Tag Archives: Rocketdyne Division of North American Aviation Inc.

15 May 1963, 13:04:13.106 UTC, T plus 00:00:00.106

Mercury Atlas 9 (MA-9), consisting of Faith 7 and Atlas 130-D, lifts off from Launch Complex 14 at the Cape Canaveral Air Force Station, Florida, at 13:04:13 UTC, 15 May 1963. (NASA)

15 May 1963: At 8:04:13.106 a.m., Eastern Standard Time, Mercury-Atlas 9, carrying NASA astronaut, L. Gordon Cooper aboard Faith 7, lifted off from Launch Complex 14, Cape Canaveral Air Force Base, Florida. Cooper reported, “The liftoff was smooth, but very definite, the acceleration was very pleasant. The booster had a very good feel to it and it felt like we were real on the go, there.” The maximum acceleration experienced during launch was 7.6 gs.

Faith 7 separated from the Atlas booster at T+00:05:05.5.3 and entered low Earth orbit with an apogee of 165.9 statute miles (267.0 kilometers) and perigee of 100.3 statute miles (161.4 kilometers). The orbital period was 88 minutes, 45 seconds. The spacecraft’s velocity was 25,714.0 feet per second (7,837.6 meters per second), or 17,532.3 miles per hour (28,215.5 kilometers per hour).

Major L. Gordon Cooper, Jr., United States Air Force. NASA Astronaut. (March 6, 1927 – October 4, 2004). Major Cooper is wearing a modified U.S. Navy Mark IV full-pressure suit produced by B.F. Goodrich. (NASA)

MA-9 was the final flight of Project Mercury. Gordon Cooper flew 22.5 orbits. Due to electrical system problems that began on the 21st orbit, he had to fly a manual reentry which resulted in the most accurate landing of the Mercury program.

The spacecraft’s three retrorockets fired 5 second intervals beginning at T+33:59:30. 34 hours, 19 minutes, 49 seconds after lift off, Faith 7 “splashed down” approximately 70 miles (112.7 kilometers) southeast of Midway Atoll in the North Pacific Ocean, just 4.4 miles (7.1 kilometers) from the primary recovery ship, the United States Navy Ticonderoga-class aircraft carrier USS Kearsarge (CV-33).

Mercury spacecraft profile with dimensions. (NASA)

The Mercury spacecraft, which Cooper named Faith 7, was built by McDonnell Aircraft Corporation, St. Louis, Missouri, which would also build the follow-on, two-place Gemini spacecraft. It was the 20th and final Mercury capsule to be built, and was one of four which were modified to support a day-long mission. Some items considered unnecessary were deleted and extra oxygen and battery capacity was added.

Designed to carry one pilot, the Mercury space craft could be controlled in pitch, roll and yaw by thrusters. The space capsule was truncated cone with sides angled 20° from the longitudinal axis. It was 6 feet, 10 inches (2.083 meters) long and had a maximum diameter of 6 feet, 2.50 inches (1.892 meters). The total height of the spacecraft, from the tip of the aero spike to the booster adapter, was 26 feet, 1.26 inches (7.957 meters). Faith 7 weighed 4,330.82 pounds (1,964.43 kilograms) at liftoff.

During flight outside the atmosphere, the Mercury spacecraft could be controlled in its pitch, roll and yaw axes by hydrogen peroxide-fueled reaction control thrusters. Both manual and automatic attitude control were available. It could not accelerate or decelerate (except for reentry) so it could not change its orbit.

The spacecraft cabin was pressurized to 5.5 psi with 100% oxygen. Gordon Cooper wore a modified  B.F. Goodrich Mark IV full-pressure suit and flight helmet for protection in the event that cabin pressure was lost. Cooper’s suit varied considerably from those worn by previous Mercury astronauts.

Mercury-Atlas 9 at Laucnh Complex 14. The gantry has been pulled back, but the rocket has not been filled with propellants. (NASA)
Mercury-Atlas 9 at Launch Complex 14. The gantry has been pulled back, but the rocket has not been filled with propellants. Two men at the lower right of the image provide scale.(NASA)

The rocket, a “1-½ stage” liquid-fueled Atlas LV-3B, number 130-D, was built by the  Convair Division of General Dynamics at San Diego, California. It was developed from a U.S. Air Force SM-65 Atlas D intercontinental ballistic missile, modified for use as a “man-rated” orbital launch vehicle.

The LV-3B was 65 feet (19.812 meters) long from the base to the Mercury adapter section, and the tank section is 10 feet (3.038 meters) in diameter. The complete Mercury-Atlas orbital launch vehicle is 93 feet (28.436 meters) tall, including the escape tower. When ready for launch it weighed approximately 260,000 pounds (117,934 kilograms).

Diagram of Atlas LV-3B with Metric dimensions. (Space Launch Report)

The Atlas’ three engines were built by the Rocketdyne Division of North American Aviation, Inc., at Canoga Park, California. Two Rocketdyne LR89-NA-5 engines and one LR105-NA-5 produced 341,140 pounds (1,517.466 kilonewtons) of thrust. The rocket was fueled by a highly-refined kerosene, RP-1, with liquid oxygen as the oxidizer.

Faith 7 is displayed at the Space Center Houston, the visitor center for the Johnson Space Flight Center, Houston, Texas.

Mercury-Atlas 9 at Launch Complex 14. (NASA GPN-2000-000609)

© 2019, Bryan R. Swopes

5 May 1961, 13:34:13.48 UTC, T plus 00:00:00.48

Mercury-Redstone 3 lifts off from LC-5, 10:34:13 EDT, 5 May 1961. (NASA)
Alan Bartlett Shepard Jr., astronaut. (NASA)
Alan Bartlett Shepard Jr., Astronaut. (NASA)

At 10:34:13.48 a.m., Eastern Daylight Time ¹ (13:34:13.48 UTC), 5 May 1961, Mercury-Redstone 3 lifted off from Launch Complex 5 at the Cape Canaveral Air Force Station, Cape Canaveral, Florida. On board was a NASA Astronaut, Commander Alan Bartlett Shepard, Jr., United States Navy. Shepard had named his spacecraft Freedom 7.

This was the very first time that an American astronaut had been carried into space aboard a rocket and came 23 days after Soviet Union Cosmonaut Yuri Alekseyevich Gagarin had completed one orbit of the Earth.

During the launch, acceleration reached 6.3 gs. The Redstone’s engine shut down at T+02:21.3, with the rocket having reached a velocity of 7,388 feet per second (2,251.9 meters per second). 10 seconds later, the Mercury spacecraft separated from the Redstone booster. The spacecraft’s maximum speed was 5,134 miles per hour (8,262.4 kilometers per hour). For the next 5 minutes, 4 seconds, Alan Shepard was “weightless.” Freedom 7 reached a peak altitude of 101.2 nautical miles (116.46 statute miles/187.42 kilometers), 0.9 nautical miles (1.7 kilometers) higher than planned.

Alan B. Shepard, Jr., seated in the cockpit of Freedom 7 before launch, 5 May 1961. (NASA)

Alan Shepard’s flight was suborbital. The rocket launched the capsule on a ballistic trajectory. During the flight, Shepard demonstrated the use of manually controlled thrusters to orient the Mercury capsule in three axes.

Freedom 7 began reentry to the atmosphere at T+07:38. Deceleration forces reached 11.0 gs. Shepard manually controlled the vehicle’s attitude, and once correctly oriented for reentry, reverted to automatic control. With the blunt (bottom) end of the spacecraft forward, aerodynamic drag slowed the capsule. A spherical-segment ablative Beryllium heat shield protected the space ship and its passenger.

On reaching the lower atmosphere, the capsule’s speed was reduced by a 63-foot (19.2 meter) diameter ring-sail parachute, and a “landing bag” deployed from the base of the spacecraft to provide an impact cushion. The landing, or “splash down,” took place in the Atlantic Ocean, 263.1 nautical miles (302.8 statute miles/487.3 kilometers) down range, 6.8 nautical miles (7.8 miles/12.6 kilometers) farther than planned. (N. 75° 53′, W. 27° 13.7′)

The total duration of Alan Shepard’s flight was 15 minutes, 28 seconds. All mission objectives were accomplished and no malfunctions occurred.

Alan B. Shepard, Jr., being hoisted aboard the Sikorsky HUS-1 Seahorse helicopter, N. 75° 53′, W. 27° 13.7′, in the Atlantic Ocean, 5 May 1961. (NASA)

Eleven minutes after splash down, Commander Shepard was hoisted from the capsule to a hovering U.S. Marine Corps HUS-1 Sea Horse (Sikorsky S-58) helicopter of Marine Helicopter Transport Squadron (Light) 262 (HMR(L)-262).² The helicopter then lifted the Mercury capsule and flew to the nearby U.S. Navy Ticonderoga-class anti-submarine aircraft carrier, USS Lake Champlain (CVS-39). The Mercury capsule was returned to Cape Canaveral for inspection and found to be in excellent condition.

U.S. Marine Corps HUS-1 Seahorse (Sikorsky S-58) Bu. No. 148767 of HMR(L)-262 hovers while hoisting Alan Shepard from Freedom 7 after his sub-orbital flight, 5 May 1961. The Mercury capsule will also be lifted from the ocean by the helicopter and carried to USS Lake Champlain (CVS-39). (NASA)
USS Lake Champlain (CVS-39), 1 July 1960. (U.S. Navy)

Freedom 7 was the seventh of twenty Mercury capsules built by McDonnell Aircraft Corporation at St. Louis, Missouri, which would also build the follow-on, two-place Gemini spacecraft. It was delivered to Cape Canaveral 9 December 1960.

The space capsule was truncated cone with sides angled 20° from the longitudinal axis. It was 6 feet, 10 inches (2.083 meters) long and had a maximum diameter of 6 feet, 2.50 inches (1.892 meters). The total height of the spacecraft, from the tip of the aero spike to the booster adapter, was 26 feet, 1.26 inches (7.957 meters). At launch, Freedom 7 weighed 4,040.28 pounds (1,832.64 kilograms).

Project Mercury spacecraft under construction at McDonnell Aircraft Corporation, St. Louis, Missouri. (NASA)

During flight outside the atmosphere, the Mercury spacecraft could be controlled in its pitch, roll and yaw axes by hydrogen peroxide-fueled reaction control thrusters. Both manual and automatic attitude control were available. It could not accelerate or decelerate (except for reentry), so it could not change its orbit.

The spacecraft cabin was pressurized to 5.5 psi (0.38 Bar) with 100% oxygen. The astronaut wore a B.F. Goodrich Mark IV Model 3 Type I full-pressure suit and flight helmet for protection in the event that cabin pressure was lost.

Mercury-Redstone Launch Vehicle with dimensions. (NASA)

The Redstone MRLV rocket was a redesigned, “man rated” version of the Chrysler Corporation Missile Division-built United States Army M8 Redstone nuclear-armed medium range ballistic missile (MRBM). It was lengthened to provide greater fuel capacity, a pressurized instrumentation section was added, the control systems were simplified for greater reliability, and an inflight abort sensing system was installed. The rocket fuel was changed from hydrazine to ethyl alcohol.

The cylindrical booster was 59.00 feet (17.983 meters) long and 5 feet, 10 inches (1.778 meters) in diameter. The rocket had four guidance fins with rudders mounted at the tail section. (Interestingly, the Redstone stood freely on the launch pad. No hold-downs were used. The guidance fins supported the entire weight of the vehicle.)

Compare the U.S. Army M8 Redstone medium-range ballistic missile in this photograph to the Mercury-Redstone launch vehicle in the photograph above. This rocket, CC-1002, was the first Block 1 tactical rocket, photographed at Cape Canaveral Air Force Station, 16 May 1958. (NASA)

The Redstone MRLV was powered by a single liquid-fueled NAA 75-110-A7 rocket engine built by the Rocketdyne Division of North American Aviation, Inc., at Canoga Park, California. The MR-3 A7 produced 78,860 pounds of thrust (350.79 kilonewtons) at Sea Level, and approximately 89,000 pounds (395.89 kilonewtons) in vacuum, burning ethyl alcohol with liquid oxygen.

The total vehicle height of Mercury-Redstone 3, including the booster, adapter, capsule and escape tower, was 83.38 feet (25.414 meters). The total MR-3 vehicle launch weight was 66,098 pounds (29,982 kilograms).

Alan B. Shepard, Jr. is credited with two Fédération Aéronautique Internationale (FAI) World Records for this flight:

FAI Record File Num [Direct Link]
Status: ratified – current record
Region: World
Class: K (Space records)
Sub-Class: K-1 (Suborbital missions)
Category: Spacecraft with one astronaut
Group: General category
Type of record: Altitude
Performance: 186.307 km
Date: 1961-05-05
Course/Location: Cape Canaveral, FL (USA)
Claimant Alan B. Shepard, Jr (USA)
Spacecraft: NASA Mercury Redstone MR-7 / Capsule Mercury Spacecraft n°7

FAI Record File Num [Direct Link]
Status: ratified – current record
Region: World
Class: K (Space records)
Sub-Class: K-1 (Suborbital missions)
Category: Spacecraft with one astronaut
Group: General category
Type of record: Greatest mass lifted to altitude
Performance: 1 832.51 kg
Date: 1961-05-05
Course/Location: Cape Canaveral, FL (USA)
Claimant Alan B. Shepard, Jr (USA)
Spacecraft: NASA Mercury Redstone MR-7 / Capsule Mercury Spacecraft n°7

The flight of Freedom 7 was the first manned spaceflight in the 50-year history of the NASA program.³ Alan Shepard would later command Apollo 14, the third successful manned lunar landing mission, in 1971.

Alan Shepard’s Mercury spacecraft, Freedom 7, is on display at the John F. Kennedy Presidential Library and Museum, Boston, Massachusetts.

Alan Shepard’s Freedom 7 on display at the John F. Kennedy Presidential Library and Museum, Boston, Massachusetts.

¹ In 1961, Daylight Saving Time in the United States began on 30 April, just six days before Shepard’s flight. Contemporary newspaper articles about the flight frequently give the time of the launch in both standard time and daylight saving time.

² Sikorsky HUS-1 Sea Horse, Bu. No. 148767, modex ET-44. Sikorsky serial number 581318.

³ From the liftoff of Mercury-Redstone 3 until wheel stop of Space Shuttle Discovery (STS-135), the era of NASA’s Manned Spaceflight Programs lasted 50 years, 2 months, 15 days, 20 hours, 23 minutes, 41 seconds.

© 2019, Bryan R. Swopes

15 April 1970, 01:09:40 UTC: T Plus 077:56:40.0

Impact crater of the Apollo 13/Saturn V AS-508 S-IVB third stage, photographed by the Lunar Reconnaissance Orbiter. The crater is approximately 30 meters (98 feet) across. (NASA)

15 April 1970, 01:09:40 UTC: T plus 077:56:40.0: The Apollo 13 Saturn S-IVB-508 third stage impacted the surface of The Moon north of Mare Cognitum. (S. 2° 33′ 00″, W. 27° 52′ 48″)The S-IVB hit the lunar surface at a velocity of 2.58 kilometers per second (5,771 miles per hour). The impact energy was 4.63 x 1017 ergs (1.04 kiloton).

The impact was detected by seismometers placed on the Moon by Apollo 12 astronauts Pete Conrad and Alan Bean. This was part of the Apollo Lunar Surface Experiments Package, or ALSEP.

Seismograph tracings of Apollo 13 S-IVB impact. (NASA)

The Apollo 12 seismometer was located 135 kilometers (83.9 miles) from the Apollo 13 third stage impact. The signals were used to calibrate the instrument package, which was in service from 1969 to 1977.

The Saturn V third stage was designated Saturn S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds (118,841 kilograms). The third stage had one Rocketdyne J-2 engine which used liquid hydrogen and liquid oxygen for propellant. Itproduced 232,250 pounds of thrust (1,033.10 kilonewtons). The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

A Saturn V S-IVB third stage. (NASA)

© 2017, Bryan R. Swopes

1 April 1960, 11:40:09 UTC, T minus Zero

TIROS-1/Thor-Able 148 launches from Launch Complex 17A at Cape Canaveral, Florida, 11:40:09 UTC, 1 April 1960. (NASA)

1 April 1960: TIROS-1, the first successful Earth-orbiting weather satellite, was launched at 6:40:09 a.m. (11:40:09 UTC), from Launch Complex 17A at the Cape Canaveral Air Force Station, Cape Canaveral, Florida, aboard a Thor-Able II liquid-fueled rocket. The satellite’s name is an acronym for Television Infra Red Observation Satellite.

The satellite was placed into a nearly-circular low Earth orbit with an apogee of 417.8 miles (672.4 kilometers) and perigee of 396.2 miles (637.6 kilometers). It is still in orbit and circles the Earth once every 1 hour, 37 minutes, 42 seconds. TIROS-1 remained operational for 78 days. It is still in orbit.

“TIROS undergoes vibration testing at the Astro-Electronic Products Division of RCA in Princeton, New Jersey.” (NASA)

TIROS-1 was built of aluminum and stainless steel. It had a diameter of 3 feet, 6 inches (1.067 meters) and height of 1 foot, 7 inches (0.483 meters.) The satellite weighed 270 pounds (122.47 kilograms). Two television cameras were installed on the satellite. They received electrical power from storage batteries charged by 9,200 solar cells. Images were stored on magnetic tape, then transmitted when in range of a ground receiving station. The first image, which showed large-scale cloud formations, was transmitted the day of the launch.

Technicians mount the TIROS-1 weather satellite to the Thor-Able upper stage carrier. (NASA)

The launch vehicle, Thor 148, consisted of a liquid-fueled Douglas Aircraft Company Thor DM-18A first stage (based on the SM-75 intermediate range ballistic missile) and an Aerojet Able-II second stage, which was developed from the Vanguard rocket series. The Thor-Able was 91 feet (27.8 meters) tall and 8 feet (2.44 meters) in diameter. It weighed 113,780 pounds (51,608 kilograms). The first stage was powered by a Rocketdyne LR79-7 rocket engine which burned RP-1 and liquid oxygen. The engine produced 170,560 pounds of thrust (758.689 kilonewtons) and burned for 165 seconds.

The Able-II second stage was powered by an Aerojet AJ-10 engine which produced 7,800 pounds of thrust (34.696 kilonewtons). The propellant was a hypergolic combination of nitric acid and UDMH (hydrazine). It burned for 115 seconds.

There were sixteen Thor-Able two-stage rockets launched. TIROS-1 was placed in orbit by the last of that series.

The first television image of Earth, transmitted by TIROS-1, 1 April 1960. (NASA)
The first television image of Earth, transmitted by TIROS-1, 1 April 1960. The image shows Maine, Nova Scotia, the Gulf of St. Lawrence and the Atlantic Ocean. (NASA)

© 2019, Bryan R. Swopes

26 February 1966, 16:12:01.37 UTC (T plus 0.37)

Apollo-Saturn IB AS-201 launch from Pad 34, Kennedy Space Center, 26 February 1966. (NASA)

26 February 1966: AS-201, the first Apollo/Saturn IB, was launched, carrying the first complete Block 1 Apollo Command and Service Module on an unmanned suborbital test flight. The launch took place at Launch Complex 34, Cape Kennedy Air Force Station, Cape Kennedy, Florida.

saturn-ib-config
An illustration of an Apollo/Saturn IB space vehicle, with approximate dimensions. (Department of Special Collections, M. Louis Salmon Library, University of Alabama, via heroicrelics.org)

This flight was a demonstration of the combined Apollo Command Module and the Service Module. The second production Apollo capsule, CM-009, and the first production service module, SM-009, were launched by the first Saturn IB, SA-201.¹ (When combined, the capsule and service module are referred to as the CSM.)

The command to ignite the eight H-1 first stage engines was sent from the Mission Control Room at T-3.038 (16:11:56.962 UTC).² The engines ignited at T-2.45 and began to build thrust. First motion occurred at T+0.11.

Liftoff ³ was at 16:12:01.37 UTC, T+0.37. AS-201 climbed vertically for 11.2 seconds before beginning a pitch and roll maneuver which carried the space vehicle to its planned trajectory. Control of the mission was shifted from the Cape Kennedy Air Force Station to Mission Control at the Manned Spacecraft Center, Houston, Texas. Flight Director Glynn S. Lunney was now in charge.

AS-201 reached Mach 1 at T+65.7. The vehicle experienced its maximum dynamic pressure (max q) at T+77.7.

Maximum acceleration was reached at T+141.5, just as the first stage engines were shut down.

The S-IB first stage inner engines cutoff (IECO) occurred at T+141.5, and outer engine cutoff (OECO), at T+146.9. The vehicle had reached an altitude of 31.4 nautical miles (36.1 statute miles/58.2 kilometers) and was 33.9 nautical miles (39.0 statute miles/62.8 kilometers) downrange. It was traveling at 7,499.66 feet per second (5,113.4 miles per hour/8,229.2 kilometers per hour). The first stage was jettisoned.

Apollo/Saturn IB AS-201 first stage separation. (NASA)

The S-IVB second stage engine ignition occurred at T+149.3. The Launch Escape System (LES) was jettisoned at T+172.6. The vehicle continued to accelerate until its J-2 engine cut off at T+602.9. The vehicle had now reached an altitude of 141.2 nautical miles (162.5 statute miles/261.5 kilometers) and was 857.9 nautical miles (987.3 statute miles/1,588.8 kilometers) downrange, traveling 22,769.23 feet per second (15,524.5 miles per hour/24,984.2 kilometers per hour). The S-IVB and Command and Service Module separated at T+844.9.

The Apollo CSM reached a maximum altitude (apogee) of 265.7 nautical miles (305.8 miles/492.1 kilometers) at T+1020.0. As it began to descend, the Service Module’s Service Propulsion Subsystem (SPS) was tested. The SPS was powered by a non-throttleable, restartable, AJ10-137 rocket engine, built by Aerojet General Corporation of Azusa, California. This engine was fueled by Aerozine 50, a hypergolic 50:50 mixture of Unsymmetrical dimethylhydrazine (UDMH) and nitrogen tetroxide (N2O4). It produced 20,500 pounds of thrust (91.19 kilonewtons) in vacuum. It was designed for a 750 second burn, or 50 restarts during a flight. The first burn was from T+1211.2 –1395.2 (184 seconds), and the second, from T+1410.7–1420.7 (10 seconds). The engine did not operate exactly as planned during the flight. Thrust was erratic, possibly as a result of helium ingestion into the engine oxidizer feed line.

CM/SM separation occurred at T+1455.0, at an altitude of 138.9 nautical miles (159.8 statute miles/257.2 kilometers) and 3,660 nautical miles (4,211 statute miles/6,778 kilometers) down range. The command module was now traveling at a speed of  25968 fps (17,705 miles per hour/28,494 kilometers per hour). During reentry, the maximum deceleration was 14.3 gs. The Apollo capsule landed near Ascension Island in the South Atlantic Ocean, 4,577 nautical miles (5,267 statute miles/8,477 kilometers) from Cape Canaveral, and about 45 miles from the primary recovery ship. (S. 8.18°, W 11.15°) Total duration of the flight was 37 minutes, 19.7 seconds.

The Apollo spacecraft was recovered by USS Boxer (LPH- 4), a Wasp-class amphibious assault ship, and taken to Norfolk, Virginia.

Mission AS-201 was successful, though several problems occurred during the flight. These were identified and corrected on the following production vehicles.

Apollo/Saturn IB AS-201 at Launch Complex 34, 4 February 1966. (NASA S-66-21307)

Apollo/Saturn IB AS-201 was approximately 223 feet, 4 inches (68.072 meters) tall. The total vehicle weight was 1,320,220 pounds (598,842 kilograms).

The Apollo command module of AS-201 was Spacecraft 009 (CM-009), a Block I capsule. (Various crew equipment had not been installed for this test flight.) The Apollo was a conical space capsule designed and built by North American Aviation’s Space and Information Systems Division in Downey, California, to carry a crew of three astronauts on space missions of two weeks or longer. The capsule had a length of 11 feet, 1.5 inches (3.3909 meters) and maximum diameter of 12 feet, 10 inches (3.9116 meters). The service module, also built by North American Aviation, was 12 feet, 11 inches (3.937 meters) long and 12 feet, 10 inches (3.9116 meters) in diameter.

Construction of CM-009 began in 1963. It was accepted 20 October 1965 and shipped to the Kennedy Space Center, arriving at the Manned Spacecraft Operations Building (MSOB) on 25 October. The CSM was stacked on the vehicle 26 December 1965. The Launch Escape System was added 24 January 1966.

Between the CSM and the Saturn IB was the Spacecraft-Lunar Module Adapter (SLA) structure, also built by NAA. This conical section had a length of 28 feet, 0 inches (8.5344 meters) and tapered from a diameter of 12 feet, 10 inches (3.9116 meters) to 21 feet, 8 inches (6.604 meters). No Lunar Module was carried on this flight.

Saturn IB SA-201 at Launch Complex 34. The launch vehicle consists of an S-IB first stage, S-IVB second stage, and an Instrumentation Unit. (NASA 65-H-2067)

The Saturn IB two-stage launch vehicle was numbered SA-201. It consisted of an S-IB first stage, an S-IVB second stage, an Instrumentation Unit, and various fairings and adapters. It was capable of launching a 46,000 pound (20,865 kilogram) payload to Earth orbit.

The Saturn IB SA-201 S-IB first stage is lifted onto Launch Pad 34, 19 August 1965. Several of the stage’s eight stabilizing fins are not present during this maneuver. (NASA KSC-65C-5347)

The S-IB first stage was built by Chrysler Corporation Space Division at the Michoud Assembly Facility near New Orleans, Louisiana. The S-IB was 80 feet, 2 inches (24.435 meters) long, with a diameter of 21 feet, 5.0 inches (6.528 meters). The empty weight of this stage was 92,500 pounds (41,957 kilograms). Eight Redstone rocket fuel tanks containing the RP-1 fuel (a highly-refined kerosene) surrounded a Jupiter rocket tank containing the liquid oxygen oxidizer (LOX). It had a propellant capacity of 880,500 pounds (399,388 kilograms). The stage had eight stabilizing fins.

The S-IB was powered by eight Rocketdyne H-1 engines. The H-1s were built by the North American Aviation Rocketdyne Division, Canoga Park, California. Total thrust of the S-IB stage was 1,666,460 pounds (7,417.783 kilonewtons) at Sea Level,⁴ and it carried sufficient propellant for a maximum 4 minutes, 22.57 seconds of burn. This could lift the vehicle to an altitude of 37 nautical miles (69 kilometers).

A Saturn IB S-IVB second stage with its Rocketdyne J-2 engine and adapter section. (This S-IVB was part of Saturn IB SA-206.) (NASA 67-HC-26)

The S-IVB second stage was assembled at the Douglas Aircraft Company Missile & Space Division, Huntington Beach, California. The S-IVB was 61 feet, 4.555 inches (18.708497 meters) long, with a maximum diameter of 21 feet, 8.0 inches (6.604 meters). The second stage had an empty weight of 23,400 pounds (10,614 kilograms), and fuel capacity of 228,500 pounds (103,646 kilograms).

It was powered by a single Rocketdyne J-2 engine, fueled by liquid hydrogen (LH2) and LOX. The J-2 produced 229,714 pounds of thrust (1,021.819 kilonewtons), at high thrust, and 198,047 pounds (880.957 kilonewtons) at low thrust). The second stage carried enough fuel for 7 minutes, 49.50 seconds burn at high thrust.

The Instrumentation Unit, containing the Saturn’s guidance systems and attached to the top of the S-IVB stage, was designed by NASA’s Manned Space Flight Center (MSFC), and built by IBM at the Space Systems Center, Huntsville, Alabama. It was 3 feet, 0 inches (0.9 meters) tall with a diameter of 22 feet, 0 inches (6.7056 meters).

After being recovered, the AS-201 Apollo command module was used for drop tests. It is at the Strategic Air and Space Museum, Ashland, Nebraska.

Apollo Command Module CM-009. (HrAtsuo)
Apollo Command Module CM-009 at the Strategic Air and Space Museum, Ashland, Nebraska. (HrAtsuo)

¹ NASA vehicle designations can sometimes be confusing. In this case, “AS-201” designates the all-up Apollo/Saturn IB Space Vehicle, number 201, including the first and second stages, the instrument package, lunar module adapter, service module, command module CM-009, and Launch Escape System (LES). “Spacecraft SC-009” refers to the LES, the CSM and the SLA. The “Saturn IB SA-201,” refers to just the two-stage launch vehicle, number 201: the S-IB first stage, S-IVB second stage, and the Instrumentation Unit. It does not include the payload.

² Range Zero, T-0 (“tee minus zero”), is the last full second before liftoff. This is the time reference for all mission events. In this case, T-0 was 16:12:01.000 UTC (11:12:01 a.m., Eastern Standard Time).

³ Lift off is defined as the instant of Instrumentation Unit umbilical disconnect. This is distinct from “First Motion.”

⁴ The total thrust the the eight H-1 engines of the S-IB first stage was only slightly more than that of just one of the five Rocketdyne F-1 engines of the Saturn V’s S-IC first stage booster.

© 2024, Bryan R. Swopes