Tag Archives: National Advisory Committee for Aeronautics

10 June 1969

North American Aviation, Inc., X-15A-1 56-6670 hypersonic research rocketplane on display at the National Air and Space Museum. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)

10 June 1969: The U.S. Air Force donated the first North American Aviation X-15, serial number 56-6670, to the Smithsonian Institution for display at the National Air and Space Museum.

The North American Aviation, Inc., X-15A-1, 56-6670, being brought into the Arts and Industries building, June 1969. (Smithsonian Institution Archives SI-A-4145-23-A)
The North American Aviation, Inc., X-15A-1, 56-6670, being brought into the Arts and Industries building, June 1969. The wings and sections of the dorsal and ventral fins have been removed. (Smithsonian Institution Archives SI-A-4145-23-A)

The first of three X-15A hypersonic research rocketplanes built by North American for the Air Force and the National Advisory Committee (NACA, the predecessor of NASA), 56-6670 made the first glide flight and the first and last powered flights of the X-15 Program. It made a total of 82 of the 199 X-15 flights.

Scott Crossfield, North American’s Chief Engineering Test Pilot, made the first unpowered flight 8 June 1959 and the first powered flight, 17 September 1959. NASA Research Test Pilot William H. “Bill” Dana made the final X-15 flight on 24 October 1968.

North American Aviation, Inc., X-15A-1 56-6670 at the National Air and Space Museum, Washington, D.C. (D. Ramey Logan via Wikipedia)
The first North American Aviation, Inc., X-15A, 56-6670, at the National Air and Space Museum, Washington, D.C. Above and behind the X-15 is the Douglas D558-II Skyrocket that Scott Crossfield flew to Mach 2.005, 20 November 1953. (D. Ramey Logan via Wikipedia)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

20 May 1941

NAA test pilot Robert C. Chilton stand on the wing of P-51B-10-NA 42-106435. (North American Aviation, Inc.)
North American Aviation test pilot Robert C. Chilton standing on the wing of P-51B-10-NA Mustang 42-106435. (North American Aviation, Inc.)

20 May 1941: North American Aviation, Inc., test pilot Robert Creed Chilton took the first XP-51 for its maiden flight at Mines Field, Los Angeles, California. The XP-51 was the fourth production Mustang Mk.I built for the Royal Air Force, (North American serial number 73-3101) and assigned registration number AG348 .

The Mustang was reassigned to the U.S. Army Air Force, designated as XP-51, serial number 41-038, and sent to Wright Field, Dayton, Ohio, for evaluation.

North American Aviation Mustang Mk.I AG348 at Mines Field, California, 1941. North American Aviation, Inc., photograph. (Ray Wagner Collection/SDASM)
North American Aviation Mustang Mk.I AG348, Mines Field, California, 1941. North American Aviation, Inc., photograph. (Ray Wagner Collection/SDASM)
North American Aviation Mustang Mk.I AG348 at Mines Field, California, 1941. North American Aviation, Inc., photograph. (Ray Wagner Collection/SDASM)

Later, the XP-51 was extensively tested by the National Advisory Committee for Aeronautics (N.A.C.A.) at the Langley Memorial Aeronautical Laboratory, Langley Field, Hampton, Virginia.

Today, the restored XP-51 is in the collection of the E.A.A. AirVenture Museum at Oshkosh, Wisconsin.

North American Aviation XP-51 41-038 at the NACA Langley Memorial Aeronautical Laboratory. (NASA LMAL 27030)
North American Aviation XP-51 41-038 at the NACA Langley Memorial Aeronautical Laboratory. (NASA)

The Mustang Mk.I (NAA Model NA-73) was a single-place, single engine fighter primarily of metal construction with fabric control surfaces. It was 32 feet, 3 inches (9.830 meters) long with a wingspan of 37 feet, 5/16-inches (11.373 meters) and height of 12 feet, 2½ inches (3.721 meters). The airplane’s empty weight was 6,280 pounds (2,849 kilograms) and loaded weight was 8,400 pounds (3,810 kilograms).

North American Aviation XP-51 41-039 at NACA Langley. (NASA)
North American Aviation XP-51 41-039 at NACA Langley. (NASA)

The Mustang was powered by a liquid-cooled, supercharged, 1,710.597-cubic-inch-displacement (28.032 liter) Allison Engineering Company V-1710-F3R (V-1710-39) single overhead cam (SOHC) 60° V-12 engine with a compression ratio of 6.65:1. The -F3R had a Normal Power rating of 880 horsepower at 2,600 r.p.m., at Sea Level, and 1,000 horsepower at 2,600 r.p.m. at 11,000 feet (3,353 meters). It had a Takeoff and Military Power rating of 1,150 horsepower at 3,000 r.p.m., to 11,800 feet (3,597 meters). The engine turned a 10 foot, 9 inch (3.277 meter) diameter three-bladed Curtiss Electric constant-speed propeller through a 2.00:1 gear reduction. The V-1710-F3R was 7 feet, 4.38 inches (2.245 meters) long, 3 feet, 0.54 inches (0.928 meters) high, and 2 feet, 5.29 (0.744 meters) wide. It weighed 1,310 pounds (594 kilograms).

The Mustang Mk.I had a maximum speed of 382 miles per hour (615 kilometers per hour) at 13,700 feet (4,176 meters), the Allison’s critical altitude, and cruise speed of 300 miles per hour (483 kilometers per hour). The service ceiling was 30,800 feet (9,388 meters) and range was 750 miles (1,207 kilometers).

North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, right profile. (NASA LAML)
North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, right profile. (NASA)

The Mustang Mk.I was armed with four air-cooled Browning .303 Mk.II aircraft machine guns, two in each wing, and four Browning AN-M2 .50-caliber machine guns, with one in each wing and two mounted in the nose under the engine.

North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboroatory. (NASA LAML 27045)
North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, right three-quarter view. (NASA)

The Mk.I was 30 m.p.h. faster than its contemporary, the Curtiss P-40 Warhawk, though both used the same engine. Below 15,000 feet, the Mustang was also 30–35 m.p.h faster than a Supermarine Spitfire, which had a more powerful Roll-Royce Merlin V-12.

The XP-51 would be developed into the legendary P-51 Mustang. In production from 1941 to 1945, a total of 16,766 Mustangs of all variants were built.

North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, rear view. (NASA LMAL 27033)
North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, rear view. (NASA)

Robert Creed Chilton was born 6 February 1912 at Eugene, Oregon, the third of five children of Leo Wesley Chilton, a physician, and Edith Gertrude Gray. He attended Boise High School in Idaho, graduating in 1931. Chilton participated in football, track and basketball, and also competed in the state music contest. After high school, Chilton attended the University of Oregon where he was a member of the Sigma Chi fraternity (ΣΧ). He was also a member of the Reserve Officers Training Corps (ROTC).

Bob Chilton enlisted as an Aviation Cadet in the U.S. Army Air Corps, 25 June 1937. He was trained as a fighter pilot at Randolph Field and Kelly Field in Texas, and was commissioned as a Second Lieutenant in 1938. Lieutenant Chilton was assigned to fly the Curtiss P-36 Hawk with the 79th Pursuit Squadron, 20th Pursuit Group, at Barksdale Field, Louisiana. Because of a medical condition, he was released from active duty, 1 April 1939.

At some time prior to 1940, Bob Chilton, married his first wife, Catherine. They lived in Santa Maria, California, where he worked as a pilot at the local airport.

In January 1941, Chilton went to work as a production test pilot for North American Aviation, Inc., Inglewood, California. After just a few months, he was assigned to the NA-73X.

Chilton married his second wife, Betty W. Shoemaker, 15 November 1951.

On 10 April 1952, Bob Chilton returned to active duty with the U.S. Air Force, with the rank of lieutenant colonel. He served as Chief of the Republic F-84 and F-105 Weapons System Project Office, Air Material Command, at Wright-Patterson Air Force Base, Dayton, Ohio, until 9 March 1957.

From 1958, Chilton was a vice president for Horkey-Moore Associates, an engineering research and development company in Torrance, California, founded by former North American aerodynamacist Edward J. Horkey. In 1961, he followed Horkey to the Space Equipment Corporation, parent company of Thompson Industries and Kerr Products, also located in Torrance. Chilton served as corporate secretary and contracts administrator.

Chilton married his third wife, Wilhelmina E. Redding (Billie E. Johnson) at Los Angeles, 26 July 1964. They divorced in 1972.

In 1965, Bob Chilton returned to North American Aviation as a flight test program manager. He retired in 1977.

Robert Creed Chilton died at Eugene, Oregon, 31 December 1994, at the age of 82 years.

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

25 April 1956

Lieutenant Colonel Frank K. Everest, U.S. Air Force, with a Bell X-2 at Edwards Air Force Base. Colonel Everest is wearing a capstan-type partial pressure suit for protection at very high altitude. (U.S. Air Force)
Lieutenant Colonel Frank K. Everest, U.S. Air Force, with a Bell X-2 at Edwards Air Force Base. Colonel Everest is wearing a David Clark Co. T-1 capstan-type partial-pressure suit for protection at very high altitude. (U.S. Air Force)

25 April 1956: At Edwards Air Force Base, California, test pilot Lieutenant Colonel Frank Kendall (“Pete”) Everest, United States Air Force, was airdropped from a Boeing EB-50D Superfortress in the Bell X-2 supersonic research rocket plane, serial number 46-674. This was the tenth flight of the X-2 program, and only the third powered flight.

For the first time, Everest fired both chambers of the Curtiss-Wright XLR25 rocket engine. On this flight, the X-2 reached Mach 1.40 and 50,000 feet (15,240 meters). It was the first time an X-2 had gone supersonic.

Bell X-2 46-674 in flight over Southern California, circa 1955–56. (NASA Photograph ET–128)
Bell X-2 46-674 in flight over Southern California, circa 1955–56. (NASA Photograph ET–128)

The X-2 was a joint project of the U.S. Air Force and NACA (the National Advisory Committee on Aeronautics, the predecessor of NASA). The rocketplane was designed and built by Bell Aircraft Corporation of Buffalo, New York, to explore supersonic flight at speeds beyond the capabilities of the earlier Bell X-1 and Douglas D-558-II Skyrocket.

In addition to the aerodynamic effects of speeds in the Mach 2.0–Mach 3.0 range, engineers knew that the high temperatures created by aerodynamic friction would be a problem, so the aircraft was built from stainless steel and K-Monel, a copper-nickel alloy.

The Bell Aircraft Corporation X-2 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 32 feet, 3 inches (9.830 meters) and height of 11 feet, 10 inches (3.607 meters). Its empty weight was 12,375 pounds (5,613 kilograms) and loaded weight was 24,910 pounds (11,299 kilograms).

The X-2 was powered by a throttleable two-chamber Curtiss-Wright XLR25-CW-1 rocket engine that produced 2,500–15,000 pounds of thrust (11.12–66.72 kilonewtons)

Rather than use its limited fuel capacity to take off and climb to altitude, the X-2 was dropped from a modified heavy bomber as had been the earlier rocketplanes. A four-engine Boeing B-50D-95-BO Superfortress bomber, serial number 48-096, was modified as the drop ship and redesignated EB-50D.

Bell X-2 46-674 on final approach. (NASA)

The launch altitude was 30,000 feet (9,144 meters). After the fuel was exhausted, the X-2 glided to a touchdown on Rogers Dry Lake at Edwards Air Force Base.

Two X-2 rocketplanes were built. The second X-2, 46-675, was destroyed during a captive flight, 12 May 1953. The explosion killed Bell test pilot Skip Ziegler and Frank Wolko, an engineer aboard the B-50A mothership. The B-50 made an emergency landing but was so badly damaged that it never flew again.

The X-2 reached a maximum speed of Mach 3.196 (2,094 miles per hour/3,370 kilometers per hour) and maximum altitude of 126,200 feet (38,466 meters).

Boeing EB-50D Superfortress 49-096 with a Bell X-2 (U.S. Air Force)
Boeing EB-50D Superfortress 48-096 with a Bell X-2 (U.S. Air Force)

The EB-50D was a highly modified four-engine Boeing B-50D-95-BO Superfortress long range heavy bomber, engineered to carry research aircraft to high altitudes before releasing them for a test flight. The B-50 was an improved version of the World War II B-29A Superfortress.

Boeing B-50D-95-BO (S/N 48-096) in flight. (U.S. Air Force photo)
Boeing B-50D-95-BO Superfortress 48-096 prior to modification to an EB-50D X-2 carrier. (U.S. Air Force/Bill Pippin Collection, 1000aircraftphotos.com)
Boeing B-50D-90-BO Superfortress 48-096 prior to modification to an EB-50D X-2 carrier. (U.S. Air Force)
Boeing B-50D-95-BO Superfortress 48-096 prior to modification to an EB-50D X-2 carrier. (U.S. Air Force)
Boeing B-50D-95-BO Superfortress 48-096 prior to modification to an EB-50D X-2 carrier. (U.S. Air Force)

Frank Kendall (“Pete”) Everest, Jr., was born 10 Aug 1920, at Fairmont, Marion County, West Virginia. He was the first of two children of Frank Kendall Everest, an electrical contractor, and Phyllis Gail Walker Everest. Attended Fairmont Senior High School, Fairmont, West Virginia, graduating in 1939. He studied at Fairmont State Teachers College, also in Fairmont, West Virginia, and then studied engineering at teh University of Wesst Virginia in Morgantown.

Pete Everest enlisted as an aviation cadet in the United States Army Air Corps at Fort Hayes, Columbus, Ohio, 7 November 1941, shortly before the United States entered World War II. His enlistment records indicate that he was 5 feet, 7 inches (1.703 meters) tall and weighed 132 pounds (59.9 kilograms). He graduated from pilot training and was commissioned as a second lieutenant, Air Reserve, 3 July 1942.

Everest married Miss Avis June Mason in Marion, West Virginia, in 1942.

He was promoted to 1st Lieutenant, Army of the United States, 11 November 1942. He was assigned as a Curtiss-Wright P-40 Warhawk pilot, flying 94 combat missions in North Africa, Sicily and Italy. He was credited with shooting down two German airplanes and damaging a third. Everest was promoted to the rank of Captain, 17 August 1943.

In 1944, Everest was returned to the United States to serve as a flight instructor. He requested a return to combat and was then sent to the China-Burma-India theater of operations where he flew 67 missions and shot down four Japanese airplanes. He was himself shot down by ground fire in May 1945. Everest was captured by the Japanese and suffered torture and inhumane conditions before being freed at the end of the war. He was promoted to the rank of major, 1 July 1945. He was returned to the United States military 3 October 1945.

After the war, Everest was assigned as a test pilot at Wright-Patterson Air Force Base, Ohio, before going west to the Air Force Flight Test Center at Edwards Air Force Base, California.

Everest was returned to the permanent rank of first lieutenant, Air Corps, 19 June 1947, with date of rank retroactive to 3 July 1945.

Major Frank Kendall Everest, Jr., U.S. Air Force, with a Bell X-1 supersonic research rocketplane, 46-062, circa 1950. (mach-buster.co.uk)

At Edwards, he was involved in nearly every flight test program, flying the F-88, F-92, F-100, F-101, F-102, F-104 and F-105 fighters, the XB-51, YB-52, B-57 and B-66 bombers. He also flew the pure research aircraft, the “X planes:” the X-1, X-1B, X-2, X-3, X-4 and X-5. Pete Everest flew the X-1B to Mach 2.3, and he set a world speed record with the X-2 at Mach 2.9 (1,957 miles per hour, 3,149.5 kilometers per hour) which earned him the title, “The Fastest Man Alive.” He was the test pilot on thirteen of the twenty X-2 flights.

Major Frank Kendall Everest, Jr., U.S. Air Force, with the Bell X-2 supersonic research rocketplane, on Rogers Dry Lake at Edwards AFB, California, 1956. (U.S. Air Force via Jet Pilot Overseas)

Frank Everest returned to operational assignments and commanded a fighter squadron, two combat crew training wings, and was assigned staff positions at the Pentagon. On 20 November 1963, Colonel Everest, commanding the 4453rd Combat Crew Training Squadron, flew one of the first two operational McDonnell F-4C Phantom II fighters from the factory in St. Louis to MacDill Air Force Base.

In 1965, Pete Everest was promoted to the rank of brigadier general. He was commander of the Aerospace Rescue and Recovery Service. He retired from the Air Force in 1973 after 33 years of service. He later worked as a test pilot for Sikorsky Aircraft.

During his military career General Everest was awarded the Air Force Distinguished Service Medal; Legion of Merit with two oak leaf clusters (three awards); Distinguished Flying Cross with two oak leaf clusters (three awards); Purple Heart; Air Medal with one silver and two bronze oak leaf clusters (seven awards); Air Force Commendation Medal with one oak leaf cluster (two awards); Presidential Unit Citation with two bronze oak leaf clusters (three awards); Air Force Gallant Unit Citation; Prisoner of War Medal; American Campaign Medal; European-African-Middle Eastern Campaign medal with four bronze stars; Asiatic-Pacific campaign Medal with two bronze stars; World War II Victory Medal; National Defense Service Medal; Armed Forces Expeditionary Medal; Vietnam Service Medal; Air Force Longevity Service Award with one silver and two bronze oak leaf clusters (seven awards); Air Force Small Arms Expert Marksmanship Ribbon; and the Republic of Vietnam Campaign Medal with 1960– device. General Everest was rated as a Command Pilot, and a Basic Parachutist.

Brigadier General Frank Kendall Everest, Jr. United States Air Force (Retired), died at Tucson, Arizona, 1 October 2004 at the age of 84 years.

Brigadier General Frank Kendall Everest, United states Air Force
Brigadier General Frank Kendall Everest, Jr., United States Air Force. (U.s. Air Force)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

24 April 1939

The Curtiss XP-40 prototype at Langley Field in the original configuration. (NASA)
The Curtiss-Wright XP-40 prototype, 36-10, at Langley Field in the original configuration. Compare this to the first production P-40 Warhawk in the photograph below. (NASA)
Curtiss P-40 Warhawk 39-156. (U.S. Air Force)
Curtiss-Wright P-40 Warhawk 39-156. (U.S. Air Force)

24 April 1939: Curtiss-Wright’s prototype fighter, the XP-40 (Model 75P), was evaluated by the National Advisory Committee for Aeronautics (NACA) at the Langley Memorial Aeronautical Laboratory, Langley Field, Virginia, in March and April 1939. NACA engineers placed the XP-40 inside the Full-Scale Wind Tunnel, which was capable of accepting airplanes with wing spans of up to 40 feet (12.2 meters).

Compare this production Curtiss-Wright P-36A Hawk to the first production P-40 Warhawk in the photograph below.
Curtiss Model 81, P-40 Warhawk, 39-156. (San Diego Air and Space Museum Archive)

The airplane was a production Curtiss P-36A Hawk, serial number 38-10, which had been modified by replacing its original air-cooled Pratt & Whitney Twin Wasp S1C1-G (R-1830-17) 14-cylinder radial engine with a Harold Caminez-designed, liquid-cooled, supercharged, 1,710.597-cubic-inch-displacement (28.032 liter) Allison Engineering Co. V-1710-C13 (V-1710-19). This was a single overhead cam (SOHC) 60° V-12 engine with four valves per cylinder and a compression ration of 6.65:1. It had a Normal Power rating of 910 horsepower at 2,600 r.p.m. at Sea Level, and 1,060 horsepower at 2,950 r.p.m. for Takeoff. At 10,000 feet (3,048 meters), the V-1710-19 had Maximum Continuous Power rating of 1,000 horsepower at 2,600 r.p.m., and Military Power rating of 1,150 horsepower at 2,950 r.p.m. The engine required 100/130-octane aviation gasoline. It drove a three-bladed Curtiss Electric constant-speed propeller through a 2:1 gear reduction. The V-1710-19 was 8 feet, 1.75 inches (2.483 meters) long, 3 feet, 4.75″ (1.035 meters) high and 2 feet, 4.94 inches (0.735 meters) wide. It weighed 1,320 pounds (599 kilograms).

Curtiss XP-40 prototype in the NACA wind tunnel at Langley Field, Virginia, 24 April 1939. The technician at the lower left of the photograph provides scale. (NASA)
Curtiss-Wright XP-40 prototype in the NACA wind tunnel at Langley Field, Virginia, 24 April 1939. The technician at the lower left of the photograph provides scale. (NASA)

The primary benefit of the engine change was the streamlined fuselage that resulted. The new airplane was capable of a speed of 366 miles per hour (589 kilometers per hour), a 53 miles per hour (85 kilometers per hour) increase over the P-36.

Over a two-month period, NACA engineers made a number of improvements. The radiator was moved forward under the engine and the oil coolers utilized the same air scoop. The exhaust manifolds were improved as were the landing gear doors.

When they had finished, Lieutenant Benjamin Scovill Kelsey flew the modified XP-40 back to Curtiss at Buffalo, New York. Its speed had been increased to 354 miles per hour (570 kilometers per hour), a 12% improvement. Other improvements were recommended which may have increased the XP-40’s speed by an additional 18 miles per hour (29 kilometers per hour). By December 1939, the airplane had been further improved and was capable of 366 miles per hour (589 kilometers per hour).

These photographs show the full-size prototype in the NACA wind tunnel at Langley, 24 April 1939. Two days later, the U.S. Army Air Corps ordered 524 airplanes as the P-40 Warhawk. By the time production ended in 1945, 13,738 Warhawks had been built.

Curtiss XP-40 in the NACA full scale wind tunnel, Langley Field, Virginia, April 1939. (NASA)
Curtiss XP-40 in the NACA full scale wind tunnel, Langley Field, Virginia, April 1939. (NASA)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

19 April 2006

Albert Scott Crossfield, Jr., with the Victor Black Edition Continental engine overhauled by Victor Aviation of Palo Alto, California.
Albert Scott Crossfield, Jr., with the Victor Black Edition Continental IO-470-E engine installed in his Cessna 210A, N6579X. The engine was overhauled by Victor Aviation of Palo Alto, California. (Victor Aviation)

19 April 2006: Former experimental test pilot Albert Scott Crossfield, Jr., was enroute from Prattville, Alabama, to Manassas, Virginia. Scott Crossfield¹ was flying his personal Cessna 210A, N6579X. The Cessna was cruising at 11,000 feet (3,353 meters) under Instrument Flight Rules (IFR), under the control of the Atlanta Air Route Traffic Control Center (ARTCC).

During the flight, he encountered a Level 6 thunderstorm.

Scott Crossfield requested to deviate from his planned course to avoid the severe turbulence. Atlanta Center authorized his request and he began to turn. Approximately 30 seconds later, at 11:10 a.m., radar contact was lost near Ludville, Georgia. The last indication was that the Cessna was descending through 5,500 feet (1,676 meters).

The wreckage of N6579X was located the following day by a Civil Air Patrol search team, 3.3 nautical miles (6.1 kilometers) northwest of Ludville at an elevation of 1,269 feet (386.8 meters) above Sea Level. [N. 34° 30.767′, W. 84° 39.492′] The airplane had descended through the forest canopy nearly vertically and created a crater approximately 4½ feet (1.4 meters) deep and 6 feet (1.8 meters) across. Albert Scott Crossfield’s body was inside.

Scott Crossfield’s 1962 Cessna 210A Centurion, photographed at Santa Monica Airport, California, 26 September 1999. (AirNikon Collection, Pima Air & Space Museum, Tucson, Arizona via airliners.net)

N6579X was a Cessna Model 210A, serial number 21057579, built in 1960 by the Cessna Aircraft Company, Inc., of Wichita Kansas. It was a six-place, single-engine, high-wing monoplane with external struts to brace the wings, and retractable, tricycle landing gear. The airplane was certified for instrument flight by a single pilot. At the time of the crash, N6579X had been flown 4,987.4 hours, total time since new (TTSN).

The Cessna 210A was 28 feet, 2 inches (8.585 meters) long with a wingspan of 36 feet, 6 inches (11.125 meters) and overall height of 9 feet, 7 inches (2.921 meters). The airplane had an empty weight of 1,839 pounds (834.2 kilograms) and maximum gross weight of 2,900 pounds (1,315.4 kilograms). It had a fuel capacity of 65 gallons (246 liters), with 10 gallons (37.9 liters) unusable, and 12 quarts of engine oil (11.4 liters).

N6579X was powered by an air-cooled, fuel-injected, 471.239-cubic-inch-displacement (7.722 liters) Teledyne Continental IO-470-E horizontally-opposed six-cylinder direct-drive engine with a compression ratio of 8.6:1. The engine was rated at 260 horsepower at 2,625 r.p.m. for takeoff, using 100LL aviation gasoline. It weighed 429 pounds (195 kilograms). This engine, serial number 77583-0-E, was original to the airplane and accumulated 4,987.4 hours, total time since new (TTSN). It had been overhauled by Victor Aviation, Palo Alto, California, 1,259.8 hours prior to the accident (TSO). A three-bladed McCauley constant-speed propeller with a diameter of 6 feet, 10 inches (2.083 meters) was installed in 2005.

The Cessna Model 210A has a maximum structural cruise speed of 175 miles per hour (282 kilometers), and maximum speed (Vne) of 200 miles per hour (322 kilometers per hour). Maneuvering speed, which should be used in turbulent conditions, is 130 miles per hour (209 kilometers per hour). The 210A has a maximum rate of climb of 1,300 feet per minutes (6.6  meters per second) and service ceiling of 20,700 feet (6,309 meters). Its maximum range is 1,284 miles (2,066 kilometers).

Albert Scott Crossfield, Jr., aeronautical engineer and test pilot, 1921-2006. (Jet Pilot Overseas)

Albert Scott Crossfield, Jr., was born 2 October 1921 at Berkeley, California. He was the second of three children of Albert Scott Crossfield, a chemist who was employed as the superintendant of the Union Oil Company refinery in Wilmington, California, and Lucia M. Dwyer Crossfield.

When he was five years old, young “Scotty” contracted pneumonia. He was comatose for a while and was not expected to survive, but after several weeks he began to recover. A year later, he again became seriously ill, this time with rheumatic fever. He was confined to total bed rest for four months, and continued to require extensive bed rest until he was about ten years old. It was during this time that he became interested in aviation.

Scott Crossfield attended Boistfort Consolidated School, southwest of Chehalis, Washington, graduating in 1939, and then studied engineering at the University of Washington until taking a job at Boeing in late 1941. During this time, Scotty learned to fly in the Civilian Aviation Training Program.

The week following the attack on Pearl Harbor and the United States’ entry into World War II, Scott Crossfield enlisted as an aviation cadet in the United States Army Air Corps. After numerous delays, he joined the United States Navy on 21 February 1942, and resigned from the Air Corps. He began aviation cadet training at NAS Sand Point, near Seattle, and then was sent to NAS Corpus Christi, Texas. In December 1942, he graduated, received his gold Naval Aviator wings and was commissioned as an Ensign, United States Naval Reserve.

Ensign Crossfield was assigned to NAS Kingsville as an advanced bombing and gunnery instructor. He was promoted to Lieutenant (junior grade), 1 March 1944. He continued as a gunnery instructor for two years before being transferred to Air Group 51 in the Hawaiian Islands, which was preparing for the invasion of Japan. He was promoted to Lieutenant, 1 August 1945, while serving aboard the Independence-class light aircraft carrier USS Langley (CVL-27). With the end of World War II, though, the Navy was cutting back. Lieutenant Crossfield was released from active duty 31 December 1945.

In April 1943 at Corpus Christi, Texas, Ensign A. Scott Crossfield married Miss Alice Virginia Knoph of Seattle. They would have five children.

Following the War, Scotty returned to the University of Washington to complete his degree. He took a part time job operating the University’s wind tunnel. At the same time, he remained in the Naval Reserve, assigned to VF-74, a fighter squadron which flew both the Grumman F6F Hellcat and Chance Vought F4U Corsair out of NAS Sand Point, back where his naval career began.

Chance Vought F4U-4 Corsair, Bu. No. 82034, assigned to Fighter Squadron 74 (VF-74). (United States Navy)

Crossfield graduated from the University of Washington with a bachelor’s degree in aeronautical engineering in June 1949, and a master’s degree in 1950.

In 1950 Crossfield joined the National Advisory Committee for Aeronautics (NACA) as a research test pilot at the High-Speed Flight Station, Edwards Air Force Base, California. He flew the Republic YF-84, F-84F Thunderstreak, and North American Aviation F-86 Sabre. Crossfield made 25 flights in the delta-winged Convair XF-92A, which he described as “the worst flying airplane built in modern times.” He also flew the Northrop X-4 and Bell X-5. He made 17 flights conducting stability tests in the Douglas D-558-1 Skystreak. Scotty made 65 flights in the North American Aviation F-100A Super Sabre, including a test series which discovered a fatal flaw which led to the death of North American’s chief test pilot, George S. Welch.

NACA Research Test Pilot Albert Scott Crossfield in the cockpit of the Douglas D-558-II Skyrocket after exceeding Mach 2, 20 November 1953. (NASA)

Crossfield is known as a rocketplane pilot. He made 10 flights in the Bell X-1, and 89 in the Douglas D-558-II Skyrocket. He became the first pilot to exceed Mach 2 when he flew the Skyrocket to Mach 2.005, 20 November 1953.

Scott Crossfield discusses the X-15 with North American Aviation engineers Edmond R. Cokeley and Charles H. Feltz. (North American Aviation, Inc.)

Crossfield flew for NACA for approximately five years. During that time, approximately 500 flights were made at Edwards by NACA test pilots. Scott Crossfield flew 181 of them.

Scott Crossfield left NACA in 1956 to join North American Aviation, Inc., as chief engineering test pilot for the X-15 project. Between 8 June 1959 and 6 December 1960, he made fourteen flights in the X-15. He reached a maximum speed of Mach 2.97 and altitude of 88,116 feet (26,858 meters). Once the contractor’s flight tests were completed and the rocketplane turned over to the U.S. Air Force and NACA, the customers’ test pilots, Joe Walker and Major Robert M. White, took over.

Albert Scott Crossfield made 114 flights in rocket-powered aircraft, more than any other pilot.

After completing his work on the X-15, Crossfield followed Harrison (“Stormy”) Storms, who had been the Chief Engineer of North American’s Los Angeles Division (where the X-15 was built) to the Space and Information Systems Division in Downey, California, where he worked in quality assurance, reliability engineering and systems testing for the Apollo Command and Service Modules and the Saturn S-II second stage.

Crossfield left North American at the end of 1966, becoming Vice President for Technological Development for Eastern Air Lines. In this position, he flew acceptance tests for new Boeing 720 and 727 airliners at Boeing in Seattle.

In The X-15 Rocket Plane, author Michelle Evans quoted Crossfield as to why he had not entered NASA’s space program as an astronaut:

     One question that pressed was, with his love of flight and the early responsibility of going into space with the X-15, why would Scott not apply to the NASA astronaut office? He explained, “[Dr.] Randy Lovelace and General [Donald] Flickinger were on the selection board. They took me to supper one night and asked me not to put in for astronaut. I asked them, ‘Why  not?’ and they said, ‘Well, we’re friends of yours. We don’t want to have to turn you down.’ I asked, ‘Why would you have to turn me down?’ and they said, ‘You’re too independent.’ “

The X-15 Rocket Plane: Flying the First Wings into Space, by Michelle, Evans, University of Nebraska Press, 2013, Chapter 1 at Page 33.

The remains of Albert Scott Crossfield are interred at the Arlington National Cemetery.

Scott Crossfield is in the cockpit of X-15 56-6670, under the right wing of NB-52A 52-003. (NASA)

¹ “Scott Crossfield” is the family name, going back for several generations.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather