The Flight Crew of Gemini IX, left to right, Commander Elliot McKay See, Jr., United States Navy, and Captain Charles A. Bassett II, U.S. Air Force.
28 February 1966: The primary and back up flight crews of Gemini IX flew from Houston to St. Louis where they planned to visit the McDonnell Aircraft Corporation, where the spacecraft was being built. They flew aboard two Northrop T-38A Talon supersonic trainers which NASA used for proficiency training.
The lead aircraft, NASA 901, was flown by Commander Elliot McKay See, Jr., United States Navy Reserve. See was designated as the Command Pilot for Gemini IX. Captain Charles Arthur (“Charlie”) Bassett II, U.S. Air Force, Pilot, Gemini IX, was in the rear cockpit. NASA 901 was a Northrop T-38A-50-NO Talon 63-8181 (Northrop serial number N.5528).
Northrop T-38A-50-NO Talon 63-8181
The second T-38, NASA 907, was flown by Lieutenant Colonel Thomas P. Stafford, U.S. Air Force, and Lieutenant Commander Eugene A. Cernan, U.S. Navy.
Weather at Lambert-St. Louis Municipal Airport was poor with low clouds and limited visibility in rain and snow. Lambert Field weather at 8:25 a.m. was: sky partially obscured, measured ceiling 800 feet (244 meters) broken, 1,500 feet (457 meters) overcast, visibility 1½ miles (2.4 kilometers) in light rain, light snow, and fog.
Elliot See flew an ILS instrument approach and broke out of the clouds properly aligned with the runaway, but was too high to make a landing. He requested a visual, circling approach. The T-38 entered a 360° turn to the southeast at approximately 500 feet (152 meters). During the circling approach, Stafford, in NASA 907, lost sight of See’s T-38 and executed a missed approach. As his airplane came around to line up for the runway, See radioed that he had the runway in sight, but, at 8:58 a.m., NASA 901 struck the top of McDonnell’s Building 101 and crashed.
The wreck immediately caught fire and both See and Bassett were killed. Sixteen people on the ground were injured.
The accident investigation board found that at approximately 3 seconds before the crash, Elliot See had apparently tried to climb away. The T-38’s angle of bank was significantly reduced and afterburner was selected.
Wreckage of NASA 901. (Scott Dine/St. Louis Post Dispatch)Burned out wreckage of NASA 901 at Lambert Field, 28 February 1966. (Saint Louis Post-Dispatch)
The T-38 was the world’s first supersonic flight trainer. The Northrop T-38A Talon is a pressurized, two-place, twin-engine, jet trainer. Its fuselage is very aerodynamically clean and uses the “area-rule” (“coked”) to improve its supersonic capability. It is 46 feet, 4.5 inches (14.135 meters) long with a wingspan of 25 feet, 3 inches (7.696 meters) and overall height of 12 feet, 10.5 inches (3.924 meters). The one-piece wing has an area of 170 square feet (15.79 square meters). The leading edge is swept 32°. The airplane’s empty weight is 7,200 pounds (3,266 kilograms) and maximum takeoff weight is approximately 12,700 pounds (5,761 kilograms).
Northrop T-38A-35-NO Talon 60-0582 in flight near Edwards Air Force Base, California. (U.S. Air Force)
The T-38A is powered by two General Electric J85-GE-5 turbojet engines. The J85 is a single-shaft axial-flow turbojet engine with an 8-stage compressor section and 2-stage turbine. The J85-GE-5 is rated at 2,680 pounds of thrust (11.921 kilonewtons), and 3,850 pounds (17.126 kilonewtons) with afterburner. It is 108.1 inches (2.746 meters) long, 22.0 inches (0.559 meters) in diameter and weighs 584 pounds (265 kilograms)
The T-38A has a maximum speed of Mach 1.08 (822 miles per hour/1,323 kilometers per hour) at Sea Level, and Mach 1.3 (882 miles per hour/1,419 kilometers per hour) at 30,000 feet (9,144 meters). It has a rate of climb of 33,600 feet per minute (171 meters per second) and a service ceiling of 55,000 feet (16,764 meters). Its range is 1,140 miles (1,835 kilometers).
Between 1959 and 1972, 1,187 T-38s were built at Northrop’s Hawthorne, California, factory. As of 4 September 2018, 546 T-38s remained in the U.S. Air Force active inventory. The U.S. Navy has 10, and as of 30 October 2018, the Federal Aviation Administration reports 29 T-38s registered to NASA.
Gemini 7, as seen from Gemini 6A, 15 December 1965. (Thomas P. Stafford/NASA)
15 December 1965: At 13:37:26 UTC, Gemini 6A, with NASA astronauts Captain Walter M. Schirra, Jr., United States Navy and Major Thomas P. Stafford, United States Air Force, on board, lifted off from Launch Complex 19 at the Cape Kennedy Air Force Station, Cape Kennedy, Florida. During its fourth orbit, Gemini 6A rendezvoused with Gemini 7, carrying Major Frank F. Borman II, USAF, and LCDR James A. Lovell, Jr., USN.
This was the first time that two manned space vehicles had rendezvoused in Earth orbit.
The two spacecraft remained together for 5 hours, 19 minutes before separating to a distance of approximately 10 miles (16 kilometers).
Gemini 7 as seen from Gemini 6A, 15 December 1965. (NASA)
Gemini 7 had been in orbit since 4 December. Gemini 6, then 6A, had been postponed several times before finally launching on 15 December. It would return to Earth the following day, landing in the North Atlantic Ocean. Gemini 7 remained in orbit until 18 December.
The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, Missouri, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a series of cone-shaped segments forming a reentry module and an adapter section. It had an overall length of 18 feet, 9.84 inches (5.736 meters) and a maximum diameter of 10 feet, 0.00 inches (3.048 meters) at the base of the equipment section. The reentry module was 11 feet (3.353 meters) long with a maximum diameter of 7 feet, 6.00 inches (2.347 meters). The Gemini re-entry heat shield was a spherical section with a radius of 12 feet, 0.00 inches (3.658 meters). The weight of the Gemini spacecraft varied from ship to ship. Gemini VII had a gross weight of 8,076.10 pounds (3,663.26 kilograms) at launch. It was shipped from St. Louis to Cape Kennedy in early October 1965.
The Titan II GLV was a “man-rated” variant of the Martin Marietta Corporation SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland, plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program. The GLV-7 first and second stages were shipped from Middle River to Cape Kennedy on 9 October 1965.
The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 70 feet, 2.31 inches (21.395 meters) long with a diameter of 10 feet (3.048 meters). It was powered by an Aerojet Engineering Corporation LR87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by Aerozine 50, a hypergolic 51/47/2 blend of hydrazine, unsymetrical-dimethyl hydrazine, and water. Ignition occurred spontaneously as the components were combined in the combustion chambers. The LR87-7 produced approximately 430,000 pounds of thrust (1,912.74 kilonewtons). It was not throttled and could not be shut down and restarted. Post flight analysis indicated that the first stage engine of GLV-7 had produced an average of 462,433 pounds of thrust (2,057.0 kilonewtons). The second stage was 25 feet, 6.375 inches (7.031 meters) long, with the same diameter, and used an Aerojet LR91 engine which produced approximately 100,000 pounds of thrust (444.82 kilonewtons), also burning Aerozine 50. GLV-7’s LR91 produced an average of 102,584 pounds of thrust (456.3 kilonewtons).
The Gemini/Titan II GLV-7 combination had a total height of 107 feet, 7.33 inches (32.795 meters) and weighed 346,228 pounds (157,046 kilograms) at ignition.
Gemini 7 as seen from Gemini 6A, 15 December 1965. (NASA)
Lockheed NF-104A Aerospace Trainer 56-756, with its Rocketdyne LR-121 engine firing during a zoom-climb maneuver. (U.S. Air Force)
6 December 1963: Air Force test pilot Major Robert W. Smith takes the Lockheed NF-104A Aerospace Trainer, 56-0756, out for a little spin. . .
Starting at 0.85 Mach and 35,000 feet (10,668 meters) over the Pacific Ocean west of Vandenberg Air Force Base, California, Bob Smith turned toward Edwards Air Force Base and accelerated to Military Power and then lit the afterburner, which increased the General Electric J79-GE-3B turbojet engine’s 9,800 pounds of thrust (43.59 kilonewtons) to 15,000 pounds (66.72 kilonewtons). The modified Starfighter accelerated in level flight. At Mach 2.2, Smith ignited the Rocketdyne LR121 rocket engine, which burned a mixture of JP-4 and hydrogen peroxide. The LR121 was throttleable and could produce from 3,000 to 6,000 pounds of thrust (13.35–26.69 kilonewtons).
When the AST reached Mach 2.5, Smith began a steady 3.5G pull-up until the interceptor was in a 70° climb. At 75,000 feet (22,860 meters), the test pilot shut off the afterburner to avoid exceeding the turbojet’s exhaust temperature (EGT) limits. He gradually reduced the jet engine power to idle by 85,000 feet (25,908 meters), then shut it off. Without the engine running, cabin pressurization was lost and the pilot’s A/P22S-2 full-pressure suit inflated.
Lockheed NF-104A Aerospace Trainer 56-756, with its Rocketdyne LR-121 engine firing during a zoom-climb maneuver. (U.S. Air Force)
The NF-104A continued to zoom to an altitude where its aerodynamic control surfaces were no longer functional. It had to be controlled by the reaction jets in the nose and wing tips. 756 reached a peak altitude of 120,800 feet (36,820 meters), before reentering the atmosphere in a 70° dive. Major Smith used the windmill effect of air rushing into the intakes to restart the jet engine.
Lockheed NF-104 Aerospace Trainer zoom-climb profile. (U.S. Air Force via NF-104.com)
Major Smith had set an unofficial record for altitude. Although Lockheed had paid the Fédération Aéronautique Internationale (FAI) license fee, the Air Force had not requested certification in advance so no FAI or National Aeronautic Association personnel were on site to certify the flight.
One of the three Lockheed NF-104A Starfighter Aerospace Trainers, 56-756, in a zoom-climb with the Rocketdyne LR-121 engine firing. (U.S. Air Force)
For this flight, Robert Smith was nominated for the Octave Chanute Award “for an outstanding contribution made by a pilot or test personnel to the advancement of the art, science, and technology of aeronautics.”
Major Robert W. Smith, U.S. Air Force, with a Lockheed F-104 Starfighter. (U.S. Air Force)
Robert Wilson Smith was born at Washington, D.C., 11 December 1928. He was the son of Robert Henry Smith, a clerk (and eventually treasurer) for the Southern Railway Company, and Jeanette Blanche Albaugh Smith, a registered nurse. He graduated from high school in Oakland, California, in 1947. Smith studied at the University of California, Berkeley, and George Washington University.
Robert W. Smith joined the United States Air Force as an aviation cadet in 1949. He trained as a pilot at Goodfellow Air Force Base, San Angelo, Texas, and Williams Air Force Base in Arizona. He was commissioned as a second lieutenant, United States Air Force, 23 June 1950.
Second Lieutenant Robert Wilson Smith married Ms. Martha Yacko, 24 June 1950, at Phoenix, Arizona.
Lieutenant Robert W. Smith and his crew chief, Staff Sergeant Jackson, with Lady Lane, Smith’s North American F-86 Sabre. (Robert W. Wilson Collection)
He flew the F-86 Sabre on more than 100 combat missions with the 334th and 335th Fighter Interceptor Squadrons of the 4th Fighter Interceptor Wing during the Korean War. he named one of his airplanes Lady Lane in honor of his daughter. Smith was credited with two enemy aircraft destroyed, one probably destroyed and three more damaged.
Smith graduated from the Air Force Test Pilot School at Edwards Air Force Base in 1956. He flew more than fifty aircraft types during testing there and at Eglin Air Force Base, Florida. In 1962 he was assigned to the Aerospace Research Test Pilots School at Edwards for training as an astronaut candidate for Project Gemini.
Lieutenant Colonel Robert W. Smith, United States Air Force
After the NF-104A project was canceled, Lieutenant Colonel Smith volunteered for combat duty in the Vietnam War. He commanded the 34th Tactical Fighter Squadron, 388th Tactical Fighter Wing, at Korat Royal Thai Air Force Base, Thailand, flying the Republic F-105D Thunderchief. Bob Smith was awarded the Air Force Cross for “extraordinary heroism” while leading an attack at Thuy Phoung, north of Hanoi, 19 November 1967.
He had previously been awarded the Silver Star, and five times was awarded the Distinguished Flying Cross. Lieutenant Colonel Smith retired from the Air Force on 1 August 1969 after twenty years of service.
Lieutenant Colonel Robert Wilson Smith died at Monteverde, Florida, 19 August 2010. He was 81 years old.
Lockheed F-104A Starfighter 56-756 following a landing accident at Edwards AFB, 21 November 1961. (U.S. Air Force via the International F-104 Society)
56-756 was a Lockheed F-104A-10-LO Starfighter. Flown by future astronaut James A. McDivitt, it had been damaged in a landing accident at Edwards following a hydraulic system failure, 21 November 1961. It was one of three taken from storage at The Boneyard at Davis-Monthan Air Force Base, Tucson, Arizona, and sent to Lockheed for modification to Aerospace Trainers (ASTs). These utilized a system of thrusters for pitch, roll and yaw control at altitudes where the standard aerodynamic control surfaces could no longer control the aircraft. This was needed to give pilots some experience with the control system for flight outside Earth’s atmosphere.
Lockheed NF-104A Aerospace Trainer 56-756. (U.S. Air Force)
The F-104A vertical fin was replaced with the larger fin and rudder from the two-place F-104B for increased stability. The wingspan was increased to 25 feet, 11.3 inches (7.907 meters) for installation of the hydrogen peroxide Reaction Control System thrusters. The fiberglass nosecone was replaced by an aluminum skin for the same reason. The interceptor’s radar and M61 Vulcan cannon were removed and tanks for rocket fuel and oxidizers, nitrogen, etc., installed in their place. The fuselage “buzz number” was changed from FG-756 to NF-756.
The standard afterburning General Electric J79-GE-3B turbojet engine remained, and was supplemented by a Rocketdyne LR121 liquid-fueled rocket engine which produced 3,000 to 6,000 pounds of thrust (13.35–26.69 kilonewtons) with a burn time of 105 seconds.
56-756 was damaged by inflight explosions in 1965 and 1971, after which it was retired. It is mounted for static display at the Air Force Test Pilot School, Edwards Air Force Base, California, marked as 56-760.
Lockheed NF-104 Aerospace Trainer 56-756, marked as 56-760, on display at Edwards Air Force Base. (Kaszeta)
Gemini XII lifts off from LC-19 at 3:46:33 p.m., EST, 11 November 1966. (NASA)
11 November 1966: Gemini 12 lifted off from Launch Complex 19 at the Cape Canaveral Air Force Station, Florida, at 3:36.33.419 p.m., Eastern Standard Time. Two NASA Astronauts, Captain James A Lovell, Jr., United States Navy, and Major Edwin E. (“Buzz”) Aldrin, Jr., United States Air Force, were the crew. This was the second space flight for Lovell, who had previously flown on Gemini VII, and would later serve as Command Module Pilot on Apollo 8 and Mission Commander on Apollo 13. It was Aldrin’s first space flight. He would later be the Lunar Module Pilot of Apollo 11, and was the second human to set foot of the surface of the Moon.
The Gemini 12 mission was to rendezvous and docking with an Agena Target Vehicle, which had been launched from Launch Complex 14, 1 hour, 38 minutes, 34.731 seconds earlier by an Atlas Standard Launch Vehicle (SLV-3), and placed in a nearly circular orbit with a perigee of 163 nautical miles (187.6 statute miles/301.9 kilometers) and apogee of 156 nautical miles (179.5 statute miles/288.9 kilometers).
Artist’s concept of Gemini spacecraft, 3 January 1962. (NASA-S-65-893)
The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a reentry module and an adapter section. It had an overall length of 19 feet (5.791 meters) and a diameter of 10 feet (3.048 meters) at the base of the adapter section. The reentry module was 11 feet (3.353 meters) long with a diameter of 7.5 feet (2.347 meters). The weight of the Gemini varied from ship to ship, but Spacecraft 12 weighed 8,296.47 pounds (3,763.22 kilograms) at liftoff.
The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin Marietta’s Middle River, Maryland plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.
The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 63 feet (19.202 meters) long with a diameter of 10 feet (3.048 meters). The second stage was 27 feet (8.230 meters) long, with the same diameter. The 1st stage was powered by an Aerojet Engineering Corporation LR-87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by a hypergolic combination of hydrazine and nitrogen tetroxide. Ignition occurred spontaneously as the two components were combined in the combustion chambers. The LR-87-7 produced 430,000 pounds of thrust (1,912.74 kilonewtons).¹ It was not throttled and could not be shut down and restarted. The 2nd stage used an Aerojet LR-91 engine which produced 100,000 pounds of thrust (444.82 kilonewtons).²
The Gemini/Titan II GLV combination had a total height of 109 feet (33.223 meters) and weighed approximately 340,000 pounds (154,220 kilograms) when fueled.³
Astronaut Buzz Aldrin standing in the open hatch of Gemini XII in Earth orbit. (NASA)
Gemini XII was the tenth and last flight of the Gemini program. The purpose of this mission was to test rendezvous and docking with an orbiting Agena Target Docking Vehicle and to test extravehicular activity (“EVA,” or “space walk”) procedures. Both of these were crucial parts of the upcoming Apollo program and previous problems would have to be resolved before the manned space flight projects could move to the next phase.
Buzz Aldrin had made a special study of EVA factors, and his three “space walks,” totaling 5 hours, 30 minutes, were highly successful. The rendezvous and docking was flown manually because of a computer problem, but was successful. In addition to these primary objectives, a number of scientific experiments were performed by the two astronauts.
Gemini XII is tethered to the Agena TDV, in Earth orbit over the southwest United States and northern Mexico. (NASA)
Gemini XII reentered Earth’s atmosphere and splashed down in the Atlantic Ocean, just 3.8 nautical miles (4.4 statute miles/7.0 kilometers) from the planned target point. Lovell and Aldrin were hoisted aboard a Sikorsky SH-3A Sea King helicopter and transported to the primary recovery ship, USS Wasp (CVS-18). The total duration of the flight was 3 days, 22 hours, 34 minutes, 31 seconds.
Gemini 12 splashes down in the Atlantic Ocean. (NASA S66-59936)Gemini XII astronauts Major Edwin E. Aldrin, Jr., USAF, and Captain James A. Lovell, Jr., USN, arrive aboard USS Wasp (CVS-18), 15 November 1966. (NASA)
¹ Post-flight analysis gave the total average thrust of GLV-12’s first stage as 458,905 pounds of thrust (2,041.31 kilonewtons)
² Post-flight analysis gave the total average thrust of GLV-12’s second stage as 99,296 pounds of thrust (441.69 kilonewtons)
³ Gemini XII/Titan II GLV (GLV-12) weighed 345,710 pounds (156,811 kilograms) at Stage I ignition.
JOHN W. YOUNG (CAPTAIN, USN RET.)
NASA ASTRONAUT (FORMER)
PERSONAL DATA: Born September 24, 1930, in San Francisco, California. Married to the former Susy Feldman of St. Louis, Missouri. Two children, three grandchildren. Enjoys wind surfing, bicycling, reading, and gardening.
EDUCATION: Graduated from Orlando High School, Orlando, Florida; received a bachelor of science degree in aeronautical engineering with highest honors from Georgia Institute of Technology in 1952.
ORGANIZATIONS: Fellow of the American Astronautical Society (AAS), the Society of Experimental Test Pilots (SETP), and the American Institute of Aeronautics and Astronautics (AIAA).
SPECIAL HONORS: Awarded the Congressional Space Medal of Honor (1981), 4 NASA Distinguished Service Medals, NASA Outstanding Leadership Medal (1992), NASA Exceptional Engineering Achievement Medal (1987), NASA Outstanding Achievement Medal (1994), Navy Astronaut Wings (1965), 2 Navy Distinguished Service Medals, 3 Navy Distinguished Flying Crosses, the Georgia Tech Distinguished Young Alumni Award (1965), Distinguished Service Alumni Award (1972), the Exceptional Engineering Achievement Award (1985), the Academy of Distinguished Engineering Alumni (1994), and the American Astronautical Society Space Flight Award (1993), Distinguished Executive Award (1998), Rotary National Space Achievement Award (2000). Inducted into 6 Aviation and Astronaut Halls of Fame. Recipient of more than 80 other major awards, including 6 honorary doctorate degrees.
NAVYEXPERIENCE: Upon graduation from Georgia Tech, Young entered the United States Navy. After serving on the west coast destroyer USS LAWS (DD-558) in the Korean War, he was sent to flight training. He was then assigned to Fighter Squadron 103 for 4 years, flying Cougars and Crusaders.
After test pilot training at the U.S. Navy Test Pilot School in 1959, he was assigned to the Naval Air Test Center for 3 years. His test projects included evaluations of the Crusader and Phantom fighter weapons systems. In 1962, he set world time-to-climb records to 3,000-meter and 25,000-meter altitudes in the Phantom. Prior to reporting to NASA, he was maintenance officer of Phantom Fighter Squadron 143. Young retired from the Navy as a Captain in September 1976, after completing 25 years of active military service.
NASA EXPERIENCE: In September 1962, Young was selected as an astronaut. He is the first person to fly in space six times from earth, and seven times counting his lunar liftoff. The first flight was with Gus Grissom in Gemini 3, the first manned Gemini mission, on March 23, 1965. This was a complete end-to-end test of the Gemini spacecraft, during which Gus accomplished the first manual change of orbit altitude and plane and the first lifting reentry, and Young operated the first computer on a manned spacecraft. On Gemini 10, July 18-21, 1966, Young, as Commander, and Mike Collins, as Pilot, completed a dual rendezvous with two separate Agena target vehicles. While Young flew close formation on the second Agena, Mike Collins did an extravehicular transfer to retrieve a micro meteorite detector from that Agena. On his third flight, May 18-26, 1969, Young was Command Module Pilot of Apollo 10. Tom Stafford and Gene Cernan were also on this mission which orbited the Moon, completed a lunar rendezvous, and tracked proposed lunar landing sites. His fourth space flight, Apollo 16, April 16-27, 1972, was a lunar exploration mission, with Young as Spacecraft Commander, and Ken Mattingly and Charlie Duke. Young and Duke set up scientific equipment and explored the lunar highlands at Descartes. They collected 200 pounds of rocks and drove over 16 miles in the lunar rover on three separate geology traverses.
Young’s fifth flight was as Spacecraft Commander of STS-1, the first flight of the Space Shuttle, April 12-14, 1981, with Bob Crippen as Pilot. The 54-1/2 hour, 36-orbit mission verified Space Shuttle systems performance during launch, on orbit, and entry. Tests of the Orbiter Columbia included evaluation of mechanical systems including the payload bay doors, the attitude and maneuvering rocket thrusters, guidance and navigation systems, and Orbiter/crew compatibility. One hundred and thirty three of the mission’s flight test objectives were accomplished. The Orbiter Columbia was the first manned spaceship tested during ascent, on orbit, and entry without benefit of previous unmanned missions. Columbia was also the first winged reentry vehicle to return from space to a runway landing. It weighed about 98 tons as Young landed it on the dry lakebed at Edwards Air Force Base, California.
Young’s sixth flight was as Spacecraft Commander of STS-9, the first Spacelab mission, November 28-December 8, 1983, with Pilot Brewster Shaw, Mission Specialists Bob Parker and Owen Garriott, and Payload Specialists Byron Lichtenberg of the USA and Ulf Merbold of West Germany. The mission successfully completed all 94 of its flight test objectives. For ten days the 6-man crew worked 12-hour shifts around-the-clock, performing more than 70 experiments in the fields of atmospheric physics, Earth observations, space plasma physics, astronomy and solar physics, materials processing and life sciences. The mission returned more scientific and technical data than all the previous Apollo and Skylab missions put together. The Spacelab was brought back for re-use, so that Columbia weighed over 110 tons as Young landed the spaceship at Edwards Air Force Base, California.
Young was also on five backup space flight crews: backup pilot in Gemini 6, backup command module pilot for the second Apollo mission (before the Apollo Program fire) and Apollo 7, and backup spacecraft commander for Apollo 13 and 17. In preparation for prime and backup crew positions on eleven space flights, Young has put more than 15,000 hours into training so far, mostly in simulators and simulations.
He has logged more than 15,275 hours flying time in props, jets, helicopters, rocket jets, more than 9,200 hours in T-38s, and six space flights of 835 hours.
In January 1973, Young was made Chief of the Space Shuttle Branch of the Astronaut Office, providing operational and engineering astronaut support for the design and development of the Space Shuttle. In January 1974, he was selected to be Chief of the Astronaut Office, with responsibility for the coordination, scheduling, and control of activities of the astronauts. Young served as Chief of the Astronaut Office until May 1987. During his tenure, astronaut flight crews participated in the Apollo-Soyuz joint American-Russian docking mission, the Space Shuttle Orbiter Approach and Landing Test Program, and 25 Space Shuttle missions. From May 1987 to February 1996, Young served as Special Assistant to the Director of JSC for Engineering, Operations, and Safety. In that position, he had direct access to the Center Director and other senior managers in defining and resolving issues affecting the continued safe operation of the Space Shuttle. Additionally, he assisted the Center Director in providing advice and counsel on engineering, operational, and safety matters related to the Space Station, Shuttle upgrades, and advanced human Space Exploration Programs, back to the Moon and on to Mars.
In February 1996 Young was assigned as Associate Director (Technical), responsible for technical, operational and safety oversight of all Agency Programs and activities assigned to the Johnson Space Center. On December 31, 2004 Young retired from NASA. He continues to advocate the development of the technologies that will allow us to live and work on the Moon and Mars. Those technologies over the long (or short) haul will save civilization on Earth.
— The official biography of John W. Young from the National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Texas 77058 .