Tag Archives: Saturn V

12 September 1962

President John F. Kennedy at Rice University Stadium, Houston, Texas, 12 September 1962. (Cecil Stoughton, White House/John F. Kennedy Library)

“We choose to go to the moon. We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard. . . .”

— John Fitzgerald Kennedy, President of the United States of America, in a speech at Rice University, Houston, Texas, 12 September 1962.

And so, 2,500 days later. . .

Apollo 11/Saturn V launches from Pad 39A, Kennedy Space Center, Cape Canaveral, Florida, at 13:32:00 UTC, 16 July 1969. Destination: Mare Tranquillitatis, The Moon. (NASA)

© 2015, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

26 July 1971, 13:34:06 UTC

The flight crew of Apollo 15, left to right, David R. Scott, Alfred M. Worden, James B. Irwin. (NASA)

26 July 1971: At 13:34:06 UTC, the Apollo 15/Saturn V (AS-510) was launched from Launch Complex 39A, Kennedy Space Center, Cape Canaveral, Florida. The three-man flight crew were David R. Scott, Mission Commander, on his third space flight; Alfred M. Worden, Command Module Pilot, on his first mission; and James B. Irwin, Lunar Module Pilot, also on his first space mission. This was the fifth manned lunar landing mission (though Apollo 13 did not land). The destination was the Hadley Rille.

On this flight, NASA was sending a powered wheeled transport vehicle, the Lunar Roving Vehicle, or LRV. This would allow the astronauts on the moon’s surface to travel farther from the landing point, spend less time getting where they were going, and with less physical exertion. They would also be able to return to their space craft with more geologic samples. The emphasis on this flight was to conduct a meaningful scientific examination of the surface. The astronauts had received extensive training in this regard.

Apollo 15 (AS-510) launch from Launch Complex 39A, Kennedy Space Center, Cape Canaveral, Florida, at 13:34:06 UTC, 26 July 1971. (NASA)

© 2015, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

16 July 1969, 16:16:16 UTC, T + 02:44:16.2

This 1966 illustration depicts the J-2 engine of the S-IVB third stage firing to send the Apollo spacecraft to the Moon. (NASA)
This 1966 illustration depicts the J-2 engine of the S-IVB third stage firing to send the Apollo spacecraft to the Moon. (NASA)

16 July 1969: At 16:16:16 UTC, T+02:44:16.2, the Apollo 11 S-IVB third stage engine reignited for the Trans Lunar Injection maneuver.

One of the necessary features of the Rocketdyne J-2 engine was its ability to restart a second time. The third stage was first used to place the Apollo 11 spacecraft into Earth orbit and was then shutdown. When the mission was ready to proceed toward the Moon, the J-2 was re-started. Using liquid hydrogen and liquid oxygen for propellant, Apollo 11′s S-IVB burned for 5 minutes, 41.01 seconds, with the spacecraft reaching a maximum 1.45 Gs just before engine cut off. The engine was shut down at T+02:50:03.03. Trans Lunar Injection was at 16:22:13 UTC.

© 2015, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

16 July 1969, 13:34:42.30 UTC, T + 2:42.30

Apollo 11 S-1C first stage separation at 2 minutes, 41 seconds, altitude 42 miles, speed 6,164 mph, has burned 4,700,000 pounds of propellant. (NASA)
Apollo 11 S-1C first stage separation at 2 minutes, 41 seconds, altitude 42 miles (67.6 kilometers), speed 6,164 mph (9,920 kph), has burned 4,700,000 pounds (2,131,884 kilograms) of propellant. (NASA)

16 July 1969: At 13:34:42.30 UTC, 2 minutes, 42.30 seconds after launch, the S-IC first stage of the Apollo 11/Saturn V has burned out and is jettisoned. Apollo 11 has reached an altitude of 42 miles (68 kilometers) and a speed of 6,164 miles per hour (9,920 kilometers per hour). The five Rocketdyne F-1 engines have burned 4,700,000 pounds (2,132,000 kilograms) of liquid oxygen and RP-1 propellant.

After separation, the S-IC first stage continued upward on a ballistic trajectory to approximately 68 miles (109.4 kilometers) altitude, reaching its apex at T+4:29.1, then fell back to Earth. It landed in the Atlantic Ocean approximately 350 miles (563.3 kilometers) downrange.

© 2015, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

16 July 1969, 13:34:30 UTC, T + 2:30

Apollo 11 gains altitude while the first stage Rocketdyne F-1 engines increase thrust. (NASA)
Apollo 11 gains altitude while the first stage Rocketdyne F-1 engines increase thrust. (NASA)

16 July 1969: Apollo 11/Saturn V AS-506 accelerates with all five Rocketdyne F-1 engines burning. As the rocket climbs through thinner atmosphere, the engines become more efficient and the total thrust for the S-IC first stage increases from 7,648,000 pounds of thrust to 9,180,000 pounds of thrust at about T+1:23.0.

In order to limit acceleration, a pre-planned signal to cut off the center engine is sent at T+2:15.2 (Center Engine Cut-Off, “CECO”). As the first stage burns fuel at a rate of 13 tons per second, the rapidly deceasing weight of the Saturn V and the increasing efficiency of the F-1 engines could cause the limits of vehicle acceleration to be exceeded.

By T+2:30, the Saturn V has reached an altitude of 39 miles (62.8 kilometers) and is 55 miles (88.5 kilometers) downrange.

This photograph was taken by a 70mm telescopic camera aboard a USAF/Boeing EC-135N A/RIA (Apollo Range Instrumentation Aircraft) serial number 60-374. The airplane is in the collection of the National Museum of the United States Air Force.

© 2015, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather