Tag Archives: Rocketplane

15 November 1967

Major Michael J. Adams, United States Air Force, with an X-15 hypersonic research rocketplane on Rogers Dry Lake. (NASA)
Major Michael J. Adams, United States Air Force, with a North American Aviation X-15 hypersonic research rocketplane, 56-6670, on Rogers Dry Lake, after his third flight in the program, 22 March 1967. (NASA)

15 November 1967: Major Michael James Adams, United States Air Force, was killed in the crash of the number three North American Aviation X-15 hypersonic research rocketplane, 56-6672.

Flight 191 of the X-15 program was Mike Adams’ seventh flight in the rocketplane. It was the 56-6672’s 65th flight. The flight plan called for 79 seconds of engine burn, accelerating the X-15 to Mach 5.10 while climbing to 250,000 feet (76,200 meters). Adams’ wife, Freida, and his mother, Georgia Adams, were visiting in the NASA control room at Edwards Air Force Base.

Balls 8, the Boeing NB-52B Stratofortress, 52-008, flown by Colonel Joe Cotton, took off from Edwards at 9:12 a.m., carrying -672 on a pylon under its right wing, and headed north toward the drop point over Delamar Dry Lake in Nevada. The drop ship climbed to the launch altitude of 45,000 feet (13,716 meters).

The X-15 launch was delayed while waiting for the Lockheed C-130 Hercules rescue aircraft to arrive on station. This required Adams to reset the Honeywell MH-96 Automatic Flight Control System to compensate for the changing position of the sun in the sky.

X-15A-3
North American Aviation X-15A-3 56-6672 immediately after launch over Delamar Lake, Nevada. Date unknown. (U.S. Air Force)

56-6672 was launched by Balls 8 at 10:30:07.4 a.m., Pacific Standard Time. As it dropped clear of the bomber, the rocketplane rolled 20° to the right, a normal reaction. Within one second, Mike Adams had started the XLR99-RM-1 rocket engine while bringing the wings level. The engine ignited within one-half second and was up to its full 57,000 pounds of thrust (253.549 kilonewtons) one second later. The engine ran for 82.3 seconds, 3.3 seconds longer than planned, causing the X-15 to reach Mach 5.20 (3,617 miles per hour/5,821 kilometers per hour) and to overshoot the planned altitude to peak at 266,000 feet (81,077 meters).

A North American Aviation X-15 hypersonic research rocketplane leaves a contrail as it climbs toward the edge of space. (NASA)
A North American Aviation X-15 hypersonic research rocketplane leaves a contrail as it climbs toward the edge of space. (NASA)

With the X-15 climbing through 140,000 feet (42,672 meters), the Inertial Flight Data System computer malfunctioned. Adams radioed ground controllers that the system’s malfunction lights had come on.

The flight plan called for a wing-rocking maneuver at peak altitude so that a camera on board could scan from horizon to horizon. During this maneuver, the Reaction Control System thrusters did not respond properly to Adams’ control inputs. The X-15 began to yaw to the right.

As it reached its peak altitude, 56-6672 yawed 15° to the left. Going over the top, the nose yawed right, then went to the left again. By the time the aircraft had descended to 230,000 feet (70,104 meters), it had pitched 40° nose up and yawed 90° to the right its flight path. The X-15 was also rolling at 20° per second. The rocketplane went into a spin at Mach 5.

10:33:37 Chase 1: “Dampers still on, Mike?”

10:33:39 Adams: “Yeah, and it seems squirrelly.”

10:34:02 Adams: “I’m in a spin, Pete.” [Major William J. “Pete” Knight, another X-15 pilot, was the flight controller, NASA 1]

10:34:05 NASA 1: “Let’s get your experiment in and the cameras on.”

10:34:13 NASA 1: “Let’s watch your theta, Mike.”

10:34:16 Adams: “I’m in a spin.”

10:34:18 NASA 1: “Say again.”

10:34:19 Adams: “I’m in a spin.”

Adams fought to recover, and at 118,000 feet (35,967 meters) came out of the spin, but he was in an inverted 45° dive at Mach 4.7. The X-15’s MH-96 Automatic Flight Control System entered a series of diverging oscillations in the pitch and roll axes, with accelerations up to 15 gs. Dynamic pressures on the airframe rapidly increased from 200 pounds per square foot (9.576 kilopascals) to 1,300 pounds per square foot (62.244 kilopascals).

At 62,000 feet (18,898 meters), still at Mach 3.93, the aircraft structure failed and it broke apart.

10:34:59 X-15 telemetry failed. Last data indicated it was oscillating +/- 13 g. Radar altitude was 62,000 feet (18,898 meters). The aircraft was descending at 2,500 feet per second (762 meters per second) and broke into many pieces at this time.

10:35:42 NASA 1: “Chase 4, do you have anything on him?”

10:35:44 Chase 4: “Chase 4, negative.”

10:35:47 NASA 1: “OK, Mike, do you read?”

10:35:52 Chase 4: “Pete, I got dust on the lake down there.”

North American Aviation X-15A-3 56-6672 crashed in a remote area, approximately 5½ miles (9 kilometers) north-northeast of Randsburg, California, a small village along U.S. Highway 395.

Major Michael James Adams was killed. This was the only pilot fatality of the entire 199-flight X-15 program.

North American Aviation X-15A 56-6672 on Rogers Dry Lake after a flight. (NASA)
North American Aviation X-15A-3 56-6672 on Rogers Dry Lake. (NASA)

An investigation by NASA’s Engineering and Safety Center determined that,

“. . . the root cause of the accident was an electrical disturbance originating from an experiment package using a commercial-off-the-shelf (COTS) component that had not been properly qualified for the X-15 environment. . .” and that there is “. . . no conclusive evidence to support the hypothesis that SD [spatial disorientation] was a causal factor. On the contrary, the evidence suggests that poor design of the pilot-aircraft interface and ineffective operational procedures prevented the pilot and ground control from recognizing and isolating the numerous failures before the aircraft’s departure from controlled flight was inevitable.”

A Comprehensive Analysis of the X-15 Flight 3-65 Accident, NASA/TM—2014-218538 (Corrected Copy)

Crushed forward fuseleage of X-15 56-6672. (NASA)
Crushed forward fuselage of North American Aviation X-15A-3 56-6672. (NASA)

Michael James Adams was born at Sacramento, California, 5 May 1930. He was the first of two sons of Michael Louis Adams, a telephone company technician, and Georgia E. Domingos Adams.

Michael Adams throws a javelin at Sacramento J.C. (1949 Pioneer)

After high school, Mike Adams attended Sacramento Junior College, graduating in 1949. He was an outfielder for the college baseball team, and threw the javelin in track & field.

Adams enlisted in the United States Air Force in 1950. He completed basic training at Lackland Air Force Base, San Antonio, Texas. In  October 1951, he was selected as an aviation cadet and sent to Spence Air Force Base, near Moultrie, Georgia, for primary flight training. Cadet Adams completed flight training at Webb Air Force Base, Big Spring, Texas. He graduated 25 October 1952. Adams was one of two distinguished graduates in his class and received a commission as an officer in the regular Air Force.

Second Lieutenant Adams was assigned to advanced flight training at Nellis Air Force Base, where he flew the Lockheed F-80 Shooting Star and North American Aviation F-86 Sabre.

In April 1953, Lieutenant Adams joined the 80th Fighter-Bomber Squadron at K-13, Suwon, Republic of Korea. He flew 49 combat missions.

Mr. and Mrs. Michael J. Adams, 15 January 1955. (Freida Adams Collection)

Following the Korean War, Lieutenant Adams was assigned to the 613th Fighter Bomber Squadron, 401st Fighter-Bomber Group, at England Air Force Base, Alexandria, Louisiana. The Squadron initially flew the F-86F Sabre and then transitioned to the Republic F-84F Thunderstreak. Adams deployed to Chaumont Air Base, France, for a six-month temporary assignment.

While stationed at England AFB, Lieutenant Adams met Miss Freida Beard. They were married in a ceremony at the Homewood Baptist Church in Alexandria, 15 January 1955. They would have three children, Michael James, Jr., Brent, and Liese Faye Adams.

Michael J. Adams, 1958

In 1958, Adams graduated from the University of Oklahoma at Norman, with a bachelor’s degree in aeronautical engineering. He was a member of the university’s Institute of Aeronautical Sciences. Adams was next assigned to the Massachusetts Institute of Technology, Cambridge, Massachusetts, where he studied astronautics.

Adams’ next military assignment was as a maintenance officer course instructor at Chanute Air Force Base, Rantoul, Illinois.

In 1962, Captain Adams entered an eight-month training program at the Air Force Test Pilot School, Class 62C, at Edwards Air Force Base in the high desert of southern California. He was awarded the A.B. Honts Trophy as the class’s outstanding graduate.

Captain Michael J. Adams with a Northrop F-5A. (NASA)

On 17 June 1963, Captain Adams entered the Aerospace Research Pilots School, which was also at Edwards. This was a seven-month course that taught flying skills in advanced vehicles, with an aim to prepare the graduates for space flight, and to create a pool of qualified military test pilots to be selected as astronauts. The Air Force estimated a need for 20 pilots a year for the upcoming X-20 Dyna-Soar and Manned Orbiting Laboratory (M.O.L.) programs. Adams graduated with the second of the four ARPS classes.

Adams then became an operational test pilot, conducting stability and control tests for the Northrop F-5A Freedom Fighter. That was followed by an assignment as a project pilot for the Cornell Aeronautical Laboratory.

On 13 November 1963, it was announced that Michael Adams was on of the selectees for the M.O.L. program. As a designated Air Force astronaut, Adams was involved in lunar landing simulations during the development of the Apollo Program lunar lander.

Artists conception of the U.S. Air Force Manned Orbiting Laboratory (M.O.L.)

Major Adams was selected as a pilot of the NASA/Air Force X-15 Hypersonic Research Flight Program. (He was the twelfth and final pilot to be accepted into the project.) He made his first X-15 flight on 6 October 1966. He flew the first X-15, 56-6770. A ruptured fuel tank forced him to make an emergency landing at Cuddeback Dry Lake, one of several pre-selected emergency landing sites, about 40 miles (64 kilometers) northeast of Edwards. The duration of the flight was 8 minutes, 26.4 seconds. The X-15 had only reached an altitude of 75,400 feet (22,982 meters) and Mach 3.00.

A North American Aviation X-15 at Cuddeback Lake after an emergency landing. A Piasceki HH-21C is standing by. (U.S. Air Force)

His second flight took place on 29 November 1966. On this flight, he took the # 3 ship, 56-6672, to 92,100 feet (28,072 meters) and Mach 4.65. The flight lasted 7 minutes, 55.9 seconds.

For his third flight, Mike Adams was back in 56-6670, which had been repaired. He flew to an altitude of 133,100 feet (40,569 meters) and reached Mach 5.59 (3,822 miles per hour/6,151 kilometers per hour). This was Adams fastest flight. He landed at Edwards after 9 minutes, 27.9 seconds.

Flight number four for Adams took place on 28 April 1967. Again he flew the # 1 X-15. On this flight, he reached 167,200 feet (50,963 meters) and Mach 5.44. Elapsed time was 9 minutes, 16.0 seconds.

On 15 June 1967, Adams flew # 1 to 229,300 feet (69,891 meters) and Mach 5.14. Duration 9 minutes, 11.0 seconds.

On 25 August 1967, Adams made his sixth flight, his second in the third X-15, 56-6672. The rocket engine shut down after sixteen seconds and had to be restarted. The maximum altitude was 84,400 feet (25,725 meters) and Mach 4.63. The duration of this flight was 7 minutes. 37.0 seconds.

Mike Adams’ seventh flight in an X-15 took place 15 November 1967. This was the 191st X-15 flight, and the 65th for X-15 56-6672. Tests to be conducted were an ultraviolet study of the rocketplane’s exhaust plume; solar spectrum measurements; micrometeorite collection, and a test of ablative material for the Saturn rocket.

Adams reached 266,000 feet (81,077 meters) and Mach 5.20.

Having met the U.S. Air Force qualification for flight in excess of 50 miles (80.47 kilometers), Michael Adams was posthumously awarded the wings of an astronaut.

Major Michael James Adams, United States Air Force, was buried at Mulhearn Memorial Park, in Monroe, Louisiana.

© 2018, Bryan R. Swopes

6 November 1958

Bell X-1E 46-063 on Rogers Dry Lake. (NASA)
Bell X-1E 46-063 on Rogers Dry Lake, 1955. (NASA)

6 November 1958: NASA Research Test Pilot John B. (Jack) McKay made the final flight of the X-1 rocketplane program, which had begun twelve years earlier.

Bell X-1E 46-063 made its 26th and final flight after being dropped from a Boeing B-29 Superfortress over Edwards Air Force Base on a flight to test a new rocket fuel.

John B. McKay, NACA/NASA Research Test Pilot. (NASA)
John B. McKay, NACA/NASA Research Test Pilot. (NASA)

When the aircraft was inspected after the flight, a crack was found in a structural bulkhead. A decision was made to retire the X-1E and the flight test program was ended.

The X-1E had been modified from the third XS-1, 46-063. It used a thinner wing and had an improved fuel system. The most obvious visible difference is the cockpit, which was changed to provide for an ejection seat. Hundreds of sensors were built into the aircraft’s surfaces to measure air pressure and temperature.

The Bell X-1E was 31 feet (9.449 meters) long, with a wingspan of 22 feet, 10 inches (6.960 meters). The rocketplane’s empty weight was 6,850 pounds (3,107 kilograms) and fully loaded, it weighed 14,750 pounds (6,690 kilograms). The rocketplane was powered by a Reaction Motors XLR11-RM-5 rocket engine which produced 6,000 pounds of thrust (26.689 kilonewtons). The engine burned ethyl alcohol and liquid oxygen. The X-1E carried enough propellants for 4 minutes, 45 seconds burn.

The Bell X-1E rocketplane being loaded into a Boeing B-29 Superfortress mothership for another test flight. (NASA)
The Bell X-1E rocketplane being loaded into NACA 800, a Boeing B-29-96-BW Superfortress mothership, 45-21800, for another test flight. (NASA)

The early aircraft, the XS-1 (later redesignated X-1), which U.S. Air Force test pilot Charles E. (“Chuck”) Yeager flew faster than sound on 14 October 1947, were intended to explore flight in the high subsonic and low supersonic range. There were three X-1 rocketplanes. Yeager’s Glamorous Glennis was 46-062. The X-1D (which was destroyed in an accidental explosion after a single glide flight) and the X-1E were built to investigate the effects of frictional aerodynamic heating in the higher supersonic ranges from Mach 1 to Mach 2.

Bell X-1E loaded aboard Boeing B-29 Superfortress, circa 1955. (NASA)
Bell X-1E 46-063 loaded aboard NACA 800, a Boeing B-29-96-BW Superfortress, 45-21800, circa 1955. (NASA)

The X-1E reached its fastest speed with NASA test pilot Joseph Albert Walker, at Mach 2.24 (1,450 miles per hour/2,334 kilometers per hour), 8 October 1957. Walker also flew it to its peak altitude, 70,046 feet (21,350 meters) on 14 May 1958.

NACA test pilot Joseph Albert Walker made 21 of the X-1E's 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)
NACA test pilot Joseph Albert Walker made 21 of the X-1E’s 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)

There were a total of 236 flights made by the X-1, X-1A, X-1B, X-1D and X-1E. The X-1 program was sponsored by the National Advisory Committee on Aeronautics, NACA, which became the National Aeronautics and Space Administration, NASA, on 29 June 1958.

The X-1E is on display in front of the NASA administration building at the Dryden Flight Research Center, Edwards Air Force Base, California. Bell X-1E 46-063 on display at Dryden Flight Research Center © 2016, Bryan R. Swopes

4 November 1960

At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)
At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671. (NASA)

4 November 1960: This photo shows one of the four attempts NASA made at launching two X-15 aircraft in one day. This attempt occurred November 4, 1960.

None of the four attempts was successful, although one of the two aircraft involved in each attempt usually made a research flight.

In this case, Air Force test pilot Major Robert A. Rushworth flew X-15 #1, 56-6670, on its sixteenth flight to a speed of Mach 1.95 and an altitude of 48,900 feet (14,905 meters).

© 2016, Bryan R. Swopes

3 November 1965

North American Aviation X-15A-2 56-6671 on Rogers Dry Lake. In addition to the lengthened fuselage and external tanks, the nose wheel strut is longer and the windshields have been changed to an oval shape. A wheeled dolly supports the aft end of the rocketplane. (NASA)
North American Aviation X-15A-2 56-6671 on Rogers Dry Lake. In addition to the lengthened fuselage and external tanks, the nose wheel strut is longer and the windshields have been changed to an oval shape. A wheeled dolly supports the aft end of the rocketplane. (NASA)

3 November 1965: Major Robert A. Rushworth made the first flight of the modified X-15A-2 rocketplane, Air Force serial number 56-6671. After a landing accident which caused significant damage to the Number 2 X-15, it was rebuilt by North American Aviation. A 28-inch (0.71 meter) “plug” was installed in the fuselage forward of the wings to create space for a liquid hydrogen fuel tank which would be used for an experimental “scramjet” engine that would be mounted on the the ventral fin. The modified aircraft was also able to carry two external fuel tanks. It was hoped that additional propellant would allow the X-15A-2 to reach much higher speeds.

The first flight with the new configuration was an “envelope expansion” flight, intended to test the handling characteristics of the X-15A-2, and to jettison the tanks (which were empty on this flight) to evaluate the separation and trajectory as they fell away from the rocketplane in supersonic flight.

Boeing NB-52A Stratofortress 52-003, The High and Mighty One, with North American Aviation X-15A-2 56-6671 mounted to the pylon under its right wing. The external propellant tanks have been brightly painted to aid tracking after they are jettisoned. (U.S. Air Force)
Boeing NB-52A Stratofortress 52-003, The High and Mighty One, with North American Aviation X-15A-2 56-6671 mounted to the pylon under its right wing. The external propellant tanks have been brightly painted to aid tracking after they are jettisoned. (U.S. Air Force)

The X-15A-2 was dropped from the Boeing NB-52A Stratofortress 52-003, over Cuddeback Lake, 37 miles (60 kilometers) northeast of Edwards Air Force Base in the Mojave Desert of southern California. This was the only time during the 199-flight X-15 Program that this lake was used as a launch point.

The X-15 was released at 09:09:10.7 a.m., PST. Bob Rushworth ignited the Reaction Motors XLR99-RM-1 rocket engine and it ran for 84.1 seconds before its fuel supply was exhausted. This engine was rated at 57,000 pounds of thrust (253.549 kilonewtons).

The X-15 climbed to 70,600 feet (21,519 meters) and reached Mach 2.31 (1,514 miles per hour/2,437 kilometers per hour.)

The test flight went well. The external tanks jettisoned cleanly and fell away. The recovery parachute for the liquid oxygen tank did not deploy, however, and the tank was damaged beyond repair.

Rushworth and the X-15A-2 touched down on Rogers Dry Lake after a flight of 5 minutes, 1.6 seconds.

© 2016, Bryan R. Swopes

8 October 1954

Captain Arthur W. Murray, U.S. Air Force (1918–2011). Murray is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with K-1 helmet for high altitude flight. (U.S. Air Force)
Captain Arthur W. Murray, U.S. Air Force (1918–2011). Murray is wearing a David Clark Co. T-1 capstan-type partial-pressure suit. (U.S. Air Force)

8 October 1954: After two earlier glide flights flown by test pilot Jack Ridley, Captain Arthur Warren (“Kit”) Murray, U.S. Air Force, made the first powered flight of the Bell Aircraft Corporation X-1B rocket-powered supersonic research aircraft, serial number 48-1385.

Five months earlier, Murray had flown the X-1A to an altitude of 90,440 feet (25,570 meters). He was the first pilot to fly high enough to see the curvature of the Earth and a dark sky at mid day.

The X-1B was the third in a series of experimental X-1 rocketplane variants built by the Bell Aircraft Corporation for the United States Air Force and the National Advisory Committee for Aeronautics (NACA), for research into supersonic flight. It was fitted with 300 thermocouples to measure aerodynamic heating. It was the first aircraft equipped with a pilot-controlled reaction control system which allowed for maneuvering the aircraft at high altitudes where normal aerodynamic controls were no longer effective.

NACA 800, a modified Boeing B-29 Superfortress, 45-21800, with the Bell X-1B, at Edwards Air Force Base, 8 April 1958. (NASA)
NACA 800, a modified Boeing B-29 Superfortress, 45-21800, with the Bell X-1B, at Edwards Air Force Base, 9 April 1958. (NASA)

Like the X-1 and X-1A, the X-1B was carried by a modified four-engine B-29 Superfortress heavy bomber (B-29-96-BW 45-21800), before being airdropped at altitudes of 25,000 to 35,000 feet (7,620 to 10,668 meters) near Edwards Air Force Base, California. After its fuel was expended, the pilot would glide for a landing on Rogers Dry Lake.

The X-1B was 35 feet, 7 inches (10.846 meters) long with a wing span of 28 feet (8.53 meters). Its loaded weight was 16,590 pounds (7,520 kilograms). The X-1B was powered by a Reaction Motors XLR11-RM-6 four-chamber rocket engine, fueled with a mixture of water and alcohol with liquid oxygen. It produced 6,000 pounds of thrust (26.689 kilonewtons. The XLR11 was 5 feet, 0 inches (1.524 meters) long, 1 foot, 7 inches (0.483 meters) in diameter, and weighed 210 pounds (95 kilograms). Each of the four thrust chambers were 1 foot, 9¾ inches (0.552 meters) long and 6 inches (0.152 meters) in diameter.

The rocket plane was designed to reach 1,650 miles per hour (2,655 kilometers per hour) and 90,000 feet (27,432 meters).

Bell X-1B (Bell Aircraft Corporation)
Bell X-1B 46-1385 (U.S. Air Force)
Bell X-1B 46-1385 on Rogers Dry Lake (NASA E-2547)
Bell X-1B on Rogers Dry Lake (NASA)
Bell X-1B 46-1385 on Rogers Dry Lake (NASA)

This was Kit Murray’s only flight in the X-1B. After being flown by a number of other Air Force test pilots, including Stuart Childs and Frank Everest, the rocketplane was turned over to NACA for the continued flight test program. NACA research pilots John McKay and Neil Armstrong made those flights.

X-1B 48-1385 made 27 flights. It was retired in January 1958. It is in the collection of the National Museum of the United States Air Force at Wright-Patterson Air Force Base, Ohio.

Bell X-1B 46-1385 parked on Rogers Dry Lake, 30 July 1958. (NASA)
Bell X-1B 46-1385 parked on Rogers Dry Lake, 30 July 1958. (NASA)
Bell X-1B 46-1385 parked on Rogers Dry Lake, 30 July 1958. (NASA)
Bell X-1B 46-1385 parked on Rogers Dry Lake, 30 July 1958. (NASA)

Arthur Warren Murray was born at Cresson, Cambria County, Pennsylvania, 26 December 1918. He was the first of two children of Charles Chester Murray, a clerk, and Elsie Espy Murray.

Arthur Murray attended Huntingdon High School, Huntingdon, Pennsylvania, graduating 4 June 1936, and then studied Juniata College, also in Huntingdon, 1937–1938.

Kit Murray enlisted in the Field Artillery, Pennsylvania National Guard, 17 November 1939. (Some sources state that he served in the U.S. Cavalry.) Murray had brown hair and blue eyes, was 5 feet, 10 inches (1.78 meters) tall and weighed 150 pounds (68 kilograms). Following the United States’ entry into World War II, Sergeant Murray requested to be trained as a pilot. He was appointed a flight officer (a warrant officer rank), Army of the United States, on 5 December 1942. On 15 October 1943 Flight Officer Murray received a battlefield promotion to the commissioned rank of second lieutenant, A.U.S.

Between 6 January and 22 October 1943, Murray flew over 50 combat missions in the Curtiss-Wright P-40 Warhawk across North Africa. After about ten months in the Mediterranean Theater, he returned to the United States, assigned as an instructor flying the Republic P-47 Thunderbolt fighter bomber, stationed at Bradley Field, Hartford, Connecticut.

Lieutenant Murray married Miss Elizabeth Anne Strelic, who had immigrated from Czechoslovakia with her family as an infant, at Atlantic City, New Jersey, 29 December 1943. They would have six children, and foster a seventh. They later divorced. (Mrs. Murray died in 1980.)

Murray was promoted to 1st lieutenant, A.U.S., 8 August 1944. His next assignment was as a maintenance officer. He was sent to Maintenance Engineering School at Chanute Field, Rantoul, Illinois, and from there to the Flight Test School at Wright Field, Dayton, Ohio.

Murray was the first test pilot to be permanently assigned to Muroc Army Air Field (later, Edwards Air Force Base). Other test pilots, such as Captain Chuck Yeager, were assigned to Wright Field and traveled to Muroc as necessary.

Murray’s A.U.S. commission was converted to first lieutenant, Air Corps, United States Army, on 19 June 1947, with date of rank retroactive to 15 October 1946. The U.S. Air Force became a separate military service in 1947, and Lieutenant Murray became an officer in the new service.

Colonel Arthur Warren (“Kit”) Murray, U.S. Air Force.

Later, 1958–1960, Major Murray was the U.S. Air Force project officer for the North American Aviation X-15 hypersonic research rocketplane at Wright Field.

Colonel Murray retired from the U.S. Air Force in 1961. He next worked for Boeing in Seattle, Washington, from 1961 to 1969, and then Bell Helicopter in Texas.

On 4 April 1975, Kit Murray married his second wife, Ms. Ann Tackitt Humphreys, an interior decorator, in Tarrant County, Texas.

Colonel Arthur Warren Murray, United States Air Force (Retired), died at West, Texas, 25 July 2011, at the age of 92 years.

© 2018, Bryan R. Swopes