Tag Archives: Pete Everest

20 November 1963

Brigadier General Gilbert L. Meyers and Colonel Frank K. Everest delivered the first production McDonnell F-4C Phantom IIs to the Tactical Air Command at MacDill Air Force Base, Florida. (U.S. Air Force)

20 November 1963: The U.S. Air Force Tactical Air Command accepted its first two production McDonnell F-4C Phantom II jet fighters, F-4C-15-MC 63-7415¹ and F-4C-15-MC 63-7416. These aircraft were the ninth and tenth production F-4Cs. They were flown to MacDill Air Force Base, Tampa, Florida, by Brigadier General Gilbert Louis Meyers, commanding the 836th Air Division, and Colonel Frank Kendall (“Pete”) Everest, a world-famous test pilot, commanding the 4453rd Combat Crew Training Squadron. Lieutenant General Charles B. Westover, Vice Commander, Tactical Air Command, formally accepted the new fighters on behalf of TAC.

Up until this time, the 4453rd had been training crews with McDonnell F-4B Phantom IIs on loan from the United States Navy.

McDonnell F-4C15-MC 63-7415 at Gila Bend AAF, 1967. (Stephen Miller)
McDonnell F-4C-15-MC Phantom II 63-7415, 4453rd Combat Crew Training Wing, at Gila Bend Auxiliary Air Field, Arizona, 1967. (Stephen Miller)

The McDonnell F-4C Phantom II (originally designated F-110A Spectre) was produced for the U.S. Air Force, based on the U.S. Navy McDonnell F4H-1 (F-4B after 1962) fleet defense interceptor. Evaluation testing had shown the the Navy’s F4H was superior to the Air Force Convair F-106 Delta Dart. It was faster, could fly higher, had a longer range and greater payload. It was also better suited as a tactical fighter.

The Navy operated its Phantom IIs with a pilot and a radar systems operator. The Air Force’s F-4C variant was equipped with dual flight controls and was flown by two rated pilots. The F-4C was externally the same as the F-4B, but otherwise differed by the addition of a ground attack capability. Also, while the F-4B used a hose-and-drogue system for air-to-air refueling, the F-4C was equipped with a boom refueling system. It retained the folding wings and arresting hook of the Navy variant, but deleted catapult provisions.

McDonnell F-4C-15-MC 63-7415 in SEA camouflage in service with the Hawaii Air National Guard.
McDonnell F-4C-15-MC 63-7415 in four-color South East Asia camouflage scheme, in service with the Hawaii Air National Guard.

The F-4C was 58 feet, 3¾ inches (17.774 meters) long, with a wingspan of 38 feet, 5 inches (11.709 meters) and height of 16 feet, 3 inches (4.953 meters). Its empty weight was 28,496 pounds (12,926 kilograms) and its maximum takeoff weight was 58,000 pounds (26,308 kilograms).

The F-4C-15-MC was powered by two General Electric J79-GE-15 engines. The J79 is a single-spool, axial-flow turbojet engine, with a 17-stage compressor section and 3-stage turbine. The J79-GE-15 is rated at 10,900 pounds of thrust (48.49 kilonewtons) and 17,000 pounds (75.62 kilonewtons) with afterburner. It is 17 feet, 4.7 inches (5.301 meters) long, 3 feet, 2.3 inches (0.973 meters) in diameter and weighs 3,699 pounds (1,677.8 kilograms).

F-4C 63-7415 in two-color gray air superiority camouflage, 199th Tactical Fighter Squadron, Hawaii Air National Guard.
McDonnell F-4C-15-MC 63-7415 in three-color gray air superiority camouflage, 199th Tactical Fighter Squadron, Hawaii Air National Guard.

The F-4C had a maximum speed of 826 miles per hour (1,329 kilometers per hour)—Mach 1.09—at Sea Level, and 1,433 miles per hour (2,306 kilometers per hour)—Mach 2.17— at 48,000 feet (14,630 meters). The fighter’s service ceiling was 56,100 feet (17,099 meters). Its maximum unrefueled range, with external fuel tanks, was 1,926 miles (3,100 kilometers).

Awaiting restoration, McDonnell F-4C-15-MC Phantom II 63-7415 at San Antonio, Texas. (ABC Pic)
Awaiting restoration, McDonnell F-4C-15-MC Phantom II 63-7415 at San Antonio, Texas. (Air-Britain Photographic Images Collection)

The standard armament for the F-4C were four AIM-7 Sparrow radar-homing missiles carried in recessed in the bottom of the fuselage. Four AIM-9 Sidewinder heat-seeking missiles could be carried on underwing pylons. A maximum of 16,000 pounds (7,257 kilograms) of bombs on five hardpoints.

This McDonnell F-4C/D Phantom II is armed with a centerline gun pod, four AIM-7 Sparrow radar-homing guided missiles and four AIM-9 Sidewinder infrared-homing missiles. (Tommy Wu/McDonnell Douglas F-4 Phantom Phanatics)

During the Vietnam War, the missile armament of the Phantom II was found unsatisfactory in dogfights with enemy aircraft. The violent maneuvers of Air Combat Maneuvering (“ACM”) made it difficult for the missiles to align and track the intended target. Of 612 AIM-7 Sparrows fired by F-4s, only 56 enemy aircraft were destroyed, while 187 AIM-9 Sidewinders brought down 29 enemy aircraft. This was a kill ratio of 9% and 16%, respectively.

A SUU-16/A gun pod is test fired on McDonnell YRF-4C-14 MC Phantom II 62-12201 (YRF-110A Spectre). (U.S. Air Force)

Forward-thinking planners had assumed that an all-missile armament was all that was required in the modern era, so F-4s were built without any machine guns or cannon. The Air Force used an SUU-16/A pod containing a General Electric M61A1 20 mm rotary cannon with 1,200 rounds of ammunition mounted to the F-4’s centerline hardpoint. (Two additional SUU-16/A pods coud be mounted on the outboard underwing hardpoints.) This was useful in close-in combat, but the airplane was not equipped with a suitable gun sight. It was not until the F-4E variant that a gun was incorporated into the airplane.

McDonnell F-4C-15-MC Phantom II 63-7416. This fighter crashed 22 May 1964, killing both pilots. (U.S. Air Force)
McDonnell F-4C-15-MC Phantom II 63-7416. Note the FJ-416 “buzz number” on the fuselage. This fighter crashed at the Avon Park Bombing Range, Florida, 22 May 1964, killing both pilots, Captain Joseph P. Onate and Captain William F. Buhrman. (U.S. Air Force)

The F-4C first flew 27 May 1963. 583 of this variant before production shifted to the F-4D in 1966. The F-4C remained in service until the last was retired from the Oregon Air National Guard in 1989.

Recommended reading: Engineering the F-4 Phantom II: Parts Into Systems by Glenn E. Bugos, Naval Institute Press, Annapolis, Maryland, 1996

The first McDonnell F-4C Phantom II, 63-7407. (U.S. Air Force)

¹ Source: UNITED STATES AIR FORCE STATISTICAL DIGEST FISCAL YEAR 1964 (19th Edition), Directorate of Data Automation (AFADA), Comptroller of the Air Force, Headquarters, USAF, Washington, D.C.: Chronology of United States Air Force Major Events— FY 1964, at Page XXXVIII

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

18 November 1955

Major Frank Kendall Everest, Jr., U.S. Air Force, with the Bell X-2 supersonic research rocketplane, on Rogers Dry Lake at Edwards AFB, California, 1955. (U.S. Air Force)
Major Frank Kendall Everest, Jr., U.S. Air Force, with the Bell X-2 supersonic research rocketplane, on Rogers Dry Lake at Edwards AFB, California, 1955. (U.S. Air Force)

18 November 1955: Major Frank Kendall Everest, Jr., USAF, makes the first powered flight in the Bell X-2 research rocketplane, 46-674, at Edwards AFB, California. The rocketplane was airdropped from a Boeing EB-50D Superfortress, 48-096. Only one 5,000-lb. thrust rocket tube ignited, but that was enough to accelerate “Pete” Everest to Mach 0.992 (655.4 miles per hour/1,054.5 kilometers per hour) at 35,000 feet (10,668 meters).

The X-2 was a joint project of the U.S. Air Force and NACA (the National Advisory Committee on Aeronautics, the predecessor of NASA). The rocketplane was designed and built by Bell Aircraft Corporation of Buffalo, New York, to explore supersonic flight at speeds beyond the capabilities of the earlier Bell X-1 and Douglas D-558-II Skyrocket.

In addition to the aerodynamic effects of speeds in the Mach 2.0–Mach 3.0 range, engineers knew that the high temperatures created by aerodynamic friction would be a problem, so the aircraft was built from stainless steel and K-Monel, a copper-nickel alloy.

The Bell Aircraft Corporation X-2 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 32 feet, 3 inches (9.830 meters) and height of 11 feet, 10 inches (3.607 meters). Its empty weight was 12,375 pounds (5,613 kilograms) and loaded weight was 24,910 pounds (11,299 kilograms).

The Bell X-2 being loaded into the EB-50D Superfortress "mothership" at Edwards AFB, California. (LIFE Magazine)
The Bell X-2 being loaded into the EB-50D Superfortress “mothership” at Edwards AFB, California. (LIFE Magazine)

The X-2 was powered by a throttleable two-chamber Curtiss-Wright XLR25-CW-1 rocket engine that produced 2,500–15,000 pounds of thrust (11.12–66.72 kilonewtons)

Rather than use its limited fuel capacity to take off and climb to altitude, the X-2 was dropped from a modified heavy bomber as had been the earlier rocketplanes. A four-engine Boeing B-50D-95-BO Superfortress bomber, serial number 48-096, was modified as the drop ship and redesignated EB-50D.

The launch altitude was 30,000 feet (9,144 meters). After the fuel was exhausted, the X-2 glided to a touchdown on Rogers Dry Lake at Edwards Air Force Base.

The Bell X-2 and Boeing EB-50D Superfortress in flight. (U.S. Air Force)
The Bell X-2 and Boeing EB-50D Superfortress in flight. (U.S. Air Force)

Pete Everest joined the United States Army Air Corps shortly before the United States entered World War II. He graduated from pilot training in 1942 and was assigned as a P-40 Warhawk pilot, flying combat missions in North Africa, Sicily and Italy. He was credited with shooting down two German airplanes and damaging a third.

Everest was returned to the United States to serve as a flight instructor. He requested a return to combat and was then sent to the China-Burma-India theater of operations where he shot down four Japanese airplanes. He was himself shot down by ground fire in May 1945. Everest was captured by the Japanese and suffered torture and inhumane conditions before being freed at the end of the war.

The Bell X-2 was dropped from a Boeing EB-50D Superfortress, 48-096. (U.S. Air Force)

After the war, Everest was assigned as a test pilot at Wright-Patterson Air Force Base, Ohio, before going west to the Air Force Flight Test Center at Edwards Air Force Base, California. At Edwards, he was involved in nearly every flight test program, flying the F-88, F-92, F-100, F-101, F-102, F-104 and F-105 fighters, the XB-51, YB-52, B-57 and B-66 bombers. He also flew the pure research aircraft, the “X planes:” the X-1, X-1B, X-2, X-3, X-4 and X-5. Pete Everest flew the X-1B to Mach 2.3, and he set a world speed record with the X-2 at Mach 2.9 (1,957 miles per hour, 3,149.5 kilometers per hour) which earned him the title, “The Fastest Man Alive.”

Pete Everest gives some technical advice to William Holden ("Major Lincoln Bond"), with Bell X-2 46-674, on the set of "Toward The Unknown", 1956.
Pete Everest gives some technical advice to actor William Holden (“Major Lincoln Bond”), with Bell X-2 46-674, on the set of “Toward The Unknown,” 1956. (Toluca Productions)

Frank Everest returned to operational assignments and commanded a fighter squadron, two combat crew training wings, and was assigned staff positions at the Pentagon. On 20 November 1963, Colonel Everest, commanding the 4453rd Combat Crew Training Squadron, flew one of the first two operational McDonnell F-4C Phantom II fighters from the factory in St. Louis to MacDill Air Force Base. In 1965, Pete Everest was promoted to the rank of brigadier general. He was commander of the Aerospace Rescue and Recovery Service. He retired from the Air Force in 1973 after 33 years of service. General Everest died in 2004.

Brigadier General Frank Kendall Everest, Jr., United States Air Force, 1920–2004. (U.S. Air Force)
Brigadier General Frank Kendall Everest, Jr., United States Air Force, 1920–2004. (U.S. Air Force)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

29 October 1953

North American Aviation YF-100A Super Sabre 52-5754 during speed record attempt at the Salton Sea, 29 October 1953. (San Diego Air and Space Museum Archives)
North American Aviation YF-100A Super Sabre 52-5754 during a speed record attempt at the Salton Sea, 29 October 1953. (San Diego Air and Space Museum Archives)

29 October 1953: Lieutenant Colonel Frank Kendall (“Pete”) Everest, U.S. Air Force, flew a new prototype air superiority fighter, North American Aviation’s YF-100A Super Sabre, serial number 52-5754, over the 3 kilometer and 15 kilometer courses at the Salton Sea, California.

For four runs on the short course, Everest averaged 757.75 miles per hour. Although this was 4.80 miles per hour (7.725 kilometers per hour) faster than the record set three weeks earlier by Lieutenant Commander James B. Verdin, U.S. Navy, with a Douglas XA4D-1 Skyray,¹ it was not fast enough to set a new world record under FAI rules, which required that a new record exceed the previous record by 1%.

Next came four speed runs over the 15/25 kilometer course. All runs were made with the Super Sabre flying within 100 feet (30 meters) of the ground. The official Fédération Aéronautique Internationale (FAI) average speed was 1,215.298 kilometers per hour (755.151 miles per hour)—0.99 Mach.²

Lieutenant Colonel Frank K. Everest and the North American Aviation YF-100A Super Sabre, 52-5754, 29 October 1953. (San Diego Air and Space Museum Archives)

The course at the Salton Sea was used because its surface lies 235 feet (72 meters) below Sea Level. The denser air causes undesired supersonic effects to occur at higher speeds, allowing the pilot a greater margin of control during the speed record runs.

North American Aviation YF-100A Super Sabre 52-5754 over Edwards Air Force Base during its first flight, 25 May 1953. (U.S. Air Force)
North American Aviation YF-100A Super Sabre 52-5754 over Edwards Air Force Base, 25 May 1953. (North American Aviation, Inc.)

Pete Everest joined the United States Army Air Corps shortly before the United States entered World War II. He graduated from pilot training in 1942 and was assigned as a P-40 Warhawk pilot, flying combat missions in North Africa, Sicily and Italy. He was credited with shooting down two German airplanes and damaging a third. Everest was returned to the United States to serve as a flight instructor. He requested a return to combat and was then sent to the China-Burma-India theater of operations. He shot down four Japanese airplanes. He was himself shot down by ground fire in May 1945. He was captured by the Japanese and suffered torture and inhumane conditions before being freed at the end of the war.

After the war, Everest was assigned as a test pilot at Wright-Patterson Air Force Base, Ohio, before going west to the Air Force Flight Test Center at Edwards Air Force Base, California. At Edwards, he was involved in nearly every flight test program, flying the F-88, F-92, F-100, F-101, F-102, F-104 and F-105 fighters, the XB-51, YB-52, B-57 and B-66 bombers. He also flew the pure research aircraft, the “X planes”: the X-1, X-1B, X-2, X-3, X-4 and X-5. Pete Everest flew the X-1B to Mach 2.3, and he set a world speed record with the X-2 at Mach 2.9 (1,957 miles per hour, 3,149.5 kilometers per hour) which earned him the title, “The Fastest Man Alive.”

Frank Everest returned to operational assignments and commanded a fighter squadron, two combat crew training wings, and was assigned staff positions at the Pentagon. In 1965, Everest was promoted to the rank of brigadier general. He was commander of the Aerospace Rescue and Recovery Service. He retired from the Air Force in 1973 after 33 years of service. General Everest died in 2004.

Lieutenant Colonel Frank Kendall Everest, U.S. Air Force.

The YF-100A prototype had flown faster than Mach 1 on its first flight, 25 May 1953, with North American test pilot George S. Welch. It was the first airplane capable of supersonic speed in level flight

The North American Aviation F-100 Super Sabre was designed as a supersonic day fighter. Initially intended as an improved F-86D and F-86E, it soon developed into an almost completely new airplane. The fuselage incorporated the “area rule,” a narrowing in the fuselage width at the wings to increase transonic performance, similar to the Convair F-102A. The Super Sabre had a 49° 2′ sweep to the leading edges of the wings and horizontal stabilizer. The ailerons were placed inboard on the wings and there were no flaps, resulting in a high stall speed in landing configuration. The horizontal stabilizer was moved to the bottom of the fuselage to keep it out of the turbulence created by the wings at high angles of attack. The F-100A had a distinctively shorter vertical fin than the YF-100A. The upper segment of the vertical fin was swept 49° 43′.

North American Aviation Chief Test Pilot George S. Welch in the cockpit of the YF-100A, 52-5754, at Los Angeles International Airport. (North American Aviation, Inc.)
North American Aviation Chief Test Pilot George S. Welch in the cockpit of the YF-100A, 52-5754, at Los Angeles International Airport. (North American Aviation, Inc.)

There were two service test prototypes, designated YF-100A, followed by the production F-100A series. The first ten production aircraft (all of the Block 1 variants) were used in the flight testing program.

The F-100A Super Sabre was 47 feet, 1¼ inches (14.357 meters) long with a wingspan of 36 feet, 6 inches (11.125 meters). With the shorter vertical fin, the initial F-100As had an overall height of 13 feet, 4 inches (4.064 meters), 11 inches (27.9 centimeters) less than the YF-100A.

The F-100A had an empty weight of 18,135 pounds (8,226 kilograms), and gross weight of 28,899 pounds (13,108 kilograms). Maximum takeoff weight was 35,600 pounds (16,148 kilograms). It had an internal fuel capacity of 755 gallons (2,858 liters) and could carry two 275 gallon (1,041 liter) external fuel tanks.

North American Aviation YF-100 Super Sabre 52-5754. (U.S. Air Force)
North American Aviation YF-100 Super Sabre 52-5754, 19 May 1953. (North American Aviation, Inc.)

The early F-100As were powered by a Pratt & Whitney Turbo Wasp J57-P-7 afterburning turbojet engine. It was rated at  9,700 pounds of thrust (43.148 kilonewtons) for takeoff, and 14,800 pounds (65.834 kilonewtons) with afterburner. Later production aircraft used a J57-P-39 engine. The J57 was a two-spool axial flow turbojet which had a 16-stage compressor, and a 3-stage turbine. (Both had high- and low-pressure stages.) The engine was 15 feet, 3.5 inches (4.661 meters) long, 3 feet, 5.0 inches (1.041 meters) in diameter, and weighed 4,390 pounds (1,991 kilograms).

North American Aviation pre-production prototype YF-100A Super Sabre 52-5754 with drag chute deployed on landing at Edwards Air Force Base, California. (U.S. Air Force)
North American Aviation pre-production prototype YF-100A Super Sabre 52-5754 with drag chute deployed on landing at Edwards Air Force Base, California. (U.S. Air Force)

The Super Sabre was the first U.S. Air Force fighter capable of supersonic speed in level flight. It could reach 760 miles per hour (1,223 kilometers) at Sea Level. (Mach 1 is 761.1 miles per hour, 1,224.9 kilometers per hour, under standard atmospheric conditions.) Its maximum speed was 852 miles per hour (1,371 kilometers per hour) at 35,000 feet (10,668 meters). The service ceiling was 44,900 feet (13,686 meters). Maximum range with external fuel was 1,489 miles (2,396 kilometers).

The F-100 was armed with four M39 20 mm autocannons, capable of firing at a rate of 1,500 rounds per minute. The ammunition capacity of the F-100 was 200 rounds per gun.

North American Aviation built 199 F-100A Super Sabres at its Inglewood, California, plant before production shifted to the F-100C fighter bomber variant. Approximately 25% of all F-100As were lost in accidents.

North American Aviation YF-100A Super Sabre 52-5754 banks away from a chase plane during a flight test. (The McMahon Photo Art Gallery & Archive)
North American Aviation YF-100A Super Sabre 52-5754 banks away from a chase plane during a flight test, 18 June 1953. (North American Aviation, Inc.)

¹ FAI Record File Number 9871

² FAI Record File Number 8868

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

22 August 1953

Lieutenant Colonel Frank K. Everest, USAF, rides in the nose of a Boeing EB-50D Superfortress mothership before a rocketplane flight. He is wearing a David Clark Co. capstan-type partial pressure suit with a K-1 helmet. This scene was portrayed by William Holden in Toward The Unknown". (LIFE Magazine via jet Pilot Overseas)
Lieutenant Colonel Frank K. Everest, USAF, rides in the nose of a Boeing EB-50D Superfortress mothership before a rocketplane flight. He is wearing a T-1 capstan-type partial-pressure suit with a K-1 helmet. This scene was portrayed by William Holden in “Toward The Unknown”. (LIFE Magazine via Jet Pilot Overseas)

22 August 1953: After one successful glide flight with Bell Aircraft Corporation test pilot Skip Ziegler, the X-1D rocketplane, serial number 48-1386, was scheduled for its first powered flight with the Air Force project officer, Lieutenant Colonel Frank Kendall (“Pete”) Everest.

Bell X-1D 48-1386. (Bell Aircraft Corp./U.S. Air Force)
Bell X-1D 48-1386. (Bell Aircraft Corp./U.S. Air Force)

The Bell X-1D was one of four second-generation X-1 rocketplanes, each designed and built to investigate a different area of supersonic flight. The X-1D was instrumented for aerodynamic heating research.

A Boeing EB-50D Superfortress carries the Bell X-1D. (Edwards Flight Test.com)
The Boeing EB-50A Superfortress carries the Bell X-1D. The band of white frost around the rocketplane’s fuselage shows the location of the liquid oxygen tank. (EdwardsFlightTest.com)
A Boeing EB-50D Superfortress carries the Bell X-1D at high altitude. (U.S. Air Force)
The Boeing EB-50A Superfortress carries a Bell X-1 at high altitude. (U.S. Air Force)

After being carried to altitude by the Boeing EB-50A Superfortress mothership, Pete Everest saw that the rocketplane’s nitrogen pressure was dropping. (Pressurized nitrogen was used to push the ethyl alcohol/liquid oxygen propellant to the Reaction Motors XLR11-RM-5 engine.) With insufficient pressure, the X-1D’s flight had to be cancelled. Everest tried to jettison the fuel so that a landing could be made safely. There was an internal explosion.

Fearing that a larger explosion or fire would jeopardize the bomber and its crew, Everest abandoned the X-1D, climbing up into the bomber. The X-1 was then dropped. It crashed onto the desert floor and exploded.

Wreckage of Bell X-1D 48-1386. (U.S. Air Force)
Wreckage of Bell X-1D 48-1386. (U.S. Air Force)

At first it was assumed that vapors from a fuel leak had exploded from contact with an electrical source inside the rocketplane. There had been three similar explosions which resulted in the destruction of the X-1A, X-1-3 and the number two Bell X-2. That explosion, which occurred while the X-2 was on a captive test flight near the Bell Aircraft Corporation Factory, Buffalo, New York, 12 May 1953, killed test pilot Skip Ziegler and flight test engineer Frank Wolko aboard the B-29 mothership.

Investigators discovered that leather gaskets which were used in the rocketplanes’ fuel systems had been treated with tricresyl phospate (TCP). When this was exposed to liquid oxygen, an explosion could result. The leather gaskets were removed from the other rocketplanes and the explosions stopped.

Colonel Everest’s close call was dramatized in the 1956 Toluca Productions motion picture, “Toward The Unknown,” which starred Academy Award-winning actor William Holden as “Major Lincoln Bond,” a fighter pilot, test pilot and former prisoner of war, all of which could describe Pete Everest.

Major Frank K. Everest, U.S. Air Force gives some technical advice to William Holden ("Major Lincoln Bond") with Bell X-2 46-674, on the set of "Toward The Unknown", 1956.
Major Frank K. Everest, U.S. Air Force, gives some technical advice to William Holden (“Major Lincoln Bond”) with Bell X-2 46-674, on the set of “Toward The Unknown”, 1956. (bellx-2.com)

Frank Kendall (“Pete”) Everest, Jr., was born 10 August 1920, at Fairmont, Marion County, West Virginia. He was the first of two children of Frank Kendall Everest, an electrician, and Phyllis Gail Walker Everest. He attended Fairmont Senior High School, Fairmont, West Virginia, graduating in 1938, and then Fairmont State Teachers College where he was a member of the Tau Beta Iota (ΤΒΙ) fraternity. Everest also studied engineering at the University of West Virginia in Morgantown.

Pete Everest enlisted as an aviation cadet in the United States Army Air Corps at Fort Hayes, Columbus, Ohio, 7 November 1941, shortly before the United States entered World War II. His enlistment records indicate that he was 5 feet, 7 inches (1.70 meters) tall and weighed 132 pounds (60 kilograms). Everest graduated from pilot training and was commissioned as a second lieutenant, Air Reserve, 3 July 1942.

Lieutenant Everest married Miss Avis June Mason in Marion County, West Virginia, 8 July 1942. They would have three children, Frank, Vicky and Cindy.

Lieutenant Everest was appointed first lieutenant, Army of the United States (A.U.S.), 11 November 1942. He was assigned as a Curtiss-Wright P-40 Warhawk fighter pilot. Everest flew 94 combat missions with the 314th Fighter Squadron, 324th Fighter Group, in North Africa, Sicily and Italy. He was credited with shooting down two Luftwaffe Junkers Ju-52 transports, 18 April 1943, and damaging a third. Everest was promoted to the rank of captain, A.U.S., 17 August 1943.

Pete Everest with his Curtiss-Wright P-40 Warhawk, North Africa, 1943. (West Virginia State Archives)

In 1944, Captain Everest was returned to the United States to serve as a flight instructor. He requested a return to combat and was then sent to the China-Burma-India theater of operations, commanding the 17th Provisional Fighter Squadron at Chenkiang (Zhenjiang), China, where he flew 67 missions in the Northh American P-51 Mustang, and shot down four Japanese airplanes. He was himself shot down by ground fire in May 1945. Everest was captured by the Japanese and suffered torture and inhumane conditions before being freed at the end of the war. He was promoted to the rank of major, A.U.S., 1 July 1945. He was returned to the control of the United States military 3 October 1945.

After the war, Major Everest was assigned as a test pilot at Wright-Patterson Air Force Base, Ohio, before going west to the Air Force Flight Test Center at Edwards Air Force Base, California.

Everest’s permanent rank was advanced from second lieutenant, Air Reserve, to first lieutenant, Air Corps, 19 June 1947, with date of rank retroactive to 3 July 1945.

At Edwards, Pete Everest was involved in nearly every flight test program, flying the F-88, F-92, F-100 (he flew the YF-100A prototype to an FAI world speed record, 29 October 1953¹), F-101, F-102, F-104 and F-105 fighters, the XB-51, YB-52, B-57 and B-66 bombers. He also flew the pure research aircraft, the “X planes:” the X-1, X-1B, X-2, X-3, X-4 and X-5. Pete Everest flew the Bell X-1B to Mach 2.3, and he set an unofficial world speed record with the Bell X-2 at Mach 2.87 (1,957 miles per hour, 3,150 kilometers per hour), which earned him the title, “The Fastest Man Alive.” He was the pilot on thirteen of the twenty X-2 flights.

Major Frank Kendall Everest, Jr., U.S. Air Force, with the Bell X-2 supersonic research rocketplane, on Rogers Dry Lake at Edwards AFB, California, 1955. (U.S. Air Force)

Frank Everest returned to operational assignments in March 1957, commanding the 461st Fighter Squadron, 36th Fighter Wing, equipped with the F-100 Super Sabre, at Hahn Air Base, Germany. Later, Colonel Everest commanded the 4453rd and 4520th Combat Crew Training Wings, and was assigned staff positions at the Pentagon. On 20 November 1963, Colonel Everest, commanding the 4453rd Combat Crew Training Squadron, flew one of the first two operational McDonnell F-4C Phantom II fighters from the factory in St. Louis to MacDill Air Force Base, Florida.

On 1 November 1965, Pete Everest was promoted to the rank of brigadier general. Between 1966 and 1972, General Everest flew 32 combat missions over Southeast Asia.

He served as commander of the Aerospace Rescue and Recovery Service from 1970 to 1973. He retired from the Air Force 1 March 1973 after 33 years of service. PeteEverest later worked as a test pilot for Sikorsky Aircraft.

During his military career, General Everest was awarded the Air Force Distinguished Service Medal; Legion of Merit with two oak leaf clusters (three awards); Distinguished Flying Cross with two oak leaf clusters (three awards); Purple Heart; Air Medal with one silver and two bronze oak leaf clusters (seven awards); Air Force Commendation Medal with one oak leaf cluster (two awards); Presidential Unit Citation with two bronze oak leaf clusters (three awards); Air Force Gallant Unit Citation; Prisoner of War Medal; American Campaign Medal; European-African-Middle Eastern Campaign medal with four bronze stars; Asiatic-Pacific campaign Medal with two bronze stars; World War II Victory Medal; national Defense Service Medal; Armed Forces Expeditionary Medal; Vietnam Service Medal; Air Force Longevity Service Award with one silver and two bronze oak leaf clusters (eight awards); Air Force Small Arms Expert Marksmanship Ribbon; and the Republic of Vietnam Campaign Medal with 1960– device. General Everest was rated as a Command Pilot, and a Basic Parachutist.

Brigadier General Frank Kendall Everest, Jr., United States Air Force, died at Tucson, Arizona, 1 October 2004, at the age of 84 years.

Bell X-2 46-674 is airdropped from the EB-50D Superfortress, 48-096. U.S. Air Force)
Brigadier General Frank Kendall Everest, Jr., United States Air Force

¹ FAI Record File Number 8868: World Record for Speed Over a Straight 15/25 Kilometer Course, 1,215.298 kilometers per hour (755.151 miles per hour)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

23 July 1956

Bell X-2 46-674 airdropped from Boeing EB-50D Superfortress 48-096 near Edwards Air Force Base, California. (U.S. Air Force)
Brigadier General Frank Kendall Everest, United States Air Force
Brigadier General Frank Kendall Everest, United States Air Force

23 July 1956: Lieutenant Colonel Frank Kendall “Pete” Everest, United States Air Force, became “The Fastest Man Alive” when he flew the USAF/NACA/Bell X-2 rocket plane, serial number 46-674, to Mach 2.87 (1,957 miles per hour, 3,150 kilometers per hour) at 87,808 feet (26,764 meters). The X-2 was air-dropped from Boeing EB-50D Superfortress, serial number, 48-096, near Edwards Air Force Base, California.

The X-2 was a joint project of the U.S. Air Force and NACA (the National Advisory Committee for Aeronautics, the predecessor of NASA). The rocketplane was designed and built by Bell Aircraft Corporation of Buffalo, New York, to explore supersonic flight at speeds beyond the capabilities of the earlier Bell X-1 and Douglas D-558-2 Skyrocket. In addition to the aerodynamic effects of speeds in the Mach 2.0–Mach 3.0 range, engineers knew that the high temperatures created by aerodynamic friction would be a problem, so the aircraft was built from Stainless Steel and K-Monel, a copper-nickel alloy.

The Bell Aircraft Corporation X-2 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 32 feet, 3 inches (9.830 meters) and height of 11 feet, 10 inches (3.607 meters). Its empty weight was 12,375 pounds (5,613 kilograms) and loaded weight was 24,910 pounds (11,299 kilograms).

The X-2 was powered by a throttleable Curtiss-Wright XLR25-CW-1 rocket engine that produced 2,500–15,000 pounds of thrust (11.12–66.72 kilonewtons) burning alcohol and liquid oxygen. The engine used two rocket chambers and had pneumatic, electrical and mechanical controls. The smaller chamber could produce a maximum 5,000 pounds of thrust, and the larger, 10,000 pounds (22.24 and 44.48 likonewtons, respectively). Professor Robert H. Goddard, “The Father of Modern Rocketry,” authorized Curtiss-Wright to use his patents, and his rocketry team went to work for the Curtiss-Wright Rocket Department. Royalties for use of the patents were paid to the Guggenheim Foundation and Clark university. Professor Goddard died before he could also make the move

Rather than use its limited fuel capacity to take off and climb to altitude, the X-2 was dropped from a modified heavy bomber as had been the earlier rocketplanes. The launch altitude was 30,000 feet (9,144 meters). After the fuel was exhausted, the X-2 glided to a touchdown on Rogers Dry Lake at Edwards Air Force Base.

A four-engine Boeing B-50A Superfortress bomber, serial number 46-011, was modified as the ”mothership.” A second Superfortress, B-50D-95-BO 48-096, was also modified to carry the X-2, and was redesignated EB-50D. During the flight test program, the X-2 reached a maximum speed of Mach 3.196 (2,094 miles per hour, 3,370 kilometers per hour) and a maximum altitude of 126,200 feet (38,466 meters).

Frank Kendall Everest was a fighter pilot and flight instructor during World War II. He flew combat missions in both the Mediterranean and China-Burma-India Theaters of Operation. In May 1945 he was shot down. Everest was captured by the Japanese, held as a prisoner and tortured until the end of the war. After the war, Everest flew as a test pilot at Wright-Patterson Air Force Base, Ohio, and then at Edwards Air Force Base. On 23 July 1956, he was The Fastest Man Alive. Pete Everest retired as a brigadier general in 1970, and died in 2004.

Lieutenant Colonel Frank Kendall Everest, U.S. Air Force, wearing a David Clark Co. T-1 capstan-type partial-pressure suit for protection at high altitude, with a Bell X-2 rocketplane at Edwards AFB, circa 1956. (U.S. Air Force)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather