Tag Archives: Sound Barrier

26 April 1948

est Pilot George Welch flying the prototype North American Aviation XP-86 Sabre, 45-59597. (U.S. Air Force)
North American Aviation test pilot George S. Welch, flying the first of three XP-86 prototypes, serial number 45-59597. (North American Aviation, Inc.)

26 April 1948: At Muroc Field (now known as Edwards Air Force Base), in the high desert of southern California, North American Aviation test pilot George Welch put the prototype XP-86 Sabre, 45-59597, into a 40° dive and broke the Sound Barrier. It is only the second U.S. aircraft to fly supersonic. The first was the Bell X-1, piloted by Chuck Yeager, only a few months earlier.

Or, maybe not.

In his book, Aces Wild: The Race For Mach 1, fellow North American Aviation test pilot Albert W. Blackburn makes the case that George Welch had taken the prototype XP-86 Sabre supersonic on its first flight, 1 October 1947, and that he had done so three times before Chuck Yeager first broke the Sound Barrier with the Bell X-1 rocketplane, 14 October 1947. Blackburn described two runs through the NACA radar theodolite with speeds of Mach 1.02 and 1.04 on 13 November 1947.

Mr. Blackburn speculates—convincingly, in my opinion—that Secretary of the Air Force W. Stuart Symington, Jr., ordered that Welch’s excursions beyond Mach 1 were to remain secret. However, during a radio interview, British test pilot Wing Commander Roland Prosper (“Bee”) Beamont, C.B.E, D.S.O. and Bar, D.F.C. and Bar, stated that he had flown through the Sound Barrier in the number two XP-86 Sabre prototype (45-59598). Once that news became public, the U.S. Air Force released a statement that George Welch had flown beyond Mach 1 earlier, but gave the date as 26 April 1948.

Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype XP-86. This photograph was taken 14 October 1947. (U.S. Air Force)
Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype XP-86. This photograph was taken 14 October 1947. (U.S. Air Force)

It wasn’t long after the first flight of the XP-86 on October 1, 1947, that Welch dropped into Horkey’s [Edward J. Horkey, an aerodynamicist at North American Aviation] office at the Inglewood plant. He wanted to talk about his recent flight and some “funny” readings in the airspeed indicator. He had made a straight-out climb to more than 35,000 feet. Then, turning back toward Muroc Dry Lake, he began a full-power, fairly steep descent.

“I started at about 290 knots,” Welch was explaining to Horkey. “In no time I’m at 350. I’m still going down, and I’m still accelerating but the airspeed indicator seems stuck like there’s some kind of obstruction in the pitot tube. I push over a little steeper and by this time I’m through 30,000 feet. All of a sudden, the airspeed indicator flips to 410 knots. The aircraft feels fine, no funny noises, no vibration. Wanted to roll off to the left, but no big deal. Still, I leveled out at about 25,000 and came back on the power. The airspeed flicked back to 390. What do you think?”

“. . . You may be running into some Mach effects. . . .”

— Aces Wild: The Race For Mach 1, by Al Blackburn, Scholarly Resources Inc., Wilmington, Delaware, 1999, at Pages 147–148.

The “funny” reading of the airspeed indicator became known as the “Mach jump.” George Welch was the first to describe it.

The Sabre became a legendary jet fighter during the Korean War. 9,860 were built by North American, as well as by licensees in Canada, Australia and Japan.

George Welch had been recommended for the Medal of Honor for his actions as a P-40 Warhawk fighter pilot in Hawaii, December 7, 1941. He was killed while testing a North American Aviation F-100A Super Sabre, 12 October 1954.

Test pilot George S. Welch with a North American Aviation F-86 Sabre. (San Diego Air and Space Museum Archives)

© 2018, Bryan R. Swopes

26 December 1948

The ç
The Lavochkin La-176 (NPO Lavochkin)

26 December 1948: Test pilot Ivan Evgrafovich Federov (Ива́н Евгра́фович Фёдоров ) became the first pilot in the Soviet Union to exceed Mach 1 when he flew the Lavochkin La-176 in a dive from 9,050 meters (29,692 feet) to 6,000 meters (19,685 feet).

It was first thought that the La-176’s airspeed indicator had malfunctioned, but during subsequent testing conducted the first week of January 1949, Federov repeated the dive and six times reached Mach 1.02.

The La-176 was destroyed when its canopy failed during supersonic flight. Test pilot I.V. Sokolovsky was killed.

Lavochkin La-176
Lavochkin La-176

The La-176 was a single-seat, single-engine fighter, derived from the earlier La-168. The leading edge of its wings and tail surfaces were swept at 45°. The fighter was 36 feet (10.973 meters) long with a wingspan of 28 feet, 2 inches (8.585 meters). It had an empty weight of 3,111 kilograms (6,858.6 pounds)  and loaded weight of 4,631 kilograms (10,210 pounds).

The La-176 was powered by a Klimov VK-1 centrifugal-flow turbojet, developed from the Rolls-Royce Nene. The British engines were reverse-engineered by Vladimir Yakovlevich Klimov and manufactured at Factory No. 45 in Moscow as the Klimov VK-1. The VK-1 used a single-stage centrifugal-flow compressor, 9 combustion chambers and a single-stage axial-flow turbine. It produced a maximum 26.5 kilonewtons of thrust (5,957 pounds of thrust). The VK-1 was 2.600 meters (8 feet, 6.4 inches) long, 1.300 meters (4 feet, 3.2 inches) in diameter, and weighed 872 kilograms (1,922 pounds).

The swept-wing jet had a maximum speed of 648 miles per hour (1,042.85 kilometers per hour) and a range of 621 miles (999.4 kilometers).

Armament consisted of one Nudelman N-37 30 mm cannon and two Nudelman-Suranov NS-23 23 mm cannon.

Lavochkin La-176
Lavochkin La-176

Colonel Ivan Evgrafovich Federov (23 February 1914–12 February 2011) was a Soviet Air Force fighter pilot who fought in the Spanish civil war (where he was known as Diablo Rojo, the Red Devil), the Russo-Finish War, World War II, China and Korea. He may have shot down as many as 135 enemy airplanes. He was personally awarded the Iron Cross by Adolf Hitler, Chancellor of Germany, in 1941. His Soviet Awards include Hero of the Soviet Union, the Order of Lenin, Order of Alexander Nevsky, Order of the Red Banner, Order of the Patriotic War 1st Degree, Order of the Patriotic War 2nd Degree, and Order of the Red Star.

Colonel Ivan Yegrafovich Federov, Soviet Air Force.
Colonel Ivan Yegrafovich Federov, Soviet Air Force. Hero of the Soviet Union.

© 2016, Bryan R. Swopes

14 October 1997

Brigadier General Charles E. Yeager, United States Air Force (Retired), photographed at Edwards Air Force Base, California, 14 October 1997, the Fiftieth Anniversary of his historic supersonic flight. (Photograph used with permission. © 2010, Tim Bradley Imaging)

14 October 1997: On the Fiftieth Anniversary of his historic supersonic flight in the Bell X-1 research rocketplane, Brigadier General Charles Elwood (“Chuck”) Yeager, United States Air Force (Retired) once again broke the Sound Barrier when he flew over Edwards Air Force Base in a McDonnell Douglas F-15D-38-MC Eagle, serial number 84-046. Lieutenant Colonel Troy Fontaine flew in the rear seat of the two-place fighter. Glamorous Glennis III was painted on the Eagle’s nose.

The Associated Press reported that an estimated 1,000 spectators were at Edwards Air Force Base in the high desert north of Los Angeles, California, to see this historic flight.

My friend, aviation photographer Tim Bradley, and I were there. Tim took the photograph above a few minutes after General Yeager landed. As he concluded his comments to the crowd, he said, “All that I am. . . I owe to the Air Force.”

Brigadier General Charles E. Yeager, U.S. Air Force (Ret.), with Glamorous Glennis III, an F-15D Eagle, 84-046, at Edwards Air Force Base, October 1997. (U.S. Air Force)

© 2018, Bryan R. Swopes

14 October 1977

Major General Thomas Stafford with Brigadier General (Retired) Charles E. Yeager, seated in a Lockheed F-104 Starfighter at Edwards AFB, 14 October 1977. (Associated Press)

14 October 1977: On the Thirtieth Anniversary of his historic supersonic flight in the Bell X-1, Brigadier General Charles E. (“Chuck”) Yeager, U.S. Air Force (Retired), returned to Edwards Air Force Base where he flew a Lockheed F-104 Starfighter to Mach 1.5.

Chuck Yeager and Bell X-1 46-062 glide back to Edwards Air Force Base for landing. (U.S. Air Force)

© 2016, Bryan R. Swopes

14 October 1947

Captain Charles Elwood (“Chuck”) Yeager, U.S. Air Force, with “Glamorous Glennis,” the Bell XS-1. (U.S. Air Force/National Air and Space Museum)

14 October 1947: At approximately 10:00 a.m., a four-engine Boeing B-29 Superfortress heavy bomber, piloted by Major Robert L. Cardenas, took off from Muroc Air Force Base (now known as Edwards Air Force Base) in the high desert north of Los Angeles, California. The B-29’s bomb bay had been modified to carry the Bell XS-1, a rocket-powered airplane designed to investigate flight at speeds near the Speed of Sound (Mach 1).

A Bell XS-1 rocketplane carried aloft in the bomb bay of a modified Boeing B-29-96-BW Superfortress, serial number 45-21800. (NASA)
Captain Chuck Yeager with the Bell XS-1 on Muroc Dry Lake, 1947. (Chuck Yeager collection)

Air Force test pilot Captain Charles Elwood (“Chuck”) Yeager, a World War II fighter ace, was the U.S. Air Force pilot for this project. The X-1 airplane had been previously flown by company test pilots Jack Woolams and Chalmers Goodlin. Two more X-1 aircraft were built by Bell, and the second, 46-063, had already begun its flight testing.

Captain Yeager had made three glide flights and this was to be his ninth powered flight. Like his P-51 Mustang fighters, he had named this airplane after his wife, Glamorous Glennis.

Bob Cardenas climbed to 20,000 feet (6,096 meters) and then put the B-29 into a shallow dive to gain speed. In his autobiography, Yeager wrote:

One minute to drop. [Jack] Ridley flashed the word from the copilot’s seat in the mother ship. . . Major Cardenas, the driver, starts counting backwards from ten. C-r-r-ack. The bomb shackle release jolts you up from your seat, and as you sail out of the dark bomb bay the sun explodes in brightness. You’re looking at the sky. Wrong! You should have dropped level. The dive speed was too slow, and they dropped you in a nose-up stall. . .

Cockpit of Bell X-1, 46-062, Glamorous Glennis, on display at the National Air and Space Museum. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)

“I fought it with the control wheel for about five hundred feet, and finally got her nose down. The moment we picked up speed I fired all four rocket chambers in rapid sequence. We climbed at .88 Mach. . . I turned off two rocket chambers. At 40,000 feet, we were still climbing at .92 Mach. Leveling off at 42,000 feet, I had thirty percent of my fuel, so I turned on rocket chamber three and immediately reached .96 Mach. . . the faster I got, the smoother the ride.

“Suddenly the Mach needle began to fluctuate. It went up to .965 Mach—then tipped right off the scale. . . .”

—Brigadier General Charles E. Yeager, U.S. Air Force (Retired), Yeager, An Autobiography, by Chuck Yeager and Leo Janos, Bantam Books, New York, 1985, Pages 120, 129–130.

In his official report of the flight, Yeager wrote:

Date: 14 October 1947

Pilot: Captain Charles E. Yeager

Time: 14 Minutes

       9th Powered Flight

1. After normal pilot entry and subsequent climb, the XS-1 was dropped from the B-29 at 20,000′and at 250 MPH ISA. This was slower than desired.

2. Immediately after drop, all four cylinders were turned on in rapid sequence, their operation stabilizing at the chamber and line pressure reported in the last flight. The ensuing climb was made at .85–.88 Mach, and, as usual, it was necessary to change the stabilizer setting to 2 degrees nose down from its pre-drop setting of 1 degree nose down. Two cylinders were turned off between 35,000′ and 40,000′,  but speed had increased to .92 Mach as the airplane was leveled off at 42,000′. Incidentally, during the slight push-over at this altitude, the lox line pressure dropped perhaps 40 psi and the resultant rich mixture caused chamber pressures to decrease slightly. The effect was only momentary, occurring at .6 G’s, and all pressures returned to normal at 1 G.

3. In anticipation of the decrease in elevator effectiveness at speeds above .93 Mach, longitudinal control by means of the stabilizer was tried during the climb at .83, .88, and .92 Mach. The stabilizer was moved in increments of 1/4–1/3 degree and proved to be very effective; also, no change in effectiveness was noticed at the different speeds.

4. At 42,000′ in approximately level flight, a third cylinder was turned on. Acceleration was rapid and speed increased to .98 mach. The needle of the machmeter fluctuated at this reading momentarily, then passed off the scale. Assuming that the offscale reading remained linear, it is estimated that 1.05 Mach was attained at this time. Approximately 30% of fuel and lox remained when this speed was reached and the meter was turned off.

5. While the usual light buffet and instability characteristics were encountered in the .88–.90 Mach range and elevator effectiveness was very greatly decreased at .94 Mach, stability about all three axes was good as speed increased and elevator effectiveness was regained above .97 Mach. As speed decreased after turning off the motor, the various phenomena occurred n reverse sequence at the usual speed, and in addition, a slight longitudinal porpoising was noticed from .98–.96 Mach which controllable by the elevators alone. Incidentally, the stability setting was not changed from its 2 degree nose down position after trial at .92 Mach.

6. After jettisoning the remaining fuel and lox a 1 G stall was performed at 45,000′. The flight was concluded by the subsequent glide and a normal landing on the lake bed.

CHARLES E. YEAGER
Capt., Air Corps

Chuck Yeager and flown the XS-1 through “the sound barrier,” something many experts had believed might not be possible. His maximum speed during this flight was Mach 1.06 (699.4 miles per hour/1,125.7 kilometers per hour).

Bell X-1 46-062 in flight. Note the “shock diamonds” visible in the rocket engine’s exhaust. (Photograph by Lieutenant Robert A. Hoover, U.S. Air Force)

The Bell XS-1, later re-designated X-1, was the first of a series of rocket powered research airplanes which included the Douglas D-558-II Skyrocket, the Bell X-2, and the North American Aviation X-15, which were flown by the U.S. Air Force, U.S. Navy, NACA and its successor, NASA, at Edwards Air Force Base to explore supersonic and hypersonic flight and at altitudes to and beyond the limits of Earth’s atmosphere.

The X-1 is shaped like a bullet and has straight wings and tail surfaces. It is 30 feet, 10.98 inches (9.423 meters) long with a wing span of 28.00 feet (8.534 meters) and overall height of 10 feet, 10.20 inches (3.307 meters). Total wing area is 102.5 square feet ( 9.5 square meters). At its widest point, the diameter of the X-1 fuselage is 4 feet, 7 inches (1.397 meters). The empty weight is 6,784.9 pounds (3,077.6 kilograms), but loaded with propellant, oxidizer and its pilot with his equipment, the weight increased to 13,034 pounds (5,912 kilograms). The X-1 was designed to withstand an ultimate structural load of 18g.

The X-1 is powered by a four-chamber Reaction Motors, Inc., XLR11-RM-3 rocket engine which produced 6,000 pounds of thrust (26,689 Newtons). This engine burns a mixture of ethyl alcohol and water with liquid oxygen. Fuel capacity is 293 gallons (1,109 liters) of water/alcohol and 311 gallons (1,177 liters) of liquid oxygen. The fuel system is pressurized by nitrogen at 1,500 pounds per square inch (10,342 kilopascals).

The X-1 was usually dropped from a B-29 flying at 30,000 feet (9,144 meters) and 345 miles per hour (555 kilometers per hour). It fell as much as 1,000 feet (305 meters) before beginning to climb under its own power.

The X-1’s performance was limited by its fuel capacity. Flying at 50,000 feet (15,240 meters), it could reach 916 miles per hour (1,474 kilometers per hour), but at 70,000 feet (21,336 meters) the maximum speed that could be reached was 898 miles per hour (1,445 kilometers per hour). During a maximum climb, fuel would be exhausted as the X-1 reached 74,800 feet (2,799 meters). The absolute ceiling is 87,750 feet (26,746 meters).

The X-1 had a minimum landing speed of 135 miles per hour (217 kilometers per hour) using 60% flaps.

Bell X-1 46-063 with its Boeing B-29 Superfortress carrier aircraft, 45-21800. (Flight Test Historical Foundation)

The three X-1 rocketplanes made a total of 157 flights with the three X-1. The number one ship, Glamorous Glennis, made 78 flights. On 26 March 1948, with Chuck Yeager again in the cockpit, it reached reached Mach 1.45 (957 miles per hour/1,540 kilometers per hour) at 71,900 feet (21,915 meters).

The third X-1, 46-064, made just one glide flight before it was destroyed 9 November 1951 in an accidental explosion.

The second X-1, 46-063, was later modified to the X-1E. It is on display at the NASA Dryden Research Center at Edwards Air Force Base.

Glamorous Glennis is on display at the Smithsonian Institution National Air and Space Museum, next to Charles A. Lindbergh’s Spirit of St. Louis.

Bell X-1, 46-062, Glamorous Glennis, on display in the Milestones of Flight gallery at the National Air and Space Museum, Washington, D.C. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)

© 2017, Bryan R. Swopes