Tag Archives: National Advisory Committee for Aeronautics

19 April 2006

Albert Scott Crossfield, Jr., with the Victor Black Edition Continental engine overhauled by Victor Aviation of Palo Alto, California.
Albert Scott Crossfield, Jr., with the Victor Black Edition Continental IO-470-E engine installed in his Cessna 210A, N6579X. The engine was overhauled by Victor Aviation of Palo Alto, California. (Victor Aviation)

19 April 2006: Former experimental test pilot Albert Scott Crossfield, Jr., was enroute from Prattville, Alabama, to Manassas, Virginia. Scott Crossfield¹ was flying his personal Cessna 210A, N6579X. The Cessna was cruising at 11,000 feet (3,353 meters) under Instrument Flight Rules (IFR), under the control of the Atlanta Air Route Traffic Control Center (ARTCC).

During the flight, he encountered a Level 6 thunderstorm.

Scott Crossfield requested to deviate from his planned course to avoid the severe turbulence. Atlanta Center authorized his request and he began to turn. Approximately 30 seconds later, at 11:10 a.m., radar contact was lost near Ludville, Georgia. The last indication was that the Cessna was descending through 5,500 feet (1,676 meters).

The wreckage of N6579X was located the following day by a Civil Air Patrol search team, 3.3 nautical miles (6.1 kilometers) northwest of Ludville at an elevation of 1,269 feet (386.8 meters) above Sea Level. [N. 34° 30.767′, W. 84° 39.492′] The airplane had descended through the forest canopy nearly vertically and created a crater approximately 4½ feet (1.4 meters) deep and 6 feet (1.8 meters) across. Albert Scott Crossfield’s body was inside.

Scott Crossfield’s 1962 Cessna 210A Centurion, photographed at Santa Monica Airport, California, 26 September 1999. (AirNikon Collection, Pima Air & Space Museum, Tucson, Arizona via airliners.net)

N6579X was a Cessna Model 210A, serial number 21057579, built in 1960 by the Cessna Aircraft Company, Inc., of Wichita Kansas. It was a six-place, single-engine, high-wing monoplane with external struts to brace the wings, and retractable, tricycle landing gear. The airplane was certified for instrument flight by a single pilot. At the time of the crash, N6579X had been flown 4,987.4 hours, total time since new (TTSN).

The Cessna 210A was 28 feet, 2 inches (8.585 meters) long with a wingspan of 36 feet, 6 inches (11.125 meters) and overall height of 9 feet, 7 inches (2.921 meters). The airplane had an empty weight of 1,839 pounds (834.2 kilograms) and maximum gross weight of 2,900 pounds (1,315.4 kilograms). It had a fuel capacity of 65 gallons (246 liters), with 10 gallons (37.9 liters) unusable, and 12 quarts of engine oil (11.4 liters).

N6579X was powered by an air-cooled, fuel-injected, 471.239-cubic-inch-displacement (7.722 liters) Teledyne Continental IO-470-E horizontally-opposed six-cylinder direct-drive engine with a compression ratio of 8.6:1. The engine was rated at 260 horsepower at 2,625 r.p.m. for takeoff, using 100LL aviation gasoline. It weighed 429 pounds (195 kilograms). This engine, serial number 77583-0-E, was original to the airplane and accumulated 4,987.4 hours, total time since new (TTSN). It had been overhauled by Victor Aviation, Palo Alto, California, 1,259.8 hours prior to the accident (TSO). A three-bladed McCauley constant-speed propeller with a diameter of 6 feet, 10 inches (2.083 meters) was installed in 2005.

The Cessna Model 210A has a maximum structural cruise speed of 175 miles per hour (282 kilometers), and maximum speed (Vne) of 200 miles per hour (322 kilometers per hour). Maneuvering speed, which should be used in turbulent conditions, is 130 miles per hour (209 kilometers per hour). The 210A has a maximum rate of climb of 1,300 feet per minutes (6.6  meters per second) and service ceiling of 20,700 feet (6,309 meters). Its maximum range is 1,284 miles (2,066 kilometers).

Albert Scott Crossfield, Jr., aeronautical engineer and test pilot, 1921-2006. (Jet Pilot Overseas)

Albert Scott Crossfield, Jr., was born 2 October 1921 at Berkeley, California. He was the second of three children of Albert Scott Crossfield, a chemist who was employed as the superintendant of the Union Oil Company refinery in Wilmington, California, and Lucia M. Dwyer Crossfield.

When he was five years old, young “Scotty” contracted pneumonia. He was comatose for a while and was not expected to survive, but after several weeks he began to recover. A year later, he again became seriously ill, this time with rheumatic fever. He was confined to total bed rest for four months, and continued to require extensive bed rest until he was about ten years old. It was during this time that he became interested in aviation.

Scott Crossfield attended Boistfort Consolidated School, southwest of Chehalis, Washington, graduating in 1939, and then studied engineering at the University of Washington until taking a job at Boeing in late 1941. During this time, Scotty learned to fly in the Civilian Aviation Training Program.

The week following the attack on Pearl Harbor and the United States’ entry into World War II, Scott Crossfield enlisted as an aviation cadet in the United States Army Air Corps. After numerous delays, he joined the United States Navy on 21 February 1942, and resigned from the Air Corps. He began aviation cadet training at NAS Sand Point, near Seattle, and then was sent to NAS Corpus Christi, Texas. In December 1942, he graduated, received his gold Naval Aviator wings and was commissioned as an Ensign, United States Naval Reserve.

Ensign Crossfield was assigned to NAS Kingsville as an advanced bombing and gunnery instructor. He was promoted to Lieutenant (junior grade), 1 March 1944. He continued as a gunnery instructor for two years before being transferred to Air Group 51 in the Hawaiian Islands, which was preparing for the invasion of Japan. He was promoted to Lieutenant, 1 August 1945, while serving aboard the Independence-class light aircraft carrier USS Langley (CVL-27). With the end of World War II, though, the Navy was cutting back. Lieutenant Crossfield was released from active duty 31 December 1945.

In April 1943 at Corpus Christi, Texas, Ensign A. Scott Crossfield married Miss Alice Virginia Knoph of Seattle. They would have five children.

Following the War, Scotty returned to the University of Washington to complete his degree. He took a part time job operating the University’s wind tunnel. At the same time, he remained in the Naval Reserve, assigned to VF-74, a fighter squadron which flew both the Grumman F6F Hellcat and Chance Vought F4U Corsair out of NAS Sand Point, back where his naval career began.

Chance Vought F4U-4 Corsair, Bu. No. 82034, assigned to Fighter Squadron 74 (VF-74). (United States Navy)

Crossfield graduated from the University of Washington with a bachelor’s degree in aeronautical engineering in June 1949, and a master’s degree in 1950.

In 1950 Crossfield joined the National Advisory Committee for Aeronautics (NACA) as a research test pilot at the High-Speed Flight Station, Edwards Air Force Base, California. He flew the Republic YF-84, F-84F Thunderstreak, and North American Aviation F-86 Sabre. Crossfield made 25 flights in the delta-winged Convair XF-92A, which he described as “the worst flying airplane built in modern times.” He also flew the Northrop X-4 and Bell X-5. He made 17 flights conducting stability tests in the Douglas D-558-1 Skystreak. Scotty made 65 flights in the North American Aviation F-100A Super Sabre, including a test series which discovered a fatal flaw which led to the death of North American’s chief test pilot, George S. Welch.

NACA Research Test Pilot Albert Scott Crossfield in the cockpit of the Douglas D-558-II Skyrocket after exceeding Mach 2, 20 November 1953. (NASA)

Crossfield is known as a rocketplane pilot. He made 10 flights in the Bell X-1, and 89 in the Douglas D-558-II Skyrocket. He became the first pilot to exceed Mach 2 when he flew the Skyrocket to Mach 2.005, 20 November 1953.

Scott Crossfield discusses the X-15 with North American Aviation engineers Edmond R. Cokeley and Charles H. Feltz. (North American Aviation, Inc.)

Crossfield flew for NACA for approximately five years. During that time, approximately 500 flights were made at Edwards by NACA test pilots. Scott Crossfield flew 181 of them.

Scott Crossfield left NACA in 1956 to join North American Aviation, Inc., as chief engineering test pilot for the X-15 project. Between 8 June 1959 and 6 December 1960, he made fourteen flights in the X-15. He reached a maximum speed of Mach 2.97 and altitude of 88,116 feet (26,858 meters). Once the contractor’s flight tests were completed and the rocketplane turned over to the U.S. Air Force and NACA, the customers’ test pilots, Joe Walker and Major Robert M. White, took over.

Albert Scott Crossfield made 114 flights in rocket-powered aircraft, more than any other pilot.

After completing his work on the X-15, Crossfield followed Harrison (“Stormy”) Storms, who had been the Chief Engineer of North American’s Los Angeles Division (where the X-15 was built) to the Space and Information Systems Division in Downey, California, where he worked in quality assurance, reliability engineering and systems testing for the Apollo Command and Service Modules and the Saturn S-II second stage.

Crossfield left North American at the end of 1966, becoming Vice President for Technological Development for Eastern Air Lines. In this position, he flew acceptance tests for new Boeing 720 and 727 airliners at Boeing in Seattle.

In The X-15 Rocket Plane, author Michelle Evans quoted Crossfield as to why he had not entered NASA’s space program as an astronaut:

     One question that pressed was, with his love of flight and the early responsibility of going into space with the X-15, why would Scott not apply to the NASA astronaut office? He explained, “[Dr.] Randy Lovelace and General [Donald] Flickinger were on the selection board. They took me to supper one night and asked me not to put in for astronaut. I asked them, ‘Why  not?’ and they said, ‘Well, we’re friends of yours. We don’t want to have to turn you down.’ I asked, ‘Why would you have to turn me down?’ and they said, ‘You’re too independent.’ “

The X-15 Rocket Plane: Flying the First Wings into Space, by Michelle, Evans, University of Nebraska Press, 2013, Chapter 1 at Page 33.

The remains of Albert Scott Crossfield are interred at the Arlington National Cemetery.

Scott Crossfield is in the cockpit of X-15 56-6670, under the right wing of NB-52A 52-003. (NASA)

¹ “Scott Crossfield” is the family name, going back for several generations.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

14 April 1947

Douglas test pilot Gene May with a D-558-I Skystreak high-speed research airplane. (Douglas Aircraft Company)
Douglas Aircraft Company test pilot Eugene Francis May. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

14 April 1947: Douglas Aircraft Company test pilot Eugene Francis (“Gene”) May took the Number 1  U.S. Navy/NACA/Douglas D-558-I Skystreak high-speed research aircraft, Bu. No. 37970, for its first flight at at Muroc Army Airfield. The aircraft had been transported from the Los Angeles factory to Muroc by truck.

The Skystreak was a joint United States Navy/National Advisory Committee for Aeronautics (NACA) research aircraft designed to explore flight at high subsonic speed. The Phase I Skystreak was designed by a team led by Douglas Chief Engineer Edward Henry Heinemann. Flight testing was conducted at the NACA High Speed Flight Station at Muroc Army Airfield (later known as Edwards Air Force Base). Three D-558-Is were built, followed by the Phase II, swept-wing, Mach 2, D-558-II Skyrocket rocketplane.

The D-558-I carried extensive flight test instrumentation for its time. The wings had 400 orifices for air pressure sensors. During the test series, aircraft stability in the range of 0.82–0.99 Mach was investigated. One of the Skystreaks may have briefly exceeded Mach 1 as it came out of a dive.

Unlike some of the other experimental high speed aircraft of the time, it took off from the ground under its own power rather than being carried aloft by a mother ship. While those other aircraft could briefly reach much higher speeds, the D-558-I was able to fly for extended periods in the high-subsonic range, providing scientists and engineers with a tremendous amount of data.

The research airplane was a single-place, single-engine, low-wing monoplane with retractable tricycle landing gear. The fuselage of the D-558-I was constructed of an aluminum framework covered with sheet magnesium. It was designed for an ultimate load factor of 18 gs. The wings and tail surfaces were aluminum. The airplane was painted scarlet (not orange, like its contemporary, the Bell X-1) and was known as “the crimson test tube.” The D-558-I was 35 feet, 1.5 inches (10.706 meters) long with a wingspan of 25 feet, 0 inches (7.620 meters) and overall height of 12 feet, 1.6 inches (3.698 meters). Gross weight 10,105 pounds (4,584 kilograms). It carried 230 gallons (871 liters) of kerosene in its wings.

A Douglas D-558-I Skystreak being inspected by U.S. Navy personnel at the Douglas Aircraft Company plant in Los Angeles, California. [Modelers: Note the GREEN anti-glare panel.] (Getty Images/Bettman)
The D-558-I was powered by a single Allison J35-A-11 turbojet engine. The J35 was a single-spool, axial-flow turbojet with an 11-stage compressor section, 8 combustion chambers and single-stage turbine. The J35-A-11 was rated at 5,000 pounds of thrust (22.24 kilonewtons). The engine was 12 feet, 1.0 inches (3.683 meters) long, 3 feet, 4.0 inches (1.016 meters) in diameter and weighed 2,455 pounds (1,114 kilograms).

Bu. No. 37970 made 101 of the 228 Phase I flights. It set a world speed record 1,031.178 kilometers per hour (640.744 miles per hour), flown by Commander Turner F. Caldwell Jr., U.S. Navy,  20 August 1947.¹ (Major Marion E. Carl, U.S. Marine Corps, flew the second Skystreak, Bu. No. 37971, to 1,047.356 kilometers per hour (650.797 miles per hour),² breaking Caldwell’s record.)

After Douglas completed the contractor’s test series, the Number 1 Skystreak was turned over to the NACA High Speed Flight Station and designated NACA 140. It was not as highly instrumented as the Number 2 and Number 3 Skystreaks and was not flown, but was used as a source for spare parts for the other D-558-Is.

Douglas D-558-I Skystreak Bu. No. 37970 is on display at the National Naval Aviation Museum, NAS Pensacola, Florida.

Douglas D-558-I Skystreak, Bu. No. 37970, at the National Naval Aviation Museum, Naval Air Station Pensacola, Florida. (U.S. Navy)

¹ FAI Record File Number 9864

² FAI Record File Number 9865

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

10 March 1959

North American Aviation X-15A 56-6670 carried aloft by Boeing NB-52A Stratofortress 52-003. The absence of frost on the fuselage of the X-15 shows that no cryogenic propellants are aboard for this captive flight. The chase plane is a Lockheed F-104A-15-LO Starfighter, 56-0768. This Starfighter suffered an engine failure on take off at Edwards AFB, crashed and was destroyed, 30 June 1959. (NASA)

10 March 1959: With North American Aviation’s Chief Engineering Test Pilot Albert Scott Crossfield in its cockpit, the X-15 high speed research rocket plane was airborne for the first time. X-15A 56-6670 was carried aloft under the wing of the Boeing NB-52A Stratofortress mother ship, 52-003, for a series of captive flights. The purpose was to verify that all the systems on both the X-15 and the mothership were properly functioning up to the point that the drop would occur.

The NB-52A Stratofortress flight crew, left to right: Harry W. ("Bill") Berkowitz, NAA, Launch Panel Operator; Captain John E. ("Jack") Allavie, USAF, Pilot; Captain Charles C. Bock, Jr., USAF, Aircraft Commander, at Edwards AFB, 7 February 1959. (U.S. Air Force)
The NB-52A Stratofortress flight crew, left to right: Harry W. (“Bill”) Berkowitz, NAA, Launch Panel Operator; Captain John E. (“Jack”) Allavie, USAF, Pilot; Captain Charles C. Bock, Jr., USAF, Aircraft Commander, at Edwards AFB, 7 February 1959. (U.S. Air Force via Jet Pilot Overseas)
North American Aviation X-15A 56-6670 carried aloft by Boeing NB-52A Stratofortress 52-003. The absence of frost on the fuselage of the X-15 shows that no cryogenic propellants are aboard for this captive flight. (NASA)
North American Aviation X-15A 56-6670 carried aloft by Boeing NB-52A Stratofortress 52-003. The absence of frost on the fuselage of the X-15 shows that no cryogenic propellants are aboard for this captive flight. (NASA)

Fully settled in my tiny flight office, I could speak by radio to the B-52 pilot, Charlie Bock, who was about thirty feet away in the nose of the mother plane, out of sight. . . .

As we sat, waiting at the end of the long runway while chase planes took off and circled, the clock on the instrument panel of the X-15 showed 0955. . . On signal, B-52 pilot Charlie Bock cobbed the eight engines, standing hard on the brake pedal. As the engines wound up to full military power, the X-15 trembled and the noise was tremendous. Through my radio earphones I heard Bock call a countdown for the benefit of the official movie cameramen who would record  every inch of the takeoff:

“Five . . . four . . . three . . . two . . . one. BRAKE RELEASE.”

One hundred thirty tons of aluminum, fuel, Inconel X, five men and the hope of a nation began rolling down the long runway. . .

As we rolled, the huge runway distance markers flashed by, clocking our path: 14,000 . . . 13,000 . . . 12,000 . . . 8,000. When the X-15 air-speed indicator reached 170 knots, I noted only a minor vibration. We would continue the takeoff. 6,000 . . . 5,000 . . . 4,000, and we broke ground. It was smooth and gentle, like the take-off of an airliner. The air-speed indicator crept up to 260 knots. The parched brown desert fell away. . . .

Always Another Dawn: The Story of a Rocket Test Pilot, by A. Scott Crossfield and Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960, Chapters 34 and 35 at Pages 316–321.

X-15A 56-6670 under the wing of NB-52A 52-003 at high altitude. Scott Crossfield is in the cockpit of the rocketplane. Air Force Flight Test Center History Office, U.S. Air Force)
X-15A 56-6670 under the wing of NB-52A 52-003 at high altitude. Scott Crossfield is in the cockpit of the rocketplane. (Air Force Flight Test Center History Office, U.S. Air Force)

The gross weight of the combined aircraft was 258,000 pounds (117,000 kilograms). After a takeoff roll of 6,200 feet (1,890 meters) the B-52/X-15 lifted of at 168 knots (193 miles per hour/311 kilometers per hour). During the 1 hour, 8 minute flight the the B-52 climbed to 45,000 feet (13,716 meters) and reached a speed of 0.83 Mach (548 miles per hour/881 kilometers per hour).

The X-15A rocketplane was designed and built for the U.S. Air Force and the National Advisory Committee for Aeronautics (NACA, the predecessor of NASA) by North American Aviation, Inc., to investigate the effects of hypersonic flight (Mach 5+). Design work started in 1955 and a mock-up had been completed after just 12 months. The three X-15s were built at North American’s Los Angeles Division, at the southeast corner of Los Angeles International Airport (LAX), on the shoreline of southern California.

Test pilot Albert Scott Crossfield with X-15 56-6670 attached to the right wing pylon of NB-52A 52-003 at Edwards Air force Base. (North American Aviation Inc.)

The first flight took place 8 June 1959, again, with Scott Crossfield in the cockpit of the Number 1 ship, 56-6670.

While earlier rocketplanes, the Bell X-1 series, the the Douglas D-558-II, and the Bell X-2, were airplanes powered by rocket engines, the X-15 was a quantum leap in technology. It was a spacecraft.

Like the other rocketplanes, the X-15 was designed to be carried aloft by a “mothership,” rather than to takeoff and climb to the test altitude under its own power. The carrier aircraft was originally to be a Convair B-36 intercontinental bomber but this was soon changed to a Boeing B-52 Stratofortress. Two B-52s were modified to carry the X-15: NB-52A 52-003, The High and Mighty One, and NB-52B 52-008, Balls 8.

From 8 June 1959 to 24 October 1968, the three X-15s were flown by twelve test pilots, three of whom would qualify as astronauts in the X-15. Two would go on to the Apollo Program, and one, Neil Alden Armstrong, would be the first human to set foot on the surface of the Moon, 20 July 1969. Joe Engle would fly the space shuttle. Four of the test pilots, Petersen, White, Rushworth, and Knight, flew in combat during the Vietnam War, with Bob White being awarded the Air Force Cross. Petersen, Rushworth and White reached flag rank.

One pilot, John B. (“Jack”) McKay, was seriously injured during an emergency landing at Mud Lake, Nevada, 9 November 1962. Michael James Adams, was killed when the Number 3 ship, 56-6672, went into a hypersonic spin and broke up on the program’s 191st flight, 15 November 1967.

Scott Crossfield prepares for a flight in the North American Aviation X-15A. Crossfield is wearing a David Clark Co. MC-2 full-pressure suit and MA-3 helmet, which he helped to develop. (NASA)

Flown by a single pilot/astronaut, the X-15 is a mid-wing monoplane with dorsal and ventral fin/rudders and stabilators. The wing had no dihdral, while the stabilators had a pronounced -15° anhedral. The short wings have an area of 200 square feet (18.58 square meters) and a maximum thickness of just 5%. The leading edges are swept to 25.64°. There are two small flaps but no ailerons. The entire vertical fin/rudder pivots for yaw control.

Above 100,000 feet (30,840 meters) altitude, conventional aircraft flight control surfaces are ineffective. The X-15 is equipped with a system of reaction control jets for pitch, roll and yaw control. Hydrogen peroxide was passed through a catalyst to produce steam, which supplied the control thrusters.

The forward landing gear consists of a retractable oleo strut with steerable dual wheels and there are two strut/skids at the rear of the fuselage. The gear is retracted after the X-15 is mounted on the NB-52 and is extended for landing by its own weight.

X-15A cockpit with original Lear Siegler instrument panel. (NASA)

The rocketplane’s cockpit featured both a conventional control stick as well as side-controllers. It was pressurized with nitrogen gas to prevent fires. The pilot wore an MC-2 full-pressure suit manufactured by the David Clark Company of Worcester, Massachusetts, with an MA-3 helmet. The suit was pressurized below the neck seal with nitrogen, while the helmet was supplied with 100% oxygen. This pressure suit was later changed to the Air Force-standardized A/P22S.

The X-15 is 50.75 feet (15.469 meters) long with a wing span of 22.36 feet (6.815 meters). The height—the distance between the tips of the dorsal and ventral fins—is 13.5 feet (4.115 meters). The stabilator span is 18.08 feet (5.511 meters). The fuselage is 4.67 feet (1.423 meters) deep and has a maximum width of 7.33 feet (2.234 meters).

North American Aviation, Inc. X-15A 56-6670 on Rogers Dry Lake, Edwards Air Force Base, California. (NASA)

Since the X-15 was built of steel rather than light-weight aluminum, as are most aircraft, it is a heavy machine, weighing approximately 14,600 pounds (6,623 kilograms) empty and 34,000 pounds (15,422 kilograms) when loaded with a pilot and propellants. The X-15s carried as much as 1,300 pounds (590 kilograms) of research instrumentation, and the equipment varied from flight to flight. The minimum flight weight (for high-speed missions): 31,292 pounds (14,194 kilograms) The maximum weight was 52,117 pounds (23,640 kilograms) at drop (modified X-15A-2 with external propellant tanks).

Initial flights were flown with a 5 foot, 11 inch (1.803 meters)-long air data boom at the nose, but this would later be replaced by the “ball nose” air sensor system. The data boom contained a standard pitot-static system along with angle-of-attack and sideslip vanes. The boom and ball nose were interchangeable.

The X-15s were built primarily of a nickel/chromium/iron alloy named Inconel X, along with corrosion-resistant steel, titanium and aluminum. Inconel X is both very hard and also able to maintain its strength at the very high temperatures the X-15s were subjected to by aerodynamic heating. It was extremely difficult to machine and special fabrication techniques had to be developed.

Two Reaction Motors Division XLR11-RM-5 four-chamber rocket engines installed on an X-15. (NASA)

Delays in the production of the planned Reaction Motors XLR99 rocket engine forced engineers to adapt two vertically-stacked Reaction Motors XLR11-RM-5 four-chamber rocket engines to the X-15 for early flights. This was a well-known engine which was used on the previous rocketplanes. The XLR-11 burned a mixture of ethyl alcohol and water with liquid oxygen. Each of the engines’ chambers could be ignited individually. Each engine was rated at 11,800 pounds of thrust (58.49 kilonewtons) at Sea Level.

The Reaction Motors XLR99-RM-1 rocket engine was throttleable by the pilot from 28,500 to 60,000 pounds of thrust. The engine was rated at 50,000 pounds of thrust (222.41 kilonewtons) at Sea Level; 57,000 pounds (253.55 kilonewtons) at 45,000 feet (13,716 meters), the typical drop altitude; and 57,850 pounds (257.33 kilonewtons) of thrust at 100,000 feet (30,480 meters). Individual engines varied slightly. A few produced as much as 61,000 pounds of thrust (271.34 kilonewtons).

The XLR99 burned anhydrous ammonia and liquid oxygen. The flame temperature was approximately 5,000 °F. (2,760 °C.) The engine was cooled with circulating liquid oxygen. To protect the exhaust nozzle, it was flame-sprayed with ceramic coating of zirconium dioxide. The engine is 6 feet, 10 inches (2.083 meters) long and 3 feet, 3.3 inches (0.998 meters) in diameter. It weighs 910 pounds (413 kilograms). The Time Between Overhauls (TBO) is 1 hour of operation, or 100 starts.

Thiokol Reaction Motors Division XLR99-RM-1 rocket engine. (U.S. Air Force)

The XLR99 proved to be very reliable. 169 X-15 flights were made using the XLR99. 165 of these had successful engine operation. It started on the first attempt 159 times.

The highest speed achieved during the program was with the modified number two ship, X-15A-2 56-6671, flown by Pete Knight to Mach 6.70 (6,620 feet per second/4,520 miles per hour/ kilometers per hour) at 102,700 feet (31,303 meters). On this flight, the rocketplane exceeded its maximum design speed of 6,600 feet per second (2,012 meters per second).

The maximum altitude was reached by Joe Walker, 22 August 1963, when he flew 56-6672 to 354,200 feet (107,960 meters).

The longest flight was flown by Neil Armstrong, 20 April 1962, with a duration of 12 minutes, 28.7 seconds.

North American Aviation X-15A-1 56-6670 is on display at the Smithsonian Institution National Air and Space Museum. X-15A-2 56-6671 is at the National Museum of the United States Air Force.

North American Aviation Inc./U.S. Air Force/NASA X-15A 56-6670 hypersonic research rocketplane on display at the National Air and Space Museum. (NASM)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

4–5 February 1929

Frank Hawks with the red and silver Lockheed Air Express, NR7955. (San Diego Air and Space Museum Archives)

4–5 February 1929: At 5:37:30 p.m., Pacific Time, Monday, Frank Monroe Hawks, took off from Metropolitan Field, Los Angeles, California, (now known as Van Nuys Airport, VNY) in a new Lockheed Model 3 Air Express transport, NR7955, serial number EX-2. Also on board was Oscar Edwin Grubb, the final assembly superintendent for Lockheed. The pair flew non-stop to Roosevelt Field, Long Island, New York, arriving there at 2:59:29 p.m., Eastern Time, on Tuesday. The duration of the flight was 18 hours, 21 minutes, 59 seconds.

Oscar Edwin Grubb and Frank Monroe Hawks, shortly before departing for New York, 4 February 1929. (Getty Images)

The only previous non-stop West-to-East flight had been flown during August 1928 by Arthur C. Goebel, Jr., and Harry Tucker with their Lockheed Vega, Yankee Doodle, NX4769. Hawks cut 36 minutes off of Goebel’s time.

Lockheed Model 3 Air Express NR7955, photographed 1 February 1929. The Air Express was the first production airplane to use the new NACA cowling design. (Crane/NACA)

Hawks was a technical adviser to The Texas Company (“Texaco”), a manufacturer and distributor of petroleum products which sponsored the flight. On his recommendation, the company purchased the Air Express from Lockheed for use as a company transport.

On 17 January 1930, “Pilot Frank Hawks attempted a takeoff from a soggy field in West Palm Beach, Florida, destroying the aircraft christened ‘Texaco Five’ in a spectacular crash that catapulted it into a row of three parked aircraft. All three occupants were unhurt while the aircraft was destroyed.” —Bureau of Aircraft Accidents Archives

NC7955’s Department of Commerce registration was cancelled 31 January 1930.

The Lockheed Model 3 Air Express was a single-engine parasol-wing monoplane transport, flown by a single pilot in an open aft cockpit, and capable of carrying 4 to 6 passengers in its enclosed cabin. The airplane was designed by Gerard Freebairn Vultee and John Knudsen Northrop. It used the Lockheed Vega’s molded plywood monocoque fuselage.

The Model 3 received Approved Type Certificate No. 102 from the Aeronautic Branch, U. S. Department of Commerce.

The Lockheed Air Express was the first production airplane to use the “NACA Cowl,” an engine cowling for radial engines which had been designed by a team led by Fred Ernest Weick of the the National Advisory Committee for Aeronautics’ Langley Memorial Aeronautical Laboratory. The new cowling design tightly enclosed the engine and used baffles to control air flow around the hottest parts of the engines. The exit slots were designed to allow the air to exit the cowling at a higher speed than it had entered the intake. The new cowling design provided better engine cooling and caused significantly less aerodynamic drag. The addition of the NACA cowling increased the Air Express’s maximum speed from 157 to 177 miles per hour (253 to 285 kilometers per hour).

The day following Hawks’ transcontinental flight, Vultee sent a telegram to NACA:

COOLING CAREFULLY CHECKED AND OK. RECORD IMPOSSIBLE WITHOUT NEW COWLING. ALL CREDIT DUE TO NACA FOR PAINSTAKING AND ACCURATE RESEARCH. GERRY VULTEE, LOCKHEED AIRCRAFT CO.

The Lockheed Model 3 Air Express was 27 feet, 6 inches (8.382 meters) long with a wing span of 42 feet, 6 inches (12.954 meters) and height of 8 feet, 4½ inches (2.553 meters). The wing area was 288 square feet (26.756 square meters). The wing had no dihedral. The airplane had an empty weight of 2,533 pounds (1,149 kilograms) and gross weight of 4,375 pounds (1,984 kilograms).

The Model 3 was powered by an air-cooled, supercharged 1,343.804-cubic-inch-displacement (22.021 liter) Pratt & Whitney Wasp C nine cylinder, direct-drive radial engine. The Wasp C was rated at 420 horsepower at 2,000 r.p.m. at Sea Level. It was 3 feet, 6.63 inches (1.083 meters) long, 4 feet, 3.44 inches (1.307 meters) in diameter, and weighed 745 pounds (338 kilograms).

The Air Express had a cruising speed of 135 miles per hour (217 kilometers per hour), and maximum speed of 177 miles per hour (285 kilometers per hour). It’s service ceiling was 17,250 feet (5,258 meters).

Frank Hawks, 1930. (San Diego air and Space Museum Archives)

Francis Monroe Hawks was born at Marshalltown, Iowa, 28 March 1897. He was the son of Charles Monroe Hawks, a barber, and Ida Mae Woodruff Hawks. He attended Long Beach Polytechnic High School, Long Beach, California, graduating in 1916. He then studied at the University of Southern California, in Los Angeles.

Frank Hawks was an Air Service, United States Army, pilot who served during World War I. He rose to the rank of Captain, and at the time of his record-breaking transcontinental flight, he held a commission as a reserve officer in the Army Air Corps. Hawks transferred to the U.S. Naval Reserve with the rank of Lieutenant Commander. His date of rank 27 May 1932.

His flying had made him a popular public figure and he starred in a series of Hollywood movies as “The Mysterious Pilot.”

Poster advertising Episode 5 of the movie serial, “The Mysterious Pilot.” (Columbia Pictures)
Amelia Earhart and Frank Hawks. (World History Project)

On 28 December 1920, Miss Amelia Earhart took her first ride in an airplane at Long Beach Airport in California. The ten-minute flight began her life-long involvement in aviation. The airplane’s pilot was Frank Monroe Hawks.

Francis M. Hawks married Miss Newell Lane at Lewiston, Montana, 7 August 1918. They had a daughter, Dolly. They later divorced. He next married Mrs. Edith Bowie Fouts at St. John’s Church, Houston, Texas, 26 October 1926.

Frank Hawks was killed in an aircraft accident at East Aurora, New York, 23 August 1938. He was buried at Redding Ridge Cemetery, Redding, Connecticut.

Frank Monroe Hawks, 1932 (Edward Steichen)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

29 December 1941

North American Aviation XP-51 Mustang 41-038 at Langley Field, Virginia, 29 December 1941. (NASA)
North American Aviation XP-51 Mustang 41-038 at Langley Field, Virginia, 29 December 1941. (NASA)

29 December 1941: The first North American Aviation XP-51 fighter prototype, Air Corps serial number 41-038, arrived at the NACA Langley Memorial Aeronautical Laboratory, Langley Field, Hampton, Virginia, for National Advisory Committee on Aeronautics flight testing. This airplane was the fourth production Royal Air Force Mustang Mk.I, identified as AG348 (North American serial number 73-3101).

The test program resulted in an improved aileron design which significantly improved the Mustang’s maneuverability. The new aileron was used on all production models.

North American Aviation XP-51 41-038 at the NACA Langley Memorial Aeronautical Laboratory. (NASA)

41-038 was returned to Wright Field on 2 November 1942. The second XP-51, 41-039, arrived at Langley in March 1943 for continued testing.

The Mustang Mk.I (NAA Model NA-73) was a single-place, single-engine fighter of all metal construction. It was 32 feet, 3 inches (9.830 meters) long with a wingspan of 37 feet, ½-inch (11.290 meters) and overall height of 12 feet, 2½ inches (3.719 meters). The airplane’s empty weight was 6,280 pounds (25,848.6 kilograms) and loaded weight was 8,400 pounds (3,810.2 kilograms).

North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, right profile. (NASA)

The Mustang Mk.I/XP-51 was powered by a liquid-cooled, supercharged 1,710.60-cubic-inch-displacement (28.032 liter) Allison Engineering Company V-1710-F3R (V-1710-39) single overhead cam 60° V-12 engine, with a compression ratio of 6.65:1 and a single-stage, single-speed supercharger. This was a right-hand tractor engine (the V-1710 was built in both right-hand and left-hand configurations) which drove a 10 foot, 6 inch (3.200 meter) diameter, three-bladed, Curtiss Electric constant-speed propeller through a 2.00:1 gear reduction.

The V-1710-39 had a Normal Power rating of 880 horsepower at 2,600 r.p.m. at Sea Level; Take Off Power rating of 1,150 horsepower at 3,000 r.p.m. at Sea Level, with 44.5 inches of manifold pressure (1.51 Bar), 5 minute limit; and a War Emergency Power rating of 1,490 horsepower at 3,000 r.p.m., with 56 inches of manifold pressure (1.90 Bar). The V-1710-F3R was 3 feet, ¾ inches (0.934 meters) high, 2 feet, 5-9/32 inches (0.744 meters) wide and 7 feet, 1-5/8 inches (2.175 meters) long. It had a dry weight of 1,310 pounds (594 kilograms).

North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory. (NASA)

The XP-51 tested at Wright Field had a maximum speed of 382.0 miles per hour (614.8 kilometers per hour) at 13,000 feet (3,962 meters) at wide open throttle, and cruise speed of 300 miles per hour (483 kilometers per hour).

Below 20,000 feet (6,096 meters), the Mustang was the fastest fighter in the world. The Mk.I was 30 m.p.h. (48 kilometers per hour) faster than its contemporary, the Curtiss P-40 Warhawk, though both used exactly the same engine. Below 15,000 feet (4,572 meters), the Mustang was also 30–35 m.p.h (48–56 km/h) faster than a Supermarine Spitfire, which was equipped with the more powerful Roll-Royce Merlin V-12.

The service ceiling was 30,800 feet (9,388 meters) and range was 750 miles (1,207 kilometers).

North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, rear view. (NASA)

Armament consisted of two synchronized Browning AN-M2 .50-caliber machine guns mounted in the nose under the engine and firing through the propeller, and two more .50-caliber and four Browning .303 Mk.II machine guns in the wings.

North American Aviation XP-51 instrument panel. (U.S. Air Force)

Two Mustang Mk.Is, AG348 and AG354, were taken from the first RAF production order and sent to Wright Field for testing by the U.S. Army Air Force. These airplanes, assigned serial numbers 41-038 and 41-039, were designated XP-51. They would be developed into the legendary P-51 Mustang. In production from 1941 to 1945, a total of 16,766 Mustangs of all variants were built.

North American XP-51 41-038 was transferred to the Smithsonian Institution National Air and Space Museum. It was restored in 1976. It is now in the collection of the EAA AirVenture Museum, Oshkosh, Wisconsin. It has a current FAA registration number, N51NA.

North American Aviation XP-51 41-038 in the collection of the Experimental Aircraft Association AirVenture Museum, Oshkosh, Wisconsin. (EAA AirVenture Museum)
North American Aviation XP-51 41-038 in the collection of the Experimental Aircraft Association AirVenture Museum, Oshkosh, Wisconsin. (EAA AirVenture Museum)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather