Tag Archives: Project Gemini

23 March 1965

Gemini III lifts off at Launch Complex 19, Kennedy Space Center, Cape Canaveral, Florida, 14:24:00 UTC, 23 March 1965. (NASA)
Gemini III lifts off at Launch Complex 19, Cape Kennedy Air Force Station, Cape Canaveral, Florida, 14:24:00 UTC, 23 March 1965. (NASA)

23 March 1965: At 14:24:00 UTC, Gemini III was launched aboard a Titan II GLV  rocket from Launch Complex 19 at the Cape Kennedy Air Force Station, Cape Canaveral, Florida. Major Virgil I. (“Gus”) Grissom, United States Air Force, a Project Mercury veteran, was the Spacecraft Commander, and Lieutenant Commander John W. Young, United States Navy, was the pilot.

The purpose of the mission was to test spacecraft orbital maneuvering capabilities that would be necessary in later flights of the Gemini and Apollo programs. Gemini III made three orbits of the Earth, and splashed down after 4 hours, 52 minutes, 31 seconds. Miscalculations of the Gemini capsule’s aerodynamics caused the spacecraft to miss the intended splash down point by 50 miles (80 kilometers). Gemini III splashed down in the Atlantic Ocean, north east of the Turks and Caicos Islands. The recovery ship was USS Intrepid (CV-11).

Gus Grissom would later command the flight crew of Apollo 1. He was killed with his crew during the tragic fire  during a pre-launch test, 27 January 1967.

John Young served as Spacecraft Commander for Gemini 10, Command Module Pilot on Apollo 10, back-up commander for Apollo 13, commander Apollo 16, and back-up commander for Apollo 17. Later, he was commander of the maiden flight of the space shuttle Columbia STS-1 and again for STS-9 and was in line to command STS-61J.

The flight crew of Gemini III, John W. Young and Virgil I. Grissom. (NASA)
The flight crew of Gemini III, Lieutenant Commander John W. Young, U.S. Navy, and Major Virgil I. Grissom, U.S. Air Force. (NASA)

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a reentry module and an adapter section. It had an overall length of 19 feet (5.791 meters) and a diameter of 10 feet (3.048 meters) at the base of the adapter section. The reentry module was 11 feet (3.353 meters) long with a diameter of 7.5 feet (2.347 meters). The weight of the Gemini varied from ship to ship but was approximately 7,000 pounds (3,175 kilograms).

Artist’s concept of Gemini spacecraft, 3 January 1962. (NASA-S-65-893)

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.

Titan II GLV, (NASA Mission Report, Figure 3-1, at Page 3–23)

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 70 feet, 2.31 inches (21.395 meters) long with a diameter of 10 feet (3.048 meters). It was powered by an Aerojet Engineering Corporation LR87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by Aerozine 50, a hypergolic 51/47/2 blend of hydrazine, unsymetrical-dimethyl hydrazine, and water. Ignition occurred spontaneously as the components were combined in the combustion chambers. The LR87-7 produced approximately 430,000 pounds of thrust (1,912.74 kilonewtons). It was not throttled and could not be shut down and restarted. Post flight analysis indicated that the first stage engine of GLV-8 had produced an average of 461,080 pounds of thrust ( kilonewtons).

The second stage was 25 feet, 6.375 inches (7.782 meters) long, with the same diameter, and used an Aerojet LR91 engine which produced approximately 100,000 pounds of thrust (444.82 kilonewtons), also burning Aerozine 50. GLV-7’s LR91 produced an average of 102,735 pounds of thrust ( kilonewtons).

The Gemini III/Titan II GLV combination had a total height of 107 feet, 7.33 inches (32.795 meters) and weighed 340,000 pounds (156,652 kilograms) at ignition.

The Gemini III spacecraft is displayed at the Grissom Memorial Museum, Spring Mill State Park, Mitchell, Indiana.

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

16 March 1966, 16:41:02.389 UTC, T minus Zero

Gemini VIII lifts off from Launch Complex 19, Kennedy Space Center, 17:41:02 UTC, 16 March 1966. (NASA)
Gemini VIII lifts off from Launch Complex 19, Cape Kennedy Air Force Station, 16:41:02 UTC, 16 March 1966. (NASA)

16 March 1966: At 16:41:02.389 UTC (12:41:02 p.m. Eastern Standard Time), forty years to the day after the launch of Dr. Robert Goddard’s first liquid-fueled rocket, Gemini VIII, with command pilot Neil Alden Armstrong and pilot David Randolph Scott, lifted off from Launch Complex 19 at the Cape Kennedy Air Force Station, Cape Kennedy, Florida, aboard a Titan II GLV booster. Their mission was to rendezvous and dock with an Agena Target Vehicle launched earlier aboard an Atlas rocket.

Gemini VIII/Titan GLV-8 accelerates toward Low Earth Orbit, 16 March 1966. (NASA, MSCF-9141927)

Gemini VIII entered a 86.3  × 146.7 nautical mile (99.3 × 168.8 statute miles/160 × 271.7 kilometers) elliptical orbit. The spacecraft was traveling at 17,549 miles per hour (28,242 kilometers per hour).

The Gemini Agena Target Vehicle seen from Gemini VIII, 16 March 1966. (David R. Scott, NASA)

The docking, the first ever of two vehicles in Earth orbit, was successful, however after about 27 minutes the combined vehicles begin rolling uncontrollably. The Gemini capsule separated from the Agena, and for a few minutes all seemed normal. But the rolling started again, reaching as high as 60 r.p.m.

The astronauts were in grave danger. Armstrong succeeded in stopping the roll but the Gemini’s attitude control fuel was dangerously low.

David R. Scott and Neil A. Armstrong, flight crew of Gemini VIII. (NASA)

The pilots’ report reads:

     Shortly after sending encoder command 041 (recorder ON), roll and yaw rates were observed to be developing. No visual or audible evidence of spacecraft thruster firing was noted, and the divergence was attributed to the GATV.

     Commands were sent to de-energize the GATV ACS, geocentric rate, and horizon sensors, and the spacecraft Orbital Attitude and Maneuver System (OAMS) was activated.

     The rates were reduced to near zero, but began to increase upon release of the hand controller. The ACS was commanded on to determine if GATV thruster action would help reduce the angular rates. No improvement was noted and the ACS was again commanded off. Plumes from a GATV pitch thruster were visually observed, however, during a period when the ACS was thought to be inactivated.

     After a period of relatively stable operation, the rates once again began to increase. The spacecraft was switched to secondary bias power, secondary logics, and secondary drivers in an attempt to eliminate possible spacecraft control-system discrepancies. No improvement being observed, a conventional troubleshooting approach with the OAMS completely de-energized was attempted, but subsequently abandoned because of the existing rates.

     An undocking was performed when the rates were determined to be low enough to precluded any recontact problems. Approximately a 3 ft/sec velocity change was used to effect separation of the two vehicles.

     Angular rates continued to rise, verifying a spacecraft control-system problem. The hand controller appeared to be inactive. The Reentry Control System (RCS) was armed and, after trying ACME-DIRECT and then turning off all OAMS control switches and circuit breakers, was found to be operative in DIRECT-DIRECT. Angular rates were reduced to small values with the RCS B-ring. Inspection of the OAMS revealed that the no. 8 thruster had failed to open. Some open Attitude Control and Maneuver Electronics (ACME) circuit breakers probably accounted for the inoperative hand controller noted earlier. All yaw thrusters other than number 8 were inoperative. Pitch and roll control were maintained using the pitch thrusters. . .

      All four retrorockets fired on time. . . .

GEMINI PROGRAM MISSION REPORT, GEMINI VIII, Gemini Mission Evaluation Team, National Aeronautics and Space Administration, Manned Spacecraft Center, Houston, Texas, , MSC-G-R-66-4, Section 7 at Pages 7-21 and 7-22

The mission was aborted and the capsule returned to Earth after 10 hours, 41 minutes, 26.0 seconds, landing in the Pacific Ocean at N. 25° 12′, E. 136° 05′. U.S. Air  Force pararescue jumpers (“PJs”) parachuted from a Douglas C-54 transport and attached a flotation collar to the Gemini capsule. The astronauts were recovered by the Gearing-class destroyer USS Leonard F. Mason (DD-852), about three hours later..

The Gemini VIII spacecraft is displayed at the Neil Armstrong Air and Space Museum, Wapakoneta, Ohio.

Gemini VIII with flotation collar. (NASA)

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, Missouri, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a series of cone-shaped segments forming a reentry module and an adapter section. It had an overall length of 18 feet, 9.84 inches (5.736 meters) and a maximum diameter of 10 feet, 0.00 inches (3.048 meters) at the base of the equipment section. The reentry module was 11 feet (3.353 meters) long with a maximum diameter of 7 feet, 6.00 inches (2.347 meters). The Gemini re-entry heat shield was a spherical section with a radius of 12 feet, 0.00 inches (3.658 meters). The weight of the Gemini spacecraft varied from ship to ship. Gemini VIII weighed 8,351.31 pounds (3,788.09 kilograms) at launch. Spacecraft 8 was shipped from the St. Louis factory to Cape Kennedy on 2 January 1966.

Artist’s concept of Gemini spacecraft, 3 January 1962. (NASA-S-65-893)

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.

Titan II GLV, (NASA Mission Report, Figure 3-1, at Page 3–23)

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 70 feet, 2.31 inches (21.395 meters) long with a diameter of 10 feet (3.048 meters). It was powered by an Aerojet Engineering Corporation LR87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by Aerozine 50, a hypergolic 51/47/2 blend of hydrazine, unsymetrical-dimethyl hydrazine, and water. Ignition occurred spontaneously as the components were combined in the combustion chambers. The LR87-7 produced approximately 430,000 pounds of thrust (1,912.74 kilonewtons). It was not throttled and could not be shut down and restarted. Post flight analysis indicated that the first stage engine of GLV-8 had produced an average of 461,080 pounds of thrust ( kilonewtons).

The second stage was 25 feet, 6.375 inches (7.782 meters) long, with the same diameter, and used an Aerojet LR91 engine which produced approximately 100,000 pounds of thrust (444.82 kilonewtons), also burning Aerozine 50. GLV-7’s LR91 produced an average of 102,735 pounds of thrust ( kilonewtons).

The Gemini/Titan II GLV VIII combination had a total height of 107 feet, 7.33 inches (32.795 meters) and weighed 345,359 pounds (156,652 kilograms) at ignition.

The Atlas-Agena Target vehicle takes off at Launch Complex 14, 17:00:00 UTC, 16 March 1966. (NASA)
The Atlas-Agena Target Vehicle takes off at Launch Complex 14, Cape Kennedy Air Force Station, 15:00:03 UTC, 16 March 1966. (NASA)

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

28 February 1966

The Flight Crew of Gemini IX, left to right, Commander Elliot McKay See, Jr., United States Navy, and Captain Charles A. Bassett II, U.S. Air Force.

28 February 1966: The primary and back up flight crews of Gemini IX flew from Houston to St. Louis where they planned to visit the McDonnell Aircraft Corporation, where the spacecraft was being built. They flew aboard two Northrop T-38A Talon supersonic trainers which NASA used for proficiency training.

The lead aircraft, NASA 901, was flown by Commander Elliot McKay See, Jr., United States Navy Reserve. See was designated as the Command Pilot for Gemini IX. Captain Charles Arthur (“Charlie”) Bassett II, U.S. Air Force, Pilot, Gemini IX, was in the rear cockpit. NASA 901 was a Northrop T-38A-50-NO Talon 63-8181 (Northrop serial number N.5528).

Northrop T-38A-50-NO Talon 63-8181

The second T-38, NASA 907, was flown by Lieutenant Colonel Thomas P. Stafford, U.S. Air Force, and Lieutenant Commander Eugene A. Cernan, U.S. Navy.

Weather at Lambert-St. Louis Municipal Airport was poor with low clouds and limited visibility in rain and snow. Lambert Field weather at 8:25 a.m. was: sky partially obscured, measured ceiling 800 feet (244 meters) broken, 1,500 feet (457 meters) overcast, visibility 1½ miles (2.4 kilometers) in light rain, light snow, and fog.

Elliot See flew an ILS instrument approach and broke out of the clouds properly aligned with the runaway, but was too high to make a landing. He requested a visual, circling approach. The T-38 entered a 360° turn to the southeast at approximately 500 feet (152 meters). During the circling approach, Stafford, in NASA 907, lost sight of See’s T-38 and executed a missed approach. As his airplane came around to line up for the runway, See radioed that he had the runway in sight, but, at 8:58 a.m., NASA 901 struck the top of McDonnell’s Building 101 and crashed.

The wreck immediately caught fire and both See and Bassett were killed. Sixteen people on the ground were injured.

The accident investigation board found that at approximately 3 seconds before the crash, Elliot See had apparently tried to climb away. The T-38’s angle of bank was significantly reduced and afterburner was selected.

Wreckage of NASA 901. (Scott Dine/St. Louis Post Dispatch)
Burned out wreckage of NASA 901 at Lambert Field, 28 February 1966. (Saint Louis Post-Dispatch)

The T-38 was the world’s first supersonic flight trainer. The Northrop T-38A Talon is a pressurized, two-place, twin-engine, jet trainer. Its fuselage is very aerodynamically clean and uses the “area-rule” (“coked”) to improve its supersonic capability. It is 46 feet, 4.5 inches (14.135 meters) long with a wingspan of 25 feet, 3 inches (7.696 meters) and overall height of 12 feet, 10.5 inches (3.924 meters). The one-piece wing has an area of 170 square feet (15.79 square meters). The leading edge is swept 32°. The airplane’s empty weight is 7,200 pounds (3,266 kilograms) and maximum takeoff weight is approximately 12,700 pounds (5,761 kilograms).

Northrop T-38A-35-NO Talon 60-0582 in flight near Edwards Air Force Base, California. (U.S. Air Force)

The T-38A is powered by two General Electric J85-GE-5 turbojet engines. The J85 is a single-shaft axial-flow turbojet engine with an 8-stage compressor section and 2-stage turbine. The J85-GE-5 is rated at 2,680 pounds of thrust (11.921 kilonewtons), and 3,850 pounds (17.126 kilonewtons) with afterburner. It is 108.1 inches (2.746 meters) long, 22.0 inches (0.559 meters) in diameter and weighs 584 pounds (265 kilograms)

The T-38A has a maximum speed of Mach 1.08 (822 miles per hour/1,323 kilometers per hour) at Sea Level, and Mach 1.3 (882 miles per hour/1,419 kilometers per hour) at 30,000 feet (9,144 meters). It has a rate of climb of 33,600 feet per minute (171 meters per second) and a service ceiling of 55,000 feet (16,764 meters). Its range is 1,140 miles (1,835 kilometers).

Between 1959 and 1972, 1,187 T-38s were built at Northrop’s Hawthorne, California, factory. As of 4 September 2018, 546 T-38s remained in the U.S. Air Force active inventory. The U.S. Navy has 10, and as of 30 October 2018, the Federal Aviation Administration reports 29 T-38s registered to NASA.

Northrop T-38 A Talon (U.S. Air Force)

© 2019 Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

15 December 1965

Gemini 7, as seen from Gemini 6A, 15 December 1965. (NASA)
Gemini 7, as seen from Gemini 6A, 15 December 1965. (Thomas P. Stafford/NASA)

15 December 1965: At 13:37:26 UTC, Gemini 6A, with NASA astronauts Captain Walter M. Schirra, Jr., United States Navy and Major Thomas P. Stafford, United States Air Force, on board, lifted off from Launch Complex 19 at the Cape Kennedy Air Force Station, Cape Kennedy, Florida. During its fourth orbit, Gemini 6A rendezvoused with Gemini 7, carrying Major Frank F. Borman II, USAF, and LCDR James A. Lovell, Jr., USN.

This was the first time that two manned space vehicles had rendezvoused in Earth orbit.

The two spacecraft remained together for 5 hours, 19 minutes before separating to a distance of approximately 10 miles (16 kilometers).

Gemini 7 as seen from Gemini 6A, 15 December 1965. (NASA)
Gemini 7 as seen from Gemini 6A, 15 December 1965. (NASA)

Gemini 7 had been in orbit since 4 December. Gemini 6, then 6A, had been postponed several times before finally launching on 15 December. It would return to Earth the following day, landing in the North Atlantic Ocean. Gemini 7 remained in orbit until 18 December.

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, Missouri, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a series of cone-shaped segments forming a reentry module and an adapter section. It had an overall length of 18 feet, 9.84 inches (5.736 meters) and a maximum diameter of 10 feet, 0.00 inches (3.048 meters) at the base of the equipment section. The reentry module was 11 feet (3.353 meters) long with a maximum diameter of 7 feet, 6.00 inches (2.347 meters). The Gemini re-entry heat shield was a spherical section with a radius of 12 feet, 0.00 inches (3.658 meters). The weight of the Gemini spacecraft varied from ship to ship. Gemini VII had a gross weight of 8,076.10 pounds (3,663.26 kilograms) at launch. It was shipped from St. Louis to Cape Kennedy in early October 1965.

The Titan II GLV was a “man-rated” variant of the Martin Marietta Corporation SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland, plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program. The GLV-7 first and second stages were shipped from Middle River to Cape Kennedy on 9 October 1965.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 70 feet, 2.31 inches (21.395 meters) long with a diameter of 10 feet (3.048 meters). It was powered by an Aerojet Engineering Corporation LR87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by Aerozine 50, a hypergolic 51/47/2 blend of hydrazine, unsymetrical-dimethyl hydrazine, and water. Ignition occurred spontaneously as the components were combined in the combustion chambers. The LR87-7 produced approximately 430,000 pounds of thrust (1,912.74 kilonewtons). It was not throttled and could not be shut down and restarted. Post flight analysis indicated that the first stage engine of GLV-7 had produced an average of 462,433 pounds of thrust (2,057.0 kilonewtons). The second stage was 25 feet, 6.375 inches (7.031 meters) long, with the same diameter, and used an Aerojet LR91 engine which produced approximately 100,000 pounds of thrust (444.82 kilonewtons), also burning Aerozine 50. GLV-7’s LR91 produced an average of 102,584 pounds of thrust (456.3 kilonewtons).

The Gemini/Titan II GLV-7 combination had a total height of 107 feet, 7.33 inches (32.795 meters) and weighed 346,228 pounds (157,046 kilograms) at ignition.

Gemini 7 as seen from Gemini 6A, 15 December 1965. (NASA)
Gemini 7 as seen from Gemini 6A, 15 December 1965. (NASA)

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

6 December 1963

Lockheed NF-104A Aerospace Trainer 56-756, with its Rocketdyne engine firing during a zoom-climb maneuver. (U.S. Air Force)
Lockheed NF-104A Aerospace Trainer 56-756, with its Rocketdyne engine firing during a zoom-climb maneuver. (U.S. Air Force)

6 December 1963: Air Force test pilot Major Robert W. Smith takes the Lockheed NF-104A Aerospace Trainer, 56-0756, out for a little spin. . .

Starting at 0.85 Mach and 35,000 feet (10,668 meters) over the Pacific Ocean west of Vandenberg Air Force Base, California, Bob Smith turned toward Edwards Air Force Base and accelerated to Military Power and then lit the afterburner, which increased the General Electric J79-GE-3B turbojet engine’s 9,800 pounds of thrust (43.59 kilonewtons) to 15,000 pounds (66.72 kilonewtons). The modified Starfighter accelerated in level flight. At Mach 2.2, Smith ignited the Rocketdyne LR121 rocket engine, which burned a mixture of JP-4 and hydrogen peroxide. The LR121 was throttleable and could produce from 3,000 to 6,000 pounds of thrust (13.35–26.69 kilonewtons).

When the AST reached Mach 2.5, Smith began a steady 3.5G pull-up until the interceptor was in a 70° climb. At 75,000 feet (22,860 meters), the test pilot shut off the afterburner to avoid exceeding the turbojet’s exhaust temperature (EGT) limits. He gradually reduced the jet engine power to idle by 85,000 feet (25,908 meters), then shut it off.  Without the engine running, cabin pressurization was lost and the pilot’s A/P22S-2 full-pressure suit inflated.

The NF-104A continued to zoom to an altitude where its aerodynamic control surfaces were no longer functional. It had to be controlled by the reaction jets in the nose and wing tips. 756 reached a peak altitude of 120,800 feet (36,820 meters), before reentering the atmosphere in a 70° dive. Major Smith used the windmill effect of air rushing into the intakes to restart the jet engine.

Lockheed NF-104 Aerospace Trainer zoom-climb profile. (U.S. Air Force via NF-104.com)

Major Smith had set an unofficial record for altitude. Although Lockheed had paid the Fédération Aéronautique Internationale (FAI) license fee, the Air Force had not requested certification in advance so no FAI or National Aeronautic Association personnel were on site to certify the flight.

For this flight, Robert Smith was nominated for the Octave Chanute Award “for an outstanding contribution made by a pilot or test personnel to the advancement of the art, science, and technology of aeronautics.”

Major Robert W. Smith, U.S. Air Force, with a Lockheed F-104 Starfighter. (U.S. Air Force)

Robert Wilson Smith was born at Washington, D.C., 11 December 1928. He was the son of Robert Henry Smith, a clerk (and eventually treasurer) for the Southern Railway Company, and Jeanette Blanche Albaugh Smith, a registered nurse. He graduated from high school in Oakland, California, in 1947. Smith studied at the University of California, Berkeley, and George Washington University.

Robert W. Smith joined the United States Air Force as an aviation cadet in 1949. He trained as a pilot at Goodfellow Air Force Base, San Angelo, Texas, and Williams Air Force Base in Arizona. He was commissioned as a second lieutenant, United States Air Force, 23 June 1950.

Second Lieutenant Robert Wilson Smith married Ms. Martha Yacko, 24 June 1950, at Phoenix, Arizona.

Lieutenant Robert W. Smith and his crew chief, Staff Sergeant Jackson, with Lady Lane, Smith’s North American F-86 Sabre. (Robert W. Wilson Collection)

He flew the F-86 Sabre on more than 100 combat missions with the 334th and 335th Fighter Interceptor Squadrons of the 4th Fighter Interceptor Wing during the Korean War. he named one of his airplanes Lady Lane in honor of his daughter. Smith was credited with two enemy aircraft destroyed, one probably destroyed and three more damaged.

Smith graduated from the Air Force Test Pilot School in 1952 and flew more than fifty aircraft types during testing at Edwards Air Force Base and Eglin Air Force Base, Florida. He was later assigned to the Aerospace Research Test Pilots School at Edwards Air Force Base for training as an astronaut candidate for Project Gemini.

Lieutenant Colonel Robert W. Smith, United States Air Force

After the NF-104A project was canceled, Lieutenant Colonel Smith volunteered for combat duty in the Vietnam War. He commanded the 34th Tactical Fighter Squadron, 388th Tactical Fighter Wing, at Korat Royal Thai Air Force Base, Thailand, flying the Republic F-105D Thunderchief. Bob Smith was awarded the Air Force Cross for “extraordinary heroism” while leading an attack at Thuy Phoung, north of Hanoi, 19 November 1967.

He had previously been awarded the Silver Star, and five times was awarded the Distinguished Flying Cross. Lieutenant Colonel Smith retired from the Air Force on 1 August 1969 after twenty years of service.

Lieutenant Colonel Robert Wilson Smith died at Monteverde, Florida, 19 August 2010. He was 81 years old.

Lockheed F-104A Starfighter 56-756 following a landing accident at Edwards AFB, 21 November 1961. (U.S. Air Force via the International F-104 Society)

56-756 was a Lockheed F-104A-10-LO Starfighter. Flown by future astronaut James A. McDivitt, it had been damaged in a landing accident at Edwards following a hydraulic system failure, 21 November 1961. It was one of three taken from storage at The Boneyard at Davis-Monthan Air Force Base, Tucson, Arizona, and sent to Lockheed for modification to Aerospace Trainers (ASTs). These utilized a system of thrusters for pitch, roll and yaw control at altitudes where the standard aerodynamic control surfaces could no longer control the aircraft. This was needed to give pilots some experience with the control system for flight outside Earth’s atmosphere.

Lockheed NF-104A Aerospace Trainer 56-756. (U.S. Air Force)

The F-104A vertical fin was replaced with the larger fin and rudder from the two-place F-104B for increased stability. The wingspan was increased to 25 feet, 11.3 inches (7.907 meters) for installation of the hydrogen peroxide Reaction Control System thrusters. The fiberglass nosecone was replaced by an aluminum skin for the same reason. The interceptor’s radar and M61 Vulcan cannon were removed and tanks for rocket fuel and oxidizers, nitrogen, etc., installed in their place. The fuselage “buzz number” was changed from FG-756 to NF-756.

The standard afterburning General Electric J79-GE-3B turbojet engine remained, and was supplemented by a Rocketdyne LR121 liquid-fueled rocket engine which produced 3,000 to 6,000 pounds of thrust (13.35–26.69 kilonewtons) with a burn time of 105 seconds.

56-756 was damaged by inflight explosions in 1965 and 1971, after which it was retired. It is mounted for static display at the Air Force Test Pilot School, Edwards Air Force Base, California, marked as 56-760.

Lockheed NF-104 Aerospace Trainer 56-756, marked as 56-760, on display at Edwards Air Force Base. (Kaszeta)

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather