA)

© 2019, Bryan R. Swopes

8 January 1944

Lockheed XP-80 prototype, 44-83020, at Muroc AAF, 8 January 1944. (U.S. Air Force)
The Lockheed XP-80 prototype, 44-83020, at Muroc Army Air Field, 8 January 1944. (Lockheed Martin Aeronautics Company)
Milo Burcham
Milo Garrett Burcham

8 January 1944: At Muroc Army Air Field (later to become Edwards Air Force Base), the Lockheed Aircraft Corporation’s chief engineering test pilot, Milo Garrett Burcham, took the prototype Model L-140, the Army Air Forces XP-80 Shooting Star, 44-83020, for its first flight.

Tex Johnston, who would later become Boeing’s Chief of Flight Test, was at Muroc testing the Bell Aircraft Corporation XP-59 Airacomet. He wrote about the XP-80’s first flight in his autobiography:

Early on the morning of the scheduled first flight of the XP-80, busload after busload of political dignitaries and almost every general in the Army Air Force arrived at the northwest end of the lake a short distance from our hangar. Scheduled takeoff time had passed. I was afraid Milo was having difficulties. Then I heard the H.1B fire up, and he taxied by on the lake bed in front of our ramp. What a beautiful bird—another product of Kelly Johnson, Lockheed’s famed chief design engineer—tricycle gear, very thin wings, and a clear-view bubble canopy. Milo gave me the okay sign.

This was the initial flight of America’s second jet fighter, and what a flight it was. Milo taxied along in front of generals and politicians, turned south and applied full power. I could see the spectators’ fingers going in their ears. The smoke and sand were flying as the engine reached full power, and the XP-80 roared down the lake. Milo pulled her off, retracted gear and flaps, and held her on the deck. Accelerating, he pulled up in a climbing right turn, rolled into a left turn to a north heading, and from an altitude I estimated to be 4,000 feet [1,219 meters] entered a full-bore dive headed for the buses. He started the pull-up in front of our hangar and was in a 60-degree climb when he passed over the buses doing consecutive aileron rolls at 360 degrees per second up to 10,000 feet [3,048 meters]. He then rolled over and came screaming back. He shot the place up north and south, east and west, landed and coasted up in front of the spectators, engine off and winding down. I have never seen a crowd so excited since my barnstorming days. I returned to the office and dictated a wire to [Robert M.] Stanley [Chief Test Pilot, Bell Aircraft Corporation]WITNESSED LOCKHEED XP-80 INITIAL FLIGHT STOP VERY IMPRESSIVE STOP BACK TO DRAWING BOARD STOP SIGNED, TEX I knew he would understand.

Tex Johnston: Jet-Age Test Pilot, by A.M. “Tex” Johnston with Charles Barton, Smithsonian Books, Washington, D.C., 1 June 1992, Chapter 5 at Pages 127–128.

A few minor problems caused Burcham to end the flight after approximately five minutes but these were quickly resolved and flight testing continued.

The XP-80 was the first American airplane to exceed 500 miles per hour (805 kilometers per hour) in level flight.

Clarence L. "Kelly" Johnson with a scale model of a Lockheed P-80A-1-LO Shooting Star. Johnson's "Skunk Works" also designed the F-104 Starfighter, U-2, A-12 Oxcart and SR-71A Blackbird. (Lockheed Martin Aeronautical Company)
Clarence L. “Kelly” Johnson with a scale model of a Lockheed P-80A-1-LO Shooting Star. Johnson’s “Skunk Works” also designed the F-104 Starfighter, U-2, A-12 Oxcart and SR-71A Blackbird. (Lockheed Martin Aeronautics Company)

The Lockheed XP-80 was designed by Clarence L. “Kelly” Johnson and a small team of engineers that would become known as the “Skunk Works,” in response to a U.S. Army Air Corps proposal to build a single-engine fighter around the de Havilland Halford H.1B Goblin turbojet engine. (The Goblin powered the de Havilland DH.100 Vampire F.1 fighter.)

Lockheed Aircraft Corporation was given a development contract which required that a prototype be ready to fly within just 180 days.

Milo Burcham, on the left, shakes hands with Clarence L. Johnson following the first flight of the Lockheed XP-80, 8 January 1944. (Lockheed)
Milo Burcham, on the left, shakes hands with Clarence L. Johnson following the first flight of the Lockheed XP-80, 8 January 1944. (Lockheed Martin Aeronautics Co.)

The XP-80 was a single-seat, single-engine airplane with straight wings and retractable tricycle landing gear. Intakes for engine air were placed low on the fuselage, just forward of the wings. The engine exhaust was ducted straight out through the tail. For the first prototype, the cockpit was not pressurized but would be on production airplanes.

As was customary for World War II U.S. Army Air Forces aircraft, the prototype was camouflaged in non-reflective Dark Green with Light Gull Gray undersides. The blue and white “star and bar” national insignia was painted on the aft fuselage, and Lockheed’s winged-star corporate logo was on the nose and vertical fin. Later, the airplane’s radio call, 483020 was stenciled on the fin in yellow paint. The number 20 was painted on either side of the nose in large block letters. Eventually the tip of the nose was painted white and a large number 78 was painted just ahead of the intakes in yellow block numerals. Early in the test program, rounded tips were installed on the wings and tail surfaces. This is how the XP-80 appears today.

Lockheed XP-80 parked at Muroc Dry Lake, 1944 (Lockheed)
The highly-polished Dark Green and Light Gull Gray Lockheed XP-80 prototype parked at Muroc Dry Lake, 1944 (Lockheed Martin Aeronautics Co.)

The XP-80 is 32 feet, 911/16 inches (9.9997 meters) long with a wingspan of 37 feet, ⅞-inch (11.2998 meters) and overall height of 10 feet, 21/16 inches (3.1004 meters). It had a Basic Weight for Flight Test of 6,418.5 pounds (2,911.4 kilograms) and Gross Weight (as actually weighed prior to test flight) of 8,859.5 pounds (4,018.6 kilograms).

The Halford H.1B Goblin used a single-stage centrifugal-flow compressor, sixteen combustion chambers, and single-stage axial-flow turbine. It had a straight-through configuration rather than the reverse-flow of the Whittle turbojet from which it was derived. The H.1B produced 2,460 pounds of thrust (10.94 kilonewtons) at 9,500 r.p.m., and 3,000 pounds (13.34 kilonewtons) at 10,500 r.p.m. The Goblin weighed approximately 1,300 pounds (590 kilograms).

Cutaway illustration of the Halford H.1B Goblin turbojet engine. (FLIGHT and AIRCRAFT ENGINEER)

The XP-80 has a maximum speed of 502 miles per hour (808 kilometers per hour) at 20,480 feet (6,242 meters) and a rate of climb of 3,000 feet per minute (15.24 meters per second). The service ceiling is 41,000 feet (12,497 meters).

Unusual for a prototype, the XP-80 was armed. Six air-cooled Browning AN-M2 .50-caliber machine guns were placed in the nose. The maximum ammunition capacity for the prototype was 200 rounds per gun.

The Halford engine was unreliable and Lockheed recommended redesigning the the fighter around the larger, more powerful General Electric I-40 (produced by GE and Allison as the J33 turbojet). The proposal was accepted and following prototypes were built as the XP-80A.

Lockheed built 1,715 P-80s for the U.S. Air Force and U.S. Navy. They entered combat during the Korean War in 1950. A two-seat trainer version was even more numerous: the famous T-33A Shooting Star.

Lockheed XP-80 Shooting Star 44-83020 was used as a test aircraft and jet trainer for several years. In 1949, it was donated to the Smithsonian Institution. 44-83020 is on display at the Jet Aviation exhibit of the National Air and Space Museum. It was restored beginning in 1976, and over the next two years nearly 5,000 man-hours of work were needed to complete the restoration.

The prototype Lockheed XP-80 Shooting Star, 44-83020, at teh Smithsonian Institution National Air and Space Museum. (NASM)
The prototype Lockheed XP-80 Shooting Star, s/n 140-1001, 44-83020, at the Smithsonian Institution National Air and Space Museum. (NASM)

© 2019, Bryan R. Swopes