Tag Archives: NASA

7 December 1972, 10:39 UTC, T + 05:06

"View of the Earth as seen by the Apollo 17 crew traveling toward the moon. This translunar coast photograph extends from the Mediterranean Sea area to the Antarctica south polar ice cap. This is the first time the Apollo trajectory made it possible to photograph the south polar ice cap. Note the heavy cloud cover in the Southern Hemisphere. Almost the entire coastline of Africa is clearly visible. The Arabian Peninsula can be seen at the northeastern edge of Africa. The large island off the coast of Africa is Madagascar. The Asian mainland is on the horizon toward the northeast." (Harrison H. Schmitt/NASA)
“View of the Earth as seen by the Apollo 17 crew traveling toward the moon. This translunar coast photograph extends from the Mediterranean Sea area to the Antarctica south polar ice cap. This is the first time the Apollo trajectory made it possible to photograph the south polar ice cap. Note the heavy cloud cover in the Southern Hemisphere. Almost the entire coastline of Africa is clearly visible. The Arabian Peninsula can be seen at the northeastern edge of Africa. The large island off the coast of Africa is Madagascar. The Asian mainland is on the horizon toward the northeast.” (Harrison H. Schmitt/NASA)
Facebooktwitterredditpinterestlinkedinmailby feather

7 December 1972 05:33:00 UTC, T + 00:00:00.63

Apollo 17 (AS-512) on the pad at Launch Complex 39A, 21 November 1972. (NASA)
Apollo 17 (AS-512) on the pad at Launch Complex 39A, 21 November 1972. (NASA)

7 December 1972: At 05:33:00.63 UTC (12:33 a.m., Eastern Standard Time), Apollo 17, the last manned mission to The Moon in the 20th century, lifted off from Launch Complex 39A at the Kennedy Space Center, Cape Canaveral, Florida. The destination was the Taurus-Littrow Valley.

The Mission Commander, on his third space flight, was Eugene A. Cernan. The Command Module Pilot was Ronald A. Evans, on his first space flight, and the Lunar Module Pilot was Harrison H. Schmitt, also on his first space flight.

Gene Cernan, seated, with Harrison Schmitt and Ronald Evans. (NASA)
Gene Cernan, seated, with Harrison Schmitt and Ronald Evans. (NASA)

Schmitt was placed in the crew because he was a professional geologist. He replaced Joe Engle, an experienced test pilot who had made sixteen flights in the X-15 hypersonic research rocketplane. Three of those flights were higher than the 50-mile altitude, qualifying Engle for U.S. Air Force astronaut wings.

The launch of Apollo 17 was delayed for 2 hours, 40 minutes, due to a minor mechanical malfunction. When it did liftoff, the launch was witnessed by more than 500,000 people.

Apollo 17/Saturn V (AS-512) at Pad 39A during countdown. (NASA 72C-5901)

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet (110.642 meters) tall. The first and second stages were 33 feet (10.058 meters) in diameter. Fully loaded and fueled the rocket weighed 6,200,000 pounds (2,948,350 kilograms). It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust (6770.19 kilonewtons), each, for a total of 7,610,000 pounds of thrust at Sea Level (33,850.97 kilonewtons). These engines were ignited seven seconds prior to lift off and the outer four burned for 168 seconds. The center engine was shut down after 142 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust (1,022.01 kilonewtons), and combined, 1,161,250 pounds of thrust (717.28 kilonewtons).

The Saturn V third stage was designated S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant. The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. They were the most powerful machines ever built by man.

Apollo 17 launched 3 years, 4 months, 20 days, 16 hours, 1 minute, 0 seconds after Apollo 11, the first manned flight to The Moon.

Apollo 17 (AS-512) lifts off from Launch Complex 39A at 05:33:00 UTC, 7 December 1972. (NASA)
Apollo 17 (AS-512) lifts off from Launch Complex 39A at 05:33:00 UTC, 7 December 1972. (NASA)
Apollo 17 (NASA S72-55070)

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

3 December 1973, 02:26:00 UTC

Photographic image of the planet Jupiter, taken by Pioneer 10, 3 December 1973. (NASA)
Photographic image of the planet Jupiter, taken by Pioneer 10, 3 December 1973. (NASA Ames Research Center)

3 December 1973: At 02:26:00 UTC, the NASA interplanetary probe Pioneer 10 reached its closest approach to the gas giant, Jupiter, 132,252 kilometers (82,178 miles) above the planet’s cloud tops. At that time, Pioneer 10 had a velocity of approximately 132,000 kilometers per hour (82,021 miles per hour).

Composite of images of the planet Jupiter during Pioneer 10’s approach (lower images, left to right) and departure (upper images, right to left). NASA

During the encounter with Jupiter, more than 500 photographic images were made and transmitted to Earth. A variety of measurements were made by sensors aboard the space craft.

An artist’s conception of Pioneer 10 at Jupiter. (NASA)

Pioneer 10 was built by the TRW Space & Technology Group, Redondo Beach, California, for the NASA Ames Research Laboratory. It was launched by a three-stage Atlas Centaur rocket from Launch Complex 36A, Kennedy Space Center, Cape Canaveral, Florida, 2 March 1972.

The last signal received from Pioneer 10 was on 23 January 2003. At that time, the probe was an estimated 12 billion kilometers (80 Astronomical Units) from Earth.

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

24 November 1969

Apollo 12 command modules just before splashdown 10:58 a.m., local time, 24 November 1969. (U.S. Navy)
Apollo 12 command module just before splashdown 10:58 a.m., local time, 24 November 1969. (U.S. Navy)

24 November 1969: The Apollo 12 command module Yankee Clipper, carrying astronauts Charles “Pete” Conrad, Jr., Mission Commander; Richard F. Gordon, Jr., Command Module Pilot; Alan L. Bean, Lunar Module Pilot; landed in the Pacific Ocean at 20:58:24 UTC, approximately 500 miles east of American Samoa. Mission Time: 244:36:23.

Apollo 12 command module Yankee Clipper splashed down within approximately 2.5 nautical miles of the primary recovery ship. It is in the foreground of this photograph, with a Sikorsky SH-3D Sea King and USS Hornet (CVS-12), approximately 11:00 a.m., local time, 24 November 1969. (U.S. Navy)
Apollo 12 command module Yankee Clipper splashed down within approximately 2.5 nautical miles of the primary recovery ship. It is in the foreground of this photograph, with a Sikorsky SH-3D Sea King and USS Hornet (CVS-12), approximately 11:00 a.m., local time, 24 November 1969. (U.S. Navy)

© 2015, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

18 November 1966

Major William J. Knight, U.S. Air Force, with the modified X-15A-2, 56-6671, at Edwards Air Force Base, California. Knight is wearing a David Clark Co. MC-2 full-pressure suit with an MA-3 helmet. (U.S. Air Force)
Major William J. Knight, U.S. Air Force, with the modified X-15A-2, 56-6671, at Edwards Air Force Base, California. Knight is wearing a David Clark Co. MC-2 full-pressure suit with an MA-3 helmet. (U.S. Air Force)

18 November 1966: On Flight 175 of the research program, Major William J. (“Pete”) Knight, U.S. Air Force, flew the newly-modified North American Aviation X-15A-2, 56-6671, to Mach 6.33 (4,261 miles per hour/6,857 kilometers per hour) at 98,900 feet (30,245 meters). This is just 11 years, to the day, since Pete Everest made the first powered flight in the Bell Aircraft Corporation X-2 rocketplane, with more than 6 times an increase in speed.

On this date, NASA made an attempt to launch two X-15s, -671 and -672, using the NB-52A 52-003 and NB-52B 52-008. However -672, the number three ship, had to abort the mission.

At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)
At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)

Balls 8, the NB-52B, flown by NASA test pilot Fitz Fulton and Colonel Joe Cotton, USAF, carried 56-6671 to the launch point over Mud Lake, Nevada, approximately 200 miles to the north of Edwards AFB. (This was the lake where -671 was severely damaged in an emergency landing, 9 November 1962. It was returned to North American to be rebuilt to the X-15A-2 configuration and returned to flight operation 19 months later.)

At 1:24:07.2 p.m. local time, Pete Knight and the X-15 were dropped from the pylon under the right wing of the B-52. He ignited the Reaction Motors XLR99-RM-1 and began to accelerate with its 57,000 pounds of thrust (253.549 kilonewtons).

Since this was to be a high temperature test flight, it was planned to fly no higher than 100,000 feet (30,480 meters). The denser atmosphere would result in greater aerodynamic heating of the rocketplane.

With the two external propellant tanks carrying an additional 1,800 gallons (6,814 liters) of liquid ammonia and liquid oxygen, the engine ran for 2 minutes, 16.4 seconds. The rocketplane had accelerated to Mach 2. The external tanks emptied in about 60 seconds and were jettisoned. The tanks were equipped with parachutes. They were recovered to be reused on later flights.

The X-15, now about 25,000 pounds (11,340 kilograms) lighter and without the aerodynamic drag of the tanks, continued to accelerate. At its highest speed, the rocketplane was travelling approximately 6,500 feet per second (1,981 meters per second), more than twice as fast as a high-powered rifle bullet. Its surface temperatures exceeded 1,200 °F. (649 °C.)

Knight landed the X-15 on Rogers Dry Lake at Edwards Air Force Base. The duration of this flight had been 8 minutes, 26.8 seconds.

The modified North American Aviation X-15A-2, 56-6671, with external propellant tanks mounted. (NASA)
The modified North American Aviation X-15A-2, 56-6671, with external propellant tanks mounted. (NASA)

© 2016, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather